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Background.  Group A Streptococcus (GAS) causes superficial pharyngitis and skin infections as well as serious autoimmune sequelae 
such as acute rheumatic fever (ARF) and subsequent rheumatic heart disease. ARF pathogenesis remains poorly understood. Immune 
priming by repeated GAS infections is thought to trigger ARF, and there is growing evidence for the role of skin infections in this process.

Methods.  We utilized our recently developed 8-plex immunoassay, comprising antigens used in clinical serology for diagnosis 
of ARF (SLO, DNase B, SpnA), and 5 conserved putative GAS vaccine antigens (Spy0843, SCPA, SpyCEP, SpyAD, Group A carbohy-
drate), to characterize antibody responses in sera from New Zealand children with a range of clinically diagnosed GAS disease: ARF 
(n = 79), GAS-positive pharyngitis (n = 94), GAS-positive skin infection (n = 51), and matched healthy controls (n = 90).

Results.  The magnitude and breadth of antibodies in ARF was very high, giving rise to a distinct serological profile. An average 
of 6.5 antigen-specific reactivities per individual was observed in ARF, compared to 4.2 in skin infections and 3.3 in pharyngitis.

Conclusions.  ARF patients have a unique serological profile, which may be the result of repeated precursor pharyngitis and skin 
infections that progressively boost antibody breadth and magnitude.
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Measuring antibody responses to eight group A streptococcus (GAS) antigens reveals distinct serological profile
in children with acute rheumatic fever (ARF) compared to precursor GAS pharyngitis and skin infections
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Clinical manifestations of Streptococcus pyogenes (group A 
Streptococcus; GAS) infection are varied and include superficial 
pharyngitis (throat) and pyoderma (skin) infections, serious in-
vasive diseases, and autoimmune sequalae such as acute rheu-
matic fever (ARF), which is associated with carditis and can 
lead to chronic rheumatic heart disease (RHD) [1, 2]. ARF and 
RHD are substantial causes of morbidity and mortality in low- 
and middle-income countries, as well as in certain communities 
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within high-income countries [3, 4]. In New Zealand, the 
burden of ARF is almost exclusively carried by people of Māori 
and Pacific ethnicity, who have some of the highest rates of the 
disease in the world [5].

Treating GAS pharyngitis with antibiotics is the mainstay for 
ARF and RHD prevention, as although candidate vaccines are 
being developed, none have reached licensure [6]. The limited 
understanding of ARF pathogenesis presents a major hurdle for 
vaccine development from a perceived safety perspective, de-
spite contemporary clinical trials showing no link between GAS 
vaccines and autoimmune complications [7]. The historical mo-
lecular mimicry hypothesis for ARF postulates that antibodies 
generated during the immune response to a GAS infection are 
able to cross-react with similarly structured human proteins [2, 
4, 8, 9]. It is also thought that repeated infections are required to 
“prime” the immune system, eventually leading to loss of toler-
ance and autoimmune pathogenesis [2, 10].

The immune priming hypothesis is supported by epidemio-
logical evidence showing that precursor GAS pharyngitis and 
skin infections are frequent in children younger than 5 years 
[11], while the peak age for ARF is in school children aged 5–14 
years [5]. Recently, serological profiling to retrospectively map 
GAS exposures has shown that a minimum of 2 preceding GAS 
infections are associated with first-episode ARF, based on type-
specific antibody reactivities to the GAS T-antigen and the M 
protein (encoded by the emm gene) [10, 12]. While certain GAS 
strains (emm-types) were historically linked to ARF and con-
sidered rheumatogenic, recent global analyses have observed a 
broad range of ARF associated emm-types [13], suggesting the 
concept of rheumatogenicity should be reconsidered. There is 
also growing evidence for skin infections in ARF pathogenesis 
[14]. High rates of GAS skin infections and low rates of phar-
yngitis have been observed in tropical regions with a high ARF 
burden, such as in the Northern Territories of Australia [15] 
and Fiji [16]. In New Zealand, there is a predominance of skin-
associated GAS strains in children with ARF [17], and a recent 
study has shown that ARF risk is elevated 5-fold in the 3-month 
period following a GAS-positive throat or skin swab compared 
to children with a GAS-negative swab [18].

