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Abstract: Nitrogen oxide (NOx) emissions have attracted much attention for increasing concern on
the quality of the atmospheric environment. In view of NO decomposition in the cement production
process, the preparation of Cu-Al/SiO2 porous material and its effect on NO decomposition were
studied, and the denitrification mechanism was proposed in this paper. The NO decomposition
performance of the Cu-Al/SiO2 porous material was tested via the experimental setup and
infrared spectrometer and micro gas chromatography (GC). The result shows that the Cu-Al/SiO2

porous material with the template of cetyltrimethylammonium bromide (CTAB) had a better NO
decomposition rate than materials with other templates when the temperature was above 500 ◦C, and
NO decomposition rate could approach 100% at high temperatures above 750 ◦C. Structure analysis
indicates that the prepared Cu-Al/SiO2 material structure was a mesoporous structure. The X-Ray
Diffraction (XRD) and Ultraviolet–visible spectrophotometry (UV–Vis) results of the denitrification
product show that the Cu-Al/SiO2 material mainly decomposed to Cu2O and Si2O, and the CuO
decomposed to Cu2O and O2 at high temperature. The Cu(I)O was considered as the active phase.
The redox process between Cu(II)O and Cu(I)O was thought to be the denitrification mechanism of
the Cu-Al/SiO2 porous material.

Keywords: Cu-Al/SiO2 porous material; template; NO decomposition rate; cement kiln;
denitrification mechanism

1. Introduction

Nitrogen oxides (NOx), as one of the main atmospheric pollutants, are extremely toxic to human
health and are also harmful to the environment, which can result in acid rain, photochemical smog,
ozone depletion, atmospheric visibility degradation, and so on [1–3]. The main source of nitrogen
oxides is the burning of chemical raw materials, mainly including nitrogen oxides from industrial
production and motor vehicle exhaust fumes [4,5]. The nitrogen oxides from industrial production
mainly include coal-fired power plants and industrial furnaces. Nowadays, The NOx emissions from
the cement industry become the third-largest one following that from the thermal power plants and
motor vehicle exhausts, with the amount of NOx approximately one-tenth of the total emissions [6].
Consequently, reducing NOx emissions from the cement industry has attracted much more public
attention in recent years [7,8].

In cement production, there are three kinds of NOx production mechanisms taking place during
combustion processes, they are fuel NOx, thermal NOx, and prompt NOx [9]. In addition, NOx is
primarily formed at two positions in kiln systems for cement clinker production: In the rotary kiln
and the precalciner. NOx is formed both from atmospheric N2 and from fuel-bound nitrogen at high
temperature in the rotary kiln, whereas, in the precalciner, NOx can be only formed from fuel-bound
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nitrogen, because of the low operating temperatures [10,11]. At present, denitrification technologies
that usually be applied to cement kilns include low NOx combustion technology [12], selective catalytic
reduction (SCR) [13,14], and selective non-catalytic reduction (SNCR) [15]. Thermal NOx formation can
be decreased by approximately 30% after low NOx combustion technology [16,17], so the efficiency of
low NOx combustion technology is too low to meet the emission standard of air pollutants for cement
industry. The selective non-catalytic reduction technology (SNCR) is relatively simple and cost-effective
technology for removing NOx. SNCR is regarded as the most suitable technology in consideration
of the denitrification performance and cost [18]. The SNCR technology for utility boilers has been
well studied, and the denitrification efficiency is approximately 40% [19]. Nevertheless, as opposed
to SNCR used in power station boiler, NOx reduction efficiencies vary from 15% to 80% between
projects, and even within individual projects, for cement kilns [15,18]. The reason is that the SNCR
process can be influenced by multiple factors in the complex environment of the cement precalciner.
Besides, large amounts of ammonia and urea would be injected into precalciner, ammonia escape
results in a secondary pollution. The selective catalytic reduction (SCR), a high-efficiency method,
is inclined to be relatively expensive, either to install and run due to expensive consumable [20,21].
Furthermore, the catalysts are easy poisoning and clogging when used in cement kiln, because of high
dust concentration and alkali metal content in the exhaust gas from cement kiln [22]. Even integrated
usage of above technologies (except for SCR, which is too expensive for cement industry) cannot meet
the increasingly stringent emission standard. Therefore, there are no mature technologies to remove
NOx in cement industry until now. Given the noted situation, a new NOx emission control technology
applied in cement industry was proposed in this study.

