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Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory
syndrome virus 2 (SARS-CoV-2) has impacted negatively on public health and socioeconomic sta-
tus, globally. Although, there are currently no specific drugs approved, several existing drugs are
being repurposed, but their successful outcomes are not guaranteed. Therefore, the search for novel
therapeutics remains a priority. We screened for inhibitors of the SARS-CoV-2 main protease and the
receptor-binding domain of the spike protein from an integrated library of African natural products,
compounds generated from machine learning studies and antiviral drugs using AutoDock Vina.
The binding mechanisms between the compounds and the proteins were characterized using LigPlot+
and molecular dynamics simulations techniques. The biological activities of the hit compounds were
also predicted using a Bayesian-based approach. Six potential bioactive molecules NANPDB2245,
NANPDB2403, fusidic acid, ZINC000095486008, ZINC0000556656943 and ZINC001645993538 were
identified, all of which had plausible binding mechanisms with both viral receptors. Molecular
dynamics simulations, including molecular mechanics Poisson-Boltzmann surface area (MM/PBSA)
computations revealed stable protein-ligand complexes with all the compounds having accept-
able free binding energies <−15 kJ/mol with each receptor. NANPDB2245, NANPDB2403 and
ZINC000095486008 were predicted as antivirals; ZINC000095486008 as a membrane permeability
inhibitor; NANPDB2403 as a cell adhesion inhibitor and RNA-directed RNA polymerase inhibitor;
and NANPDB2245 as a membrane integrity antagonist. Therefore, they have the potential to in-
hibit viral entry and replication. These drug-like molecules were predicted to possess attractive
pharmacological profiles with negligible toxicity. Novel critical residues identified for both targets
could aid in a better understanding of the binding mechanisms and design of fragment-based de novo
inhibitors. The compounds are proposed as worthy of further in vitro assaying and as scaffolds for
the development of novel SARS-CoV-2 therapeutic molecules.

Keywords: SARS-CoV-2; coronavirus; African natural products; molecular docking; virtual screening;
molecular dynamics; SARS-CoV-2 inhibitors

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1,2]. As of 8 December 2020, the novel coronavirus dis-
ease 2019 (COVID-19) has spread globally, with 66,729,375 confirmed cases, including
1,535,982 deaths [3]. The disease outbreak, declared a pandemic, has led to nearly three
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billion people in about 82 countries under partial or full lockdowns due to the infections [4].
The mild symptoms include fever, dry cough, runny nose, sore throat, and difficulty in
breathing [5]. Chemosensory dysfunctions such as ageusia (loss of taste) and anosmia
(loss of smell) have also been reported [6–9]. In more severe cases, the symptoms include
severe muscle pain, cardiovascular shock, arrhythmia, acute respiratory distress syndrome
(ARDS), and hyper inflammation [5,10]. The infection is spread mainly from one person to
others via droplets produced from the respiratory systems of infected people, often during
coughing or sneezing [5].

SARS-CoV-2, a positive-sense single-stranded RNA virus, is a member of the coro-
naviridae family, which are enveloped nonsegmented viruses with large surface spike
proteins [11]. Most of the RNA encodes for RNA synthesis material, viral polymerase
(RdRp), and nonstructural polyproteins [12,13], while the remainder encodes four structural
proteins comprising spike (S), envelope (E), membrane (M), nucleocapsid (N), and other
helper proteins [12].

There is evidence that the SARS-CoV-2 infects the host’s cells that co-express both
angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2).
The ACE2 binds to the spike protein, facilitating the viral cell entry, and TMPRSS2 prote-
olytically cleaves it, resulting in fragments that activate cell-cell and virus-cell fusion and
interferes with antibody-mediated neutralization [14]. This suggests that TMPRSS2 might
impact the spread of the virus via two independent mechanisms [14]. The S1 subunit of the
spike protein binds to the ACE2 receptor, and the S2 subunit is responsible for the fusion
between the virion and host receptors [15,16]. Upon binding to ACE2, the virion releases
its RNA into the cell and takes over the host cell machinery to produce copies of itself,
which are then shed via exocytosis to infect fresh cells [12,17–19].