Robust, high-throughput assays based on advanced multi-
plex technology can facilitate serological profiling for GAS dis-
ease [19]. Elevated antibody titers are used clinically as evidence 
of a preceding GAS infection for the diagnosis of ARF [20–22], 
as well as to distinguish serologically confirmed GAS pharyn-
gitis from carriage in epidemiology studies [23, 24]. Our labo-
ratory recently developed a triplex immunoassay to measure 
antibody responses to streptolysin O (SLO), deoxyribonuclease B 
(DNaseB), and S. pyogenes nuclease A (SpnA) with improved effi-
ciency and accuracy compared to clinical serological assays [25]. 
This assay has now been expanded to an 8-plex that encompasses 
putative GAS vaccine targets (S. pyogenes leucine-rich repeat 
domain-containing protein [Spy0843/LRRP], streptococcal C5a 

peptidase [SCPA], S. pyogenes cell envelope protease [SpyCEP], S. 
pyogenes adhesion and division protein [SpyAD], and the group 
A carbohydrate [GAC]) [19]. These conserved antigens, carried 
by > 99% of strains (irrespective of emm-type) [26], elicit protec-
tive antibody responses in animal models and are included in var-
ious multicomponent GAS vaccines under development [27–29]. 
Serological responses to several of these antigens are yet to be well 
characterized, particularly following skin infections and in ARF.

The aim of this study was to use the 8-plex assay to profile the 
GAS immune response in ARF compared to precursor phar-
yngitis and skin infections. Antibody responses were meas-
ured in sera from New Zealand children with a range of GAS 
clinical syndromes (ARF, GAS-positive pharyngitis, and GAS-
positive skin infection) and compared with antibody responses 
in closely matched healthy controls. The assay was validated 
against commercial serological assays, and antibody dynamics 
based on ethnic group identification, time since infection, and 
disease state were considered.

METHODS

Study Samples

Sera were obtained from two New Zealand studies approved 
by the Health and Disability Ethics Committee (HDEC) and 
written informed consent was provided by all participants or 
their parents/guardians. Participants with suspected GAS infec-
tions were recruited as part of a GAS skin/throat study (ethics 
17/NTA/262), conducted in Auckland between 2018 and 2019 
[30]. This included participants with symptomatic pharyngitis 
and a GAS-positive throat culture and participants with a GAS-
positive skin infection. Convalescent sera (n = 145) collected at 
the follow-up visit (3–6 weeks after initial presentation) were 
analyzed in this study to ensure sufficient time had lapsed for 
seroconversion. As with a prior study on this cohort [23], only 
participants with a GAS-negative throat swab at the follow-up 
visit were included to exclude those that were recolonized be-
tween visits. Convalescent GAS-positive pharyngitis (n = 94) 
and skin infection (n = 51) sera was collected 24–34 days and 
24–45 days after the initial positive swab, respectively.

ARF cases (n = 79) were recruited as part of the Rheumatic 
Fever Risk Factors (RF RISK) case-control study (ethics 14/
NTA/53) [31]. Cases were diagnosed according to the New 
Zealand modification of the Jones criteria [32, 33] between 
2014 and 2017 and classified into early or late groups based on 
the number of days from hospital admission that their serum 
sample was taken (early group range 2–26 days [n = 54]; late 
group range 28–62 days [n = 25]) as previously published [25]. 
Twelve of the ARF cases had a GAS strain obtained via throat 
swab at hospital admission that was emm-typed using standard 
protocols [17]. Healthy, asymptomatic control sera from the 
GAS skin/throat study (n = 15) and the RF RISK study (n = 75) 
were also available (total n = 90). The controls from the RF 
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RISK study were closely matched to the ARF cases by age and 
social deprivation.

Antibody levels were initially measured in all samples 
(n = 314) to validate the 8-plex assay method. Focused analyses 
were subsequently performed on a subset of participants, with 
specific inclusion criteria applied to ensure groups were closely 
matched according to their ethnic group identification and esti-
mated time since infection (Supplementary Figure 1 and Table 1). 
Participants in the focused analyses cohort comprised the early 
ARF group (n = 54), GAS-positive pharyngitis (n = 65), GAS-
positive skin infection (n = 37), and healthy controls (n = 73).