In order to effectively reduce NOx emission in the dry process cement kiln with preheater and
precalciner, when the rotary kiln exhaust gas containing a large amount of NOx (about 1000 ppm)
enters into the precalciner, a kind of porous material can be used as the denitrification catalyst to be
injected into the preheater and precalciner without ammonia or other reductant, and this material
promotes the decomposition of NOx.

Combined with the cement kiln process, the denitrification porous material would be injected into
the cement kiln with raw cement material, so it could not influence the cement performance. Therefore,
the component of denitrification material should be compatible with the cement components. The
main components of cement are CaO, SiO2, Al2O3, FeO, and so on. Thus, with Al/SiO2 as the frame
and Cu as the active element, Cu-Al/SiO2 porous materials were prepared in this paper. In addition,
the effect on the NO decomposition rate was studied in this paper.

2. Materials and Methods

2.1. Preparation of Porous Materials

The Cu-Al/SiO2 porous materials were synthesized by hydrothermal method. In addition, the
Cu-Al/SiO2 porous materials were prepared with different templates such as cetyltrimethylammonium
bromide (CTAB), tetrapropylammonium hydroxide (TPAOH), ammonium hydroxide (NH3·H2O), and
zeolite seed crystal in this paper.

The sodium hydroxide solution was dropped into silica sol under vigorous stirring with a
magnetizer (solution A). In addition, the template was mixed with the aluminum sulfate solution
(solution B). After stirring for half an hour, solution B was slowly dropwise added into the solution A;
finally, the copper sulfate solution was added. The obtained molar composition of gel mixture was
SiO2: 0.02Al2O3: 0.05CuO: 0.1CTAB: 0.3NaOH: 45H2O. During the process, sulfuric acid solution
was used to ensure that the pH of the solution was about 10~12. The solution was stirred at room
temperature for 3 h, and poured into a reaction kettle, then the reaction kettle was put in an oven at
160 ◦C for 24 h. After that, the reaction kettle was cooled in the air, the solid product was separated by
centrifugation, and washed with deionized water and ethanol 3 times. The final product was dried at
100 ◦C for 24 h and then calcined at 550 ◦C for 5 h.
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2.2. Characterization

The NO decomposition reaction was carried out in a laboratory-scale quartz fixed bed reactor
heated by an electric control heated oven, as shown in Figure 1. NO decomposition reaction was
performed on a fixed-bed quartz tube reactor containing 2 mL porous material. The thermocouple
was inserted into the center of the reactor to measure the test temperature. The total flow rate was
300 mL/min. The reactant gas condition was 1000 ppm NO and He balance gas. The materials and
reactant gas were heated at a heating rate of 15 ◦C/min from ambient temperature to 1000 ◦C. The
concentrations of NO, NO2, and N2O were continually monitored by a TENSOR 27 FT-IR spectrometer
(Bruker, Karlsruhe, Germany). In addition, the NO decomposition rate was calculated by Equation (1):

NO decomposition rate =([NO]in − [NO]out − [NO2]out − [N2O]out)/[NO]in×100% (1)
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Figure 1. The experimental setup for decomposition of NO.

The specific surface area, N2 adsorption desorption curves, and pore size distribution were
determined by BET using a TriStarII 3020 gas sorption analyzer (Mike, Georgia, USA). All the samples
were fully dried at 90 ◦C for 1 h and then degassed at 350 ◦C for 3 h in vacuum prior to the BET
surface measurements.

The crystal structures of the prepared porous materials were determined by X-ray diffraction
(XRD). XRD patterns were recorded on a Bruker D8 Advance diffractometer (Bruker, Karlsruhe,
German) equipped with the Cu-Kα radiation source (λ = 0.15405 nm), operating at 40 kV and 40 mA. In
addition, the scanning angle (2θ) was taken over a range of 10◦–60◦. The diffraction patterns were used
for phase identification of crystalline materials or crystalline grains in powder. Crystalline phases were
identified by comparison with the reference data cited from the International Center for Diffraction
Data (ICDD) files. However, it should be reminded that this technique can only evaluate the crystalline
phases and any amorphous phases could not be detected. The TEM was obtained with JEOL-2010
transmission electron microscope (JEOL, Tokyo, Japan). The porous material powders were dispersed
in alcohol and kept in an ultrasonic bath for 10 min, and then the well-prepared suspension was
deposited on a carbon-covered Cu grid to be tested. UV–Visible diffuse reflectance spectra of the
samples were recorded using a JASCO V-650 spectrophotometer (JASCO, Tokyo, Japan).