The viral main protease (Mpro) and the papain-like proteases are critical in the trans-
lation of viral RNA to polyproteins. The viral spike protein also possesses a variable
receptor-binding domain (RBD), which, if inhibited, should prevent viral attachment,
fusion and entry, and thus make it also another attractive target [15].

Although, there are no FDA-approved drugs for the treatment and prevention of
COVID-19, several antiviral compounds including remdesivir, favipiravir and darunavir;
anti-HCV; nucleotide inhibitors sofosbuvir, IDX-184 and ribavirin; and kinase inhibitor
imatinib are being repurposed [20–24]. Some of these repurposed drugs are currently
undergoing various phases of clinical trials. Others such as dexamethasone and remdesivir
have been given provisional approval for COVID-19 treatment [25,26]. The outcomes of
these efforts are not assured, therefore emphasizing the urgent need to identify novel
molecules that are therapeutically efficacious and maximally safe to human hosts.

Considering the urgency that the current situation of the pandemic demands, the con-
ventional approach to drug discovery is time-consuming, but computational methods offer
cost-effective and faster alternatives of discovering novel compounds. A network-based
approach was used to predict repurposed drugs or combination therapies for SARS-CoV-2
by quantifying the interplay between drugs and human coronaviruses (HCoVs)-host in-
teractome [27]. Additionally, a total of 1000 compounds were prioritized for downstream
analysis as potential inhibitors via screening using the deep docking of 1.3 billion com-
pounds present in the ZINC15 library against SARS-CoV-2 Mpro [28]. Camostat mesylate,
which is an inhibitor of serine protease TMPRSS2, was shown to block cell entry of SARS-
CoV-2 [17]. Other efforts geared towards the unraveling of potential antivirals targeting
SARS-CoV-2 have been reported [24,29–32]. Nevertheless, issues of therapeutic potency
persist, since potential promising molecules produced disappointing results during tri-
als [33]. It is exigent to identify novel molecules that can disrupt critical mechanisms and
biomolecular pathways involving SARS-CoV-2. These molecules must be therapeutically
efficacious and safe to human hosts with negligible side effects.

Pharmacoinformatics methods have been applied in the development of antivirals
such as Boceprevir, Saquinavir and Rupintrivir [34]. The viral Mpro, alongside the papain-
like proteases, is critical in the translation of viral RNA to polyproteins. The Mpro has
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been suggested as a drug target, and its inhibition can obstruct viral replication [35,36].
Furthermore, the cleavage specificity of the main protease is absent in human proteases,
suggesting potential inhibitors are unlikely to be toxic to the human host [36]. The enzyme
spike protein is also another attractive drug target [1], which plays an essential role in
facilitating viral entry into target cells [17]. The spike proteins contain a variable receptor-
binding domain (RBD) located in the S1 subunit, which binds to the ACE2 receptor found
most abundantly in the lungs and organs, including the heart, kidneys, and gastrointesti-
nal tract. The spike protein S2 subunit is responsible for the fusion between viral and
host receptors [15,16]. Inhibiting the viral spike protein will occlude viral attachment,
fusion and entry [15].

The structural and chemical diversity of natural product-derived compounds serve
as rich sources of scaffolds for the discovery of novel drug leads [37,38]. Natural prod-
ucts have traditionally played a prominent role in treatment [39]. Currently, natural prod-
ucts and their derivatives represent over one-third of all new molecular entities (NMEs)
approved by the US FDA [40]. Cheminformatics databases, including the Traditional Chinese
Database [41], African Natural Product Database (AfroDB) [42], and North African Natural
Product Database [43], collectively contain over 30,000 freely accessible unique natural product
compounds. Natural products including saikosaponins and raoulic acid have been reported to
exhibit antiviral properties against coronaviruses [44].