Antibody Quantification

Antigen-specific IgG antibody responses were measured using 
the 8-plex assay as published [19]. Median fluorescence inten-
sity signals for each sample were measured with a MagPix in-
strument (Luminex Corporation) and data were collected using 
xPonent software version 4.2 (Luminex Corporation). Standard 
curves were generated from pooled human immunoglobulin 
(intravenous immunoglobulin; Privigen; CSL Behring), that 
was buffer exchanged into phosphate buffered saline, and fitted 
using a 5-parameter logistic regression with Belysa software 
(Merck). Antigen-specific IgG concentrations were quantified 
in μg/mL by interpolation.

Comparison with Commercially Determined Titers

A subset of sera (n = 235) comprising 90 healthy controls 
and 145 GAS-positive pharyngitis and skin infections had 

anti-SLO and anti-DNaseB data available from commercial se-
rological methods [23]: anti–SLO from a turbidimetric assay 
on a SPAplus analyzer (The Binding Site); and anti-DNaseB 
titers from the enzyme inhibition assay method (bioMerieux). 
Midtiter values of 12.5 IU/mL for anti-SLO and 50 U/mL for 
anti-DNaseB were used when inexact ranges for low-titer sam-
ples were given.

Determination of Serologically Confirmed GAS Infections

To determine seropositivity in the focused analyses, cutoffs 
were established for each antigen (in μg/mL) using the nonpa-
rametric upper limit of normal (ULN) approach in Microsoft 
Excel, as previously described [25, 34]. The antigen-specific 
ULN were calculated as the 80th percentile of antibody levels 
in 73 healthy participants from the RF RISK study (with non-
Māori and non-Pacific participants excluded to enable closely 
matched comparisons). Immunological evidence of a GAS in-
fection was defined as a seropositive response above ULN for 
at least 1 antigen, as previously described [24]. A total of 47/65 
GAS-positive pharyngitis and 31/37 GAS-positive skin infec-
tions were classified as serologically confirmed GAS infections 
based on this criterion (Supplementary Figure 1).

Data Analysis

Statistical analyses were performed using GraphPad Prism ver-
sion (version 8.0) and RStudio (version 4.0.3) [35]. Data did not 
follow a normal distribution and nonparametric methods were 
used to determine strength of correlations (Spearman r) and dif-
ferences in antibody responses between groups. Mann-Whitney 

Table 1.  Demographics of the Participants Included in the Validation Phase (Validation Cohort) and the Focused Analysis Comparing Antibody Levels 
Between Different Disease States (Focused Analyses Cohort)

Validation Cohort

Characteristic Healthy 
GAS-Positive Pharyn-

gitis/Skin Infection ARF 

Total No. 90 145 79

Study RF RISK, GAS skin/throat GAS skin/throat RF RISK

Age, y, median (range) 11 (6–19) 9 (5–14) 11 (5–19)

Sex, M/F 53/37 80/65 55/24

Ethnic group

 � Māori/Pacific 73 102 79

 � Othera 17 43 …

Focused Analyses Cohort

Characteristic Healthy GAS-Positive Pharyngitis GAS-Positive Skin Infection ARF 

Total No. 73 65 37 54

Study RF RISK GAS skin/throat GAS skin/throat RF RISK

Age, y, median (range) 12 (6–19) 9 (5–14) 8 (5–14) 11 (5–19)

Sex, M/F 45/28 36/29 16/21 38/16

Ethnic group, Māori/Pacific 73 65 37 54

Time since infection, d, median (range) … 29 (24–34) 30 (25–45) …

Time since hospital admission, d, median (range) … … … 13 (2–26)b

Abbreviations: ARF, acute rheumatic fever; GAS-positive, group A Streptococcus-culture positive; RF, rheumatic fever.
aParticipants belonging to ethnic group “Other” (non-Māori and non-Pacific ethnic background, primarily New Zealand European).
bAssuming ARF occurs 2–4 weeks after a GAS infection, the median days from the precursor infection in the early ARF group was estimated to correspond to between 27 and 41 days.
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(Wilcoxon) tests were used to calculate statistical significance 
between 2 groups. Kruskal–Wallis followed by Dunn test (with 
a Bonferroni adjustment to correct for multiple comparisons) 
was used to calculate statistical significance between 3 or more 
groups. χ2 tests were used to determine differences in rates of se-
ropositivity. A P value of ≤ .05 was considered statistically signif-
icant. Box and whisker plots (Tukey) represent median, 25th and 
75th percentiles, and the smallest and largest values extending 
no further than 1.5 × interquartile range from the 25th and 75th 
percentiles, respectively. Hierarchical clustering was performed 
using Euclidean distance with the pheatmap package [36].