3. Results and Discussion

3.1. Denitrification Performance and Structure

Figure 2 displays the relationship between NO decomposition rate of the porous materials and the
temperature ranging from 300 to 1000 ◦C, with the denitrification data collected in an interval of 50 ◦C.
The porous materials were prepared with different templates (TPAOH, CTAB, NH3·H2O, zeolite seed
crystal and no template added) by hydrothermal method. It can be seen that the NO decomposition
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rate of Cu-Al/SiO2 porous material increased with the increasing of the denitrification reaction
temperature. Cu-Al/SiO2 porous material with CTAB and TPAOH have better denitrification efficiency
than Cu-Al/SiO2 porous material with NH3·H2O and zeolite seed crystal during the temperature
range 500–1000 ◦C. The porous material with CTAB had more than 60% NO decomposition rate
at 600–1000 ◦C, while the NO decomposition rate at 300−500 ◦C was lower than 20%, and the NO
decomposition rate could approach 99% at high temperatures above 750 ◦C. However, the porous
material with TPAOH could reach 60% NO decomposition rate at 750–1000 ◦C. Compared with the
Cu-Al/SiO2 porous material with TPAOH, NO decomposition rate of the Cu-Al/SiO2 porous material
with CTAB was increased by 63.1% and 10.7% at 650 and 750 ◦C, respectively, indicating that the
denitrification efficiency was enhanced with a broader operation temperature window due to the
template of CTAB. On the whole, the NO decomposition rate of the Cu-Al/SiO2 porous material with
the templates of CTAB had the best denitrification efficiency, compared to that of porous materials
with other templates.
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Figure 2. The effect of porous materials with different templates on the NO decomposition rate (Blank,
tetrapropylammonium hydroxide (TPAOH), cetyltrimethylammonium bromide (CTAB), ammonium
hydroxide (NH3·H2O), and Zeolite were used, respectively, instead of the Cu-Al/SiO2 porous materials
with no template added, TPAOH, CTAB, NH3·H2O, and zeolite seed crystal).

The Cu-Al/SiO2 materials have different porous properties with different templates. Thus, the
pore properties of the Cu-Al/SiO2 porous materials with varying templates were obtained from N2

adsorption–desorption isotherms at −196 ◦C. The results of BET surface area, pore volume, and pore
diameter estimated by the Barrett–Joyner–Halenda (BJH) model are presented for Cu-Al/SiO2 porous
materials with different templates in Table 1. The results show that the porous materials with organic
template reagent had higher specific surface area than those with inorganic template agent. The
Cu-Al/SiO2 porous material with CTAB reached the largest specific surface area, the biggest cumulative
pore volume, and the smallest average pore diameter. The specific surface area, pore volume, and the
pore diameter were about 392.27 m2/g, 0.4876 cm3/g, and 4.3119 nm, respectively. Compared with
the Cu-Al/SiO2 porous material with CTAB, the specific surface area of Cu-Al/SiO2 porous material
with TPAOH was decreased to 135.27 m2/g, and the pore diameter was increased to 7.55 nm. Figure 3
shows the N2 adsorption–desorption isotherms of Cu-Al/SiO2 porous materials with no template
added, TPAOH, CTAB, NH3.H2O, and zeolite seed crystal, separately. The template provides key
functions in the process of synthesizing the pore structure material, namely in the roles of structure
orientation, space filling, and balancing skeleton charge, and so on. From Figure 3, we can see that the
N2 amount absorption of the Cu-Al/SiO2 porous material with CTAB was much larger than those of
materials with other templates. The pore structure of Cu-Al/SiO2 porous materials was confirmed
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by N2 adsorption–desorption isotherms. The N2 adsorption–desorption isotherm of porous material
with CTAB shows that the adsorption–desorption hysteresis loop appeared in the middle segment.
The Cu-Al/SiO2 porous material with CTAB had the typical IV type N2-adsorption isotherm curves,
and the material had the inflection point and hysteresis loop, implying the material’s pores were
well distributed and narrow (also shown in the pore size distribution curve, the distribution of pore
diameter was mainly in the range 2~5 nm), which indicate that the material structure was a mesoporous
structure. Thus, the pore structure of the Cu-Al/SiO2 porous material with CTAB enlarged the contact
area with NO gas, which contributed to the denitrification performance.