The recent strides in understanding the genome of SARS-CoV-2 and the available
plethora of diverse structural genomic data combined with advanced high-performance
biocomputing are key in expediting the identification of COVID-19 drugs. Therefore,
this study sought to identify promising novel molecules with the potential of disrupting
the critical mechanisms involving the SARS-CoV-2, including viral attachment, entry and
replication processes using cheminformatics. The study seeks to virtually screen an inte-
grated library made up of diverse African natural compounds [45] and recently prioritized
hits from a deep docking study of 1.3 billion compounds [28] together with drugs currently
undergoing clinical trials against SARS-CoV-2 Mpro and RBD of the spike protein. This is to
identify potential polypharmacological antiviral compounds targeting both proteins [46,47]
with novel scaffolds to augment the design of next-generation inhibitors against the cell
entry and replication of SARS-CoV-2. Moreover, we sought to gain novel insights into
the mechanisms of binding between the receptors and compounds using molecular dy-
namics (MD) simulations, including molecular mechanics Poisson-Boltzmann surface area
(MM/PBSA) methods, by evaluating their binding free energies [48]. A Bayesian-based
technique was also used to predict the antiviral activity of the compounds as a measure to
characterize their anti-SARS-CoV-2 propensities.

2. Results and Discussion
2.1. Description of Binding Sites of Mpro and RBD Structures

The binding sites of the Mpro and RBD of the spike protein structures were character-
ized using the Computed Atlas of Surface Topography of proteins (CASTp) version 3.0
(available at http://sts.bioe.uic.edu/castp/calculation.html). CASTp utilizes theoretical
and algorithmic results of computational geometry to analytically predict pockets and cavi-
ties while excluding shallow depressions from the calculations [49]. The predicted binding
cavities were analyzed using Chimera version 1.12 and PyMOL. The volumes and areas
of the sites were also determined using Chimera version 1.12 (Table 1). Predicted binding
sites with very small volumes and areas such that no ligands could fit were not considered
for downstream virtual screening. The surface representations of the two proteins with
three putative binding pockets are shown (Figure 1).

2.1.1. Binding Site Analysis of Mpro

The three-dimensional structure of the Mpro SARS-CoV-2 solved using X-ray diffrac-
tion at a resolution of 1.31 Å is a homodimer with a sequence length of 306 along one chain
and shares a 96% sequence identity to the SARS-CoV Mpro [36]. The plausible binding sites

http://sts.bioe.uic.edu/castp/calculation.html
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of the SARS-CoV-2 Mpro were predicted via CASTp (Table 1) using the Mpro structure with
a Protein Data Bank (PDB) ID 5R82.

Table 1. Predicted binding sites in the viral main protease (Mpro) and receptor-binding domain (RBD) via CASTp, including
the dimensions of the volumes and areas.

Pocket Pocket Area (Å2) Volume (Å3) Residues Lining Pockets

Mpro

1 557.1 920.6
Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, Met49, Leu50,

Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165,
Glu166, Leu167, Pro168, Asp187, Arg188, Gln189, Thr190, Gln192

2 380.0 465.1 Met6, Ala7, Phe8, Pro9, Gly11, Lys12, Val13, Gln127, Phe150, Ile152,
Asp153, Tyr154, Val157, Phe291, Asp295, Arg298, Gln299, Val303, Thr304

3 107.5 151.3 Phe3, Arg4, Lys5, Trp207, Leu282, Ser284, Glu288, Phe291

4 193.5 225.2 Pro108, Gly109, Gln110, Pro132, Ile200, Thr201, Val202, Asn203, Glu240,
His246, Ile249, Thr292, Pro293, Phe294

5 86.6 131.4 Glu14, Gly15, Met17, Val18, Trp31, Ala70, Gly71, Val73, Asn95, Lys97

RBD

A 148.3 169.2 Arg454, Phe456, Arg457, Lys458, Asp467, Ser469,
Glu471, Ile472, Tyr473, Pro491