RESULTS

Antibody Levels Determined With 8-Plex Assay Confirm and Expand 

Previous Findings

Antibody responses to GAS antigens Spy0843, SCPA, SpyCEP, 
SpyAD, GAC, SLO, DNaseB, and SpnA were measured using an 
in-house 8-plex assay [19]. To validate the 8-plex assay format, 
initial investigations were conducted that confirmed and built 
on prior observations for selected antigens. Our former triplex 
assay (SLO, DNaseB, and SpnA) was validated against commer-
cially available anti-SLO and anti-DNaseB clinical serology as-
says [25]. Similarly, anti-SLO and anti-DNaseB antibody levels 
determined in the 8-plex format correlated highly with commer-
cially determined anti-SLO and anti-DNaseB titers (Figure 1A).

Ethnicity-associated differences in anti-SLO and anti-
DNaseB titers were recently demonstrated between children of 
Māori/Pacific and European/other ethnic group identification 
in the GAS study cohort using commercial assays [23]. This 
finding was confirmed using the 8-plex assay, with Māori and 
Pacific children (n = 73) having significantly higher SLO and 
DNaseB antibody levels than non-Māori and Pacific partici-
pants (n = 17) at baseline (healthy control group). This pattern 
extended to each of the other 6 antigens in the 8-plex assay, with 
significantly elevated antibody levels observed in Māori and 
Pacific children (all P values < .01; Figure 1B and Supplementary 
Table 1). Additionally, Māori and Pacific children (n = 102) had 
significantly higher antibody levels than non-Māori/Pacific 
participants (n = 43) to 7/8 antigens following GAS infection 
(all P values < .05; Figure 1B and Supplementary Table 1).

As final verification of the 8-plex format, antigen-specific im-
munoglobulin G (IgG) concentrations in ARF were compared 
to prior observations from the triplex assay (SLO, DNaseB, and 
SpnA), which had shown that antibodies to SpnA appeared to 
wane faster than antibodies to SLO and DNaseB when cases 
were stratified into early and late groups [25]. In the 8-plex 
format, with ARF cases likewise stratified into early (n = 54) 
and late (n = 25) groups following hospital admission, the me-
dian level of SpnA antibodies was significantly reduced in the 
late ARF group (P value = .018; Figure 1C). Amongst the wider 
antigen panel, antibodies to GAC, SLO, and DNaseB remained 
stable, and trended downwards for SCPA, SpyCEP, and SpyAD 

in the late ARF group but the differences were not significant. 
The median level of Spy0843 antibodies was significantly lower 
in the late ARF group (P value = .0104). Taken together, these 
results highlight differences in immunokinetics between the 8 
antigens.

Magnitude of the Antibody Response Is Associated With GAS Disease 

State

To compare antibody responses for the 8 antigens between GAS 
clinical syndromes, a focused analysis was performed on partici-
pants matched according to their ethnic group identification (all 
Māori/Pacific) and time since onset of infection (Supplementary 
Figure 1 and Table 1). This comprised healthy controls (n = 73), 
GAS-positive pharyngitis (n = 65), GAS-positive skin (n = 37), 
and early ARF cases (n = 54). The median days from infection 
for GAS-positive pharyngitis and skin infections was 29 (range, 
24–34) and 30 (range, 24–45), respectively. The median days 
from hospitalization in the ARF early group was 13 (range, 
2–26). As ARF is assumed to occur 2–4 weeks after a GAS infec-
tion [2], the median days from precursor infection in the early 
ARF group was estimated to be 27–41 days.

Although median antibody levels to some antigens were 
higher in the GAS-positive pharyngitis group than in matched 
healthy controls, the differences were not significant (Figure 2A 
and Supplementary Table 2). In contrast, significant differences 
were observed between the GAS-positive skin infection group 
and healthy controls for Spy0843, SCPA, SpyCEP, and DNaseB 
(P values < .05). Antibodies to DNaseB in skin infections were 
also higher than in pharyngitis (P value = .0227). Most notably, 
antibody levels in ARF cases were significantly elevated above 
matched healthy controls and GAS-positive pharyngitis/skin 
infections for all 8 antigens (P values < .0001), except the GAC 
in participants with skin infections (P value = .615). Total an-
tibody levels against the GAC were lower in general compared 
with the protein antigens.