Table 1. The results of specific surface areas, pore volumes, and pore diameters of porous materials with
different templates (Blank, TPAOH, CTAB, NH3·H2O, and Zeolite were used, respectively, instead of
the Cu-Al/SiO2 porous materials with no template added, tetrapropylammonium hydroxide (TPAOH),
cetyltrimethylammonium bromide (CTAB), ammonium hydroxide (NH3·H2O), and zeolite seed crystal).

Template Specific Surface Area
(m2/g)

Cumulative Pore
Volume (cm3/g)

Average Pore Diameter
(nm)

CTAB 392.2759 0.4876 4.3119
TPAOH 135.2742 0.2702 7.5585
Blank 124.693 0.1396 4.674

Zeolite 77.5880 0.1619 7.6493
NH3·H2O 64.5010 0.0813 4.5998
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Figure 3. The N2 adsorption–desorption isotherm of Cu-Al/SiO2 porous materials with different
templates (Blank, TPAOH, CTAB, NH3·H2O, and Zeolite were used, respectively, instead of the
Cu-Al/SiO2 porous materials with no template added, tetrapropylammonium hydroxide (TPAOH),
cetyltrimethylammonium bromide (CTAB), ammonium hydroxide (NH3·H2O), and zeolite seed crystal).

A transmission electron microscope (TEM) was used to study the microstructure of Cu-Al/SiO2

porous material with the template of CTAB (as shown in Figure 4). The TEM micrograph in Figure 4
demonstrated the uniform one-dimensional mesoporous channel structure of Cu-Al/SiO2 porous
material. It was notable that the uniform porosity illustrated by TEM analysis was in line with the quite
narrow pore size distribution determined by N2 adsorption (see Figure 3). Representative TEM images
of the Cu-Al/SiO2 porous material with a highly ordered hexagonal structure could be clearly observed
in the image taken with the electron beam parallel to the pore direction (Figure 4a). Additionally,
the micrograph that was taken with the electron beam perpendicular to the pores showed both the
channels and the framework (Figure 4b). The well-ordered mesoporous structure was observed clearly
and it could hardly find nanoparticles or clusters of metal (Cu) oxides outside the mesoporous channels,
indicating the copper was incorporated into the Si-O and Al-O framework in Cu-Al/SiO2 material.
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As the component of the Cu-Al/SiO2 porous material was similar to the cement composition, it
did not negatively influence the performance of cement. In combination with the cement production
process, it is suitable to add the Cu-Al/SiO2 porous material into the preheater with the cement raw
materials. NO would be removed in the preheater and precalciner. The products of the denitrification
reactions goes into the rotary kiln with the cement raw material, and, finally, contributes to the cement
clinker in the rotary kiln. During the whole process, the Cu-Al/SiO2 porous material is not only a
denitrification material but also can be a component of the cement clinker.

In order to ensure the denitrification performance of the Cu-Al/SiO2 porous material in cement
kiln, cement raw materials (CRM) mixed with low content (3%~5%) of Cu-Al/SiO2 porous materials
with the template of CTAB were tested. It can be seen, from Figure 5, that the NO decomposition
rate increased with the increase of the proportion of the Cu-Al/SiO2 porous material in the mixture
material. In addition, the NO decomposition rate increased with the increase of the temperature from
500 to 1000 ◦C. When a small amount of Cu-Al/SiO2 porous material (5%) was added into cement
raw materials, the NO decomposition rate of the mixture material was more than 80% at 800–1000 ◦C,
while the NO decomposition rate was lower than 50% at 500−700 ◦C. NO decomposition rate increased
quickly when the temperature was above 750 ◦C, and the decomposition rate of all the materials could
reach as high as 80% above 900 ◦C. When a small amount of Cu-Al/SiO2 porous material (5%) was
added into cement raw materials, the NO decomposition rate could reach over 80% above 800 ◦C, and
the NO decomposition rate could approach 90% at the temperature of 900 ◦C.
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3.2. Denitrification Mechanism