B 52.3 90.3 Phe342, Asn343, Leu368, Ser371, Ser373, Phe374

C 146.8 160.6 Glu340, Val341, Ala344, Arg346, Phe347, Ala348, Asn354, Arg355, Lys356,
Ala397, Ser399, Val511
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Figure 1. Surface representations of the protein structures generated using PyMOL. (a) The structure of severe acute res-
piratory syndrome virus 2 main protease (SARS-CoV-2 Mpro) is colored cyan, and the predicted binding pockets 1, 2, and 

Figure 1. Surface representations of the protein structures generated using PyMOL. (a) The structure of severe acute
respiratory syndrome virus 2 main protease (SARS-CoV-2 Mpro) is colored cyan, and the predicted binding pockets 1, 2,
and 3 are colored green, yellow and magenta, respectively. (b) The receptor-binding domain (RBD) of the spike protein is
colored cyan, and the predicted binding pockets A, B, and C are colored green, red and magenta, respectively.

Ser1, His41, Met49, Gly143, Phe140, Ser144, Cys145, His163, His164, Glu166, Pro168 and
Gln189 have been determined in previous studies as lining the active sites of Mpro [36,50],
consistent with the prediction by CASTp as Pocket 1 (Table 1). A computational study to
identify potential SARS-CoV-2 Mpro inhibitors reported that the top compound docked into
the Mpro-binding cavity lined by residues His41, Met49, Tyr54, Phe140, Leu141, Asn142, Ser144,
Cys145, His163, Met165, Glu166, Leu167, Pro168, Asp187, Arg188, Gln189 and Gln192 [28].
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Other studies have also reported that residues of Mpro forming hydrogen bonds include Gly143,
His163, His164, Glu166, Gln189 and Thr190, with Cys145 forming a covalent bond [29].

Additionally, the region around Glu288-Asp289-Glu290 has been reported to be in-
volved in a likely enzyme dimerization in SARS-CoV [51]. Mutating Glu288, Asp289, Glu290,
Arg298 and Gln299 led to a high decrease in enzymatic activities of the protease, and this
region overlaps with pockets 2 and 3 (Table 1). Additionally, mutations in Asn214, Leu282 and
Cys300 significantly decreased the activity of the protease. Furthermore, the replacement of
Ser284, Thr285, Ile286 or Phe291 by Ala produced mutated proteases with higher enzymatic
activities than the wild type [51]. Leu282, Ser284 and Phe291 were predicted as residues lining
pocket 3 (Table 1).

A molecular docking study of compounds against Mpro identified possible binding
sites of the protein. Remdesivir was reported to dock in the region lined by residues Gln107,
Pro108, Pro132, Ile200, Glu240 and His246 [52]. This binding site was also identified by
other computational studies [53,54]. Herein, these residues were predicted as lining pocket
4 (Table 1). Pockets 1, 2, 3, 4 and 5 were selected as the most plausible binding cavities for
the main protease (Table 1) and were considered for the virtual screening process.

2.1.2. Binding Site Analysis of RBD

The 3D structure of the RBD of the spike protein was obtained from the PDB database
with ID 6M0J [55]. The RBD was solved using X-ray diffraction at a resolution of 2.45 Å.
The receptor-binding domain is located on chain E of the spike protein with a residue count
of 229 [55]. A previous study identified a significant difference between the C-terminus
residues of the RBDs of SARS-CoV and SARS-CoV-2, although this did not affect the
capability to engage ACE2 [56]. The binding sites of both RBD proteins of SARS-CoV-2
and SARS-CoV are highly conserved [57].

Lys417, Gly446, Tyr449, Tyr453, Leu455, Phe456, Phe486, Asn487, Tyr489, Gln493,
Gly496, Gln498, Thr500, Asn501, Gly502 and Tyr505 are contacting residues of the RBD at
the SARS-CoV-2 RBD-ACE2 interface [55]. An in silico study to repurpose FDA-approved
drugs as SARS-CoV-2 spike protein inhibitors via virtual screening revealed the binding of
compounds occurred at the SARS-CoV-2 RBD-ACE2 interface [58].