Unsupervised hierarchical clustering based on antibody re-
sponses (Figure 2B) showed clear differentiation of ARF cases, 
while GAS-positive pharyngitis/skin infections and matched 
healthy controls were intermixed indicating the differences be-
tween these groups are more subtle. This differentiation, attrib-
utable to the ARF cases reacting to multiple antigens and having 
higher levels of circulating antibodies to these antigens, suggests 
a unique antibody signature in ARF compared to the other clin-
ical syndromes. In terms of antigen clustering, GAC was distinct 
from the 7 other antigens as evidenced by the separated branch 
on the dendrogram, indicating that responses to the carbohy-
drate differ from those to the protein antigens in the 8-plex panel.

Breadth of the Antibody Response Is Associated With GAS Disease State

To further explore the breadth of the antibody response in ARF 
and precursor infections, seropositivity criteria were applied 
to the 8 GAS antigens. ULN cutoff values were defined as the 
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80th centile in the matched healthy control group (n = 73). 
An antibody response above these experimentally determined 
values for at least 1 antigen was used as a criterion for a sero-
logically confirmed GAS infection. There were 18/65 (27.6%) 
participants in the GAS-positive pharyngitis group and 6/37 

(16.2%) in the skin infection group that did not have a positive 
serological response to a single antigen and were thus excluded 
(Supplementary Figure 1).

The frequency of positive responses to any given antigen in 
serologically confirmed GAS pharyngitis participants (n = 47) 
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was quite low (< 50%) and no participant had a response to all 
8 antigens (Figure 3A and 3B and Supplementary Table 3). The 
frequency of positive responses was slightly higher in serolog-
ically confirmed GAS skin infection group (n = 31), with the 
most common responses observed for DNaseB (67.7%, 21/31), 
SpyCEP, and SCPA (both 64.5%, 20/31). For both skin and 
pharyngitis infections, no single antigen was elevated in the ma-
jority of participants, nor was there any obvious synchronicity 
in response between particular antigens (Figure 3A).

The profile of antigen-specific seropositivity in ARF cases was 
notably distinct to that of the precursor skin and pharyngeal 
infections (Figure 3A and 3B). The frequency of seropositivity 

was over 79% for all antigens except the GAC, which elicited 
a positive response in less than half of the participants and for 
which there was no significant difference compared to the pre-
cursor infections (Supplementary Table 3). Positive responses 
to SpyCEP were most common in ARF, with 90.7% (49/54) of 
participants above the cutoff, followed by SpyAD and DNaseB 
at 88.9% (48/54), and SpnA and SLO at 87% (47/54). A greater 
proportion of ARF cases also had positive responses to multiple 
antigens (Figure 3C) with an average of 6.5 antigen-specific 
reactivities per individual, compared to 4.2 in skin infections 
and 3.3 in pharyngitis. Indeed, significant differences were 
observed between ARF and the precursor infections when 
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the cumulative seropositivity rates to increasing numbers of 
antigens were assessed (P values < .01; Supplementary Table 4), 
with a high proportion of ARF cases (83.3%) having a response 
to 6 or more of the antigens tested (compared to 36% in skin and 
11% in pharyngitis). Each of the GAS isolates (n = 12) obtained 
from ARF cases at hospital admission belonged to a unique 
emm-type (Supplementary Figure 2), highlighting the diversity 
of ARF-associated strains in New Zealand as previously shown 
[17], and suggesting seropositivity to the conserved antigens in 
the 8-plex assay is unlikely to be influenced by emm-type.

DISCUSSION

This study investigated the breadth and magnitude of antibody 
responses to GAS antigens in New Zealand children presenting 
with a range of clinical syndromes that were closely matched for 
age, ethnic group identification, and estimated time since infec-
tion. The use of a validated 8-plex assay enabled robust quan-
tification of antibodies to conserved GAS antigens utilized in 
both clinical serology and as vaccine targets (Spy0843, SCPA, 
SpyCEP, SpyAD, GAC, SLO, DNaseB, and SpnA) and uncov-
ered striking differences in the serological profile for ARF com-
pared to precursor skin and pharyngeal infections.