According to the results of the denitrification performance of Cu-Al/SiO2 porous materials with
different templates (TPAOH, CTAB, NH3·H2O and ZSM seed crystal), the Cu-Al/SiO2 porous material
with CTAB obtained the best NO decomposition rate above 500 ◦C. Therefore, in order to further study
the denitrification mechanism of the Cu-Al/SiO2 porous material, under the gas condition of 1000
ppm NO and balance gas He, experiments were carried out with fixed bed reactor system, and the
reaction gas after denitrification was analyzed with GC (Agilent 490 Micro GC, California, USA). The
NO decomposition rate of the Cu-Al/SiO2 porous material with the template of CTAB was calculated
by Equation (1). In addition, the gas flow rate was 100 mL/min, and the reaction temperature was
increased from 100 to 1000 ◦C at 15 ◦C/min. The denitrification result of the Cu-Al/SiO2 porous material
with CTAB is shown in Figure 6.
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(GC) and Fourier Transform Infrared Spectroscopy (FTIR). (a) Peak area of different gases after 
denitrification; (b) NO decomposition rate of porous material; (c) FTIR spectra of reaction gas after 
denitrification at different temperatures; (d) NO decomposition rate of porous material when the 
temperature is kept at 1000 °C for 60 min. 
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of NO decreased sharply and, correspondingly, the amount of N2 and O2 increased at high 
temperature (above 500 °C). In addition, there was basically no NO2 and N2O produced in the whole 
process. The result tested by micro GC is coincident with that of detected by FTIR (as shown in Figure 
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Figure 6. Denitrification results of porous material with CTAB tested by micro gas chromatography (GC)
and Fourier Transform Infrared Spectroscopy (FTIR). (a) Peak area of different gases after denitrification;
(b) NO decomposition rate of porous material; (c) FTIR spectra of reaction gas after denitrification at
different temperatures; (d) NO decomposition rate of porous material when the temperature is kept at
1000 ◦C for 60 min.

The amount of different gas is proportional to the peak area, thus Figure 6a illustrates that peak
area of different gases changed along with the temperature. As can be seen in Figure 6a, the amount of
NO decreased sharply and, correspondingly, the amount of N2 and O2 increased at high temperature
(above 500 ◦C). In addition, there was basically no NO2 and N2O produced in the whole process. The
result tested by micro GC is coincident with that of detected by FTIR (as shown in Figure 6c). There was
NO absorption peak (1803~1962 cm−1) in reaction gas after denitrification at 100 ◦C. In addition, the
NO absorption peak disappeared and basically no NO2 absorption peak (1550~1650 cm−1) and N2O
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absorption peak (2160~2262 cm−1) appeared in reaction gas after denitrification at 1000 ◦C. According
to the result of Figure 6a, NO decomposition rate could be calculated by Equation (1). Therefore, NO
decomposition rate of Cu-Al/SiO2 porous material with the template of CTAB was shown in Figure 6b.
NO decomposition rate reached to nearly 40% at low temperature of 350 ◦C, and increased quickly
above 500 ◦C. In addition, the NO decomposition rate of Cu-Al/SiO2 porous material with CTAB could
approach 100% at high temperatures above 750 ◦C. After the denitrification test from 100 to 1000 ◦C,
NO decomposition rate of Cu-Al/SiO2 porous material was tested when the temperature was kept at
1000 ◦C for 60 min, as shown in Figure 6d. The gaseous products of the reaction were analyzed by
micro GC. The GC result shows that there was no nitrogen oxides left in the gaseous products, thus
NO decomposition rate was still nearly 100% in the 60 min.

The phase analysis of denitrification product was analyzed by X-ray diffractometer and
Ultraviolet–visible spectroscopy (UV–Vis) (shown in Figure 7). It can be seen from Figure 7a,
XRD phase analysis indicates that the denitrification products mainly were cristobalite and cuprite.
The XRD pattern of cuprite revealed main diffraction peaks at 2θ values of 29.7◦, 36.6◦, and 42.5◦.
These values correlated with the cubic crystalline phase of Cu2O according to PDF reference number
78-2076. The XRD pattern of cristobalite showed main diffraction peaks at 2θ values of 21.7◦, 28.2◦,
30.9◦, 35.9◦, and 46.3◦. These values correlated with the tetragonal crystalline phase of Si2O according
to PDF reference number 82-0512.
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Figure 7. The analysis of the Cu-Al/SiO2 porous material with CTAB after denitrification reaction. (a) 
The X-ray diffractometer (XRD) analysis; (b) The Ultraviolet–visible spectroscopy (UV–Vis) analysis. 
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temperature. Therefore, the Cu(I)O was considered as the active phase, and the denitrification 
mechanism of the Cu-Al/SiO2 porous material was proposed, being that the NO decomposition is a 
redox process between Cu(II)O and Cu(I)O [26]. Several excellent reviews [27–29] have been 
published for establishing the reaction mechanism of NO decomposition over Cu-zeolites. The 
denitrification mechanism of the Cu-Al/SiO2 porous material is thought to be similar to that of the 
Cu-zeolites in this paper. As for the reaction mechanism of the NO decomposition, various 
experimental and theoretical models have been suggested, and considerable evidence has been 
provided to indicate that Cu(I) species participate in the NO decomposition reaction [30–34]. There 
are some discrepancies among the concepts of the form of the intermediate active sites. However, in 
our opinion, there is no doubt that the NO decomposition is a redox process. 

Figure 7. The analysis of the Cu-Al/SiO2 porous material with CTAB after denitrification reaction. (a)
The X-ray diffractometer (XRD) analysis; (b) The Ultraviolet–visible spectroscopy (UV–Vis) analysis.

The result of the UV–Vis absorbance analysis (Figure 7b) reveals that the maximum absorbance
of Cu2O in the visible light range (400–800 nm) occurred at around 470 nm, which is consistent with
nanometer Cu2O [23–25]. The results of XRD and UV–Vis indicate that during the increasing of the
temperature, the porous structure of the Cu-Al/SiO2 porous material collapsed, and Cu-Al/SiO2 porous
material decomposed to Cu2O, Si2O, and very little aluminum oxide. CuO in the porous material
decomposed to Cu2O and O2 at high temperature.

The results of XRD and UV–Vis analysis show that the CuO in Cu-Al/SiO2 porous material
decomposed to Cu2O and O2, and then the material reached a high NO decomposition rate at high
temperature. Therefore, the Cu(I)O was considered as the active phase, and the denitrification
mechanism of the Cu-Al/SiO2 porous material was proposed, being that the NO decomposition is a
redox process between Cu(II)O and Cu(I)O [26]. Several excellent reviews [27–29] have been published
for establishing the reaction mechanism of NO decomposition over Cu-zeolites. The denitrification
mechanism of the Cu-Al/SiO2 porous material is thought to be similar to that of the Cu-zeolites in this
paper. As for the reaction mechanism of the NO decomposition, various experimental and theoretical
models have been suggested, and considerable evidence has been provided to indicate that Cu(I)
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species participate in the NO decomposition reaction [30–34]. There are some discrepancies among the
concepts of the form of the intermediate active sites. However, in our opinion, there is no doubt that
the NO decomposition is a redox process.

Thus, Figure 8 described the proposed denitrification mechanism of the Cu-Al/SiO2 porous
material at high temperature [31]. As we can see in Figure 8, during the process of heating, a pair of
Cu(II) ions would lose an oxygen ion above 500 ◦C, a pair of Cu(I) ions were generated, and a Cu(I)
active center was formed. Then, two NO molecules were adsorbed on the pair of Cu(I) ions, and
an electron of Cu(I) ion was easily lost and went into the NO antibonding orbital, which formed an
intermediate of adsorbed anion pairs (Cu2+-NO−). NO molecules took one electron from the Cu(I)
ions, then bond length of N−O became longer, and the bond of N–O became easier to break, and finally
the anion decomposed to N2 and O2 molecules. Cu(II) ion was formed due to losing an electron of the
Cu(I) ion. Then Cu(I) ions active site was re-generated from the Cu(II) ion easily at temperatures above
500 ◦C. This denitrification mechanism is consistent with experimental results, thus the denitrification
mechanism of Cu-Al/SiO2 was thought to be that the NO decomposition is a redox process between
Cu(II)O and Cu(I)O.
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Figure 8. Proposed denitrification mechanism of the Cu-Al/SiO2 porous material at high temperature.

4. Conclusions

The Cu-Al/SiO2 porous material with the template of cetyltrimethylammonium bromide (CTAB)
had a better NO decomposition rate than materials with other templates when the temperature was
above 500 ◦C, and the NO decomposition rate could approach 100% at high temperatures above 750
◦C. The structure analysis indicates that the prepared Cu-Al/SiO2 material structure was a mesoporous
structure, and average pore diameter was 4.3119 nm. When adding a small amount of Cu-Al/SiO2

porous material (5%) into cement raw materials, the NO decomposition rate still could reach over
80% above 800 ◦C. In addition, the NO decomposition rate increased with the incremental addition of
proportions of Cu-Al/SiO2 porous material. The XRD and UV–Vis results of the denitrification product
show that the Cu-Al/SiO2 porous material mainly decomposed to Cu2O and Si2O. The CuO in the
Cu-Al/SiO2 porous material decomposed to Cu2O and O2 at temperatures above 500 ◦C. The Cu(I)O
was considered as the active phase. The redox process between Cu(II)O and Cu(I)O was thought to be
the denitrification mechanism of the Cu-Al/SiO2 porous material.
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