The distinct antibody profile in ARF was characterized by 
an increase in both breadth and magnitude to the 8 antigens 
tested. Increased levels of circulating antibodies to some of 
these antigens have been demonstrated previously in ARF. They 
include GAC, SLO, and DNaseB in a study comparing ARF 
to GAS pharyngitis [37], SCPA in ARF compared with GAS 
skin infections [38], and our prior investigation of ARF and 
closely matched controls with the triplex assay (SLO, DNaseB, 
and SpnA) [25]). These prior analyses focused on group com-
parisons, whereas the application of hierarchal clustering and 
barcoding of individual responses in this study has illuminated 
a distinct ARF profile of antibody reactivity, with the majority 
of ARF patients seropositive to 6 or more antigens. In contrast, 
antibody responses to the same 8 antigens were unable to dis-
tinguish GAS-positive pharyngitis and skin infections from 
matched healthy controls, and there was no clear pattern of 
responses to particular antigens in these precursor infections. 
This finding is in agreement with previous studies of GAS phar-
yngitis that observed significant heterogeneity of serological re-
sponses to GAS antigens [39, 40].

The antibody profile in ARF revealed in this study further 
supports immune priming contributing to pathogenesis. Recent 
serological studies provided evidence for multiple prior GAS 
exposures in ARF based on the presence of antibodies to 2 or 
more type-specific antigens [10, 12]. Here, the comparison of 
antibody reactivity to conserved GAS antigens suggests that 
each precursor infection progressively boosts and broadens the 
GAS antibody response, resulting in ARF patients reacting to 
significantly more GAS antigens in the 8-plex panel. Indeed, 
the increase of reactivity from an average 3.3 antigens in GAS 

pharyngitis and 4.2 in GAS skin infections to 6.5 in ARF is dif-
ficult to explain without repeated infections, especially given 
the groups were closely matched and comprised Māori and 
Pacific children who bear the major burden of ARF in New 
Zealand [5]. Expansions in pathogen-specific antibody reper-
toires have been observed in other infectious diseases such as 
malaria, where repeated Plasmodium falciparum infections re-
sult in gradual, stepwise acquisition and boosting of merozoite 
antibodies [41, 42]. Similarly, Streptococcus pneumoniae human 
challenge studies found bacterial carriage resulted in both ex-
pansion and boosting of prior antipneumococcal protein anti-
bodies [43], and repeated minor invasions associated with 
Staphylococcus aureus colonization contribute to increases in 
antistaphylococcal antibodies [44]. However, the consequences 
of repeated infections vary by pathogen and GAS is particularly 
complex. While GAS immunity is eventually acquired in adult-
hood, with pharyngitis and skin infections considered child-
hood diseases [45], repeated GAS infections can also lead to 
immune dysregulation and ARF in susceptible individuals.

There have been limited data on antibody responses in GAS 
skin infections compared with pharyngitis. This study adds to 
recent investigations showing skin infections induce detectable 
antibody responses to selected GAS antigens, including type-
specific M-protein peptides [46] and traditional serological 
antigens SLO and DNaseB [23]. DNaseB antibodies have been 
observed to be elevated following skin infections compared with 
SLO antibodies [23, 47], and this has been confirmed in this study. 
Beyond these traditional antigens, this study also shows GAS skin 
infections can induce antibody responses to all 8 antigens in the 
panel, and the breadth of antibody responses is increased for skin 
infections compared to pharyngitis. This observation, combined 
with recent studies showing that GAS skin infections are mark-
edly higher in Māori and Pacific peoples in New Zealand who are 
most at risk of ARF [48, 49], further corroborates the role of GAS 
skin infections as priming events for ARF.

In summary, this study has generated additional data on the 
utility of an 8-plex assay for assessing serological responses to 
GAS infections. Application of the assay uncovered distinct se-
rological responses by GAS-related clinical syndrome, empha-
sizing the value of multiantigen analysis when investigating 
GAS disease. The broad ARF antibody repertoire observed, 
likely due to repeated prior GAS infections, highlights the im-
portance of comprehensive strategies that prevent both GAS 
pharyngitis and skin infections rather than strategies that target 
only one of these clinical syndromes. It follows that an effective 
vaccine for ARF will need to interrupt GAS priming events to 
avert immune dysregulation.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Supplementary materials consist of data pro-
vided by the author that are published to benefit the reader. The 
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posted materials are not copyedited. The contents of all supple-
mentary data are the sole responsibility of the authors. Questions 
or messages regarding errors should be addressed to the author.
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