In a recent computational study to identify anti-SARS-CoV-2 spike protein molecules,
the compounds were reported to interact with at least one of the following residues: Leu335,
Cys336, Phe337, Phe338, Gly339, Val341, Phe342, Asn343, Ala344, Thr345, Lys356, Asp364,
Val367, Leu368, Tyr369, Asn370, Ser373, Phe374, Phe377, Lys378, Cys379, Ala397, Asn422,
Gly431, Trp436, Leu441, Arg509, Val510, Val511, Phe515 and Asn643 [59]. Cys336 is a critical
residue for the RBD, since it forms a disulfide bond with Cys361, which helps stabilize the
β sheet structure [55]. A NAG glycan has also been reported to be linked to Asn343 of the
RBD [55], which was identified as a critical residue in our study. These residues overlap
with pockets B and C, as predicted (Table 1). For the RBD, pockets A, B and C (Table 1)
and the RBD-ACE2 interface were considered as plausible binding sites.

2.2. Virtual Screening Studies
2.2.1. Molecular Docking Studies

Molecular docking is an essential technique in computer-aided drug discovery [60].
With the structure of the receptor known, compounds of interest are screened in silico to guide
the selection of potential leads. AutoDock Vina used for docking employs an empirical and
knowledge-based scoring function to predict the binding affinity of compounds [61]. The grid
boxes for both receptors were set to cover all the binding sites (Table 1). Compounds with
binding energies of −7.5 kcal/mol or less for both receptors were selected for the downstream
analysis. This threshold was used, since −7.0 kcal/mol has been reported to significantly
discriminate between putative specific and nonspecific protein-ligands for viruses [62]. A total
of 1462 ligands from the African natural compounds (ANC) library were successfully screened
against both the Mpro and RBD, whilst 940 compounds from the ML study were screened
against both receptors, including 43 known antivirals.
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Molecular Docking Studies of Mpro

A grid box with a dimension of 37.58 * 64.78 * 62.77 Å3 and center 49.33, 49.36 and
49.56 Å was specified for Mpro. Out of 1462 successfully screened ANC compounds,
65 had a binding affinity ≤−7.5 kcal/mol. A total of 112 compounds from the ML library
and 14 known drugs met the threshold. Ledipasvir had the highest binding affinity of
−9.6 kcal/mol to the Mpro (Table S1). Velpatasvir and imatinib also had binding affinities
of −8.9 and −8.5 kcal/mol, respectively (Table S1). Other studies have proposed ledi-
pasvir and velpatasvir as potential anti-SARS-CoV-2 Mpro molecules [63,64]. After using
AutoDock to screen FDA-approved drugs against the Mpro, velpatasvir was reported to pos-
sess a binding affinity of −9.1 kcal/mol [63]. Imatinib, currently in phase 3 clinical trials for
adults hospitalized with SARS-CoV-2 (https://clinicaltrials.gov/ct2/show/record/NCT0
4394416), was also reported to demonstrate the highest binding affinity (−11.46 kcal/mol)
to the Mpro in a recent study [65]. These results are consistent with the docking outcomes
reported herein. The differences in binding affinity values could be due to the various
software packages used and the different preparation protocols the protein and ligand
structures were subjected to.

For the ANC library, ZINC000095486008, NANPDB2403 (retusolide B), NANPDB2245
(helioscopinolide B) and NANPDB2510 (jolkinolide E) demonstrated binding affinities of
−8.2, −8.1, −8.0 and −7.9 kcal/mol, respectively, with the Mpro (Table 2). ZINC00165
7931232 had the highest binding affinity of −8.4 kcal/mol to the Mpro among the ML
compounds. ZINC001181689720 and ZINC001460974086 also had binding affinities of
−8.3 and −8.2 kcal/mol, respectively (Table S1). Remdesivir, hydroxychloroquine and
chloroquine had low binding affinities of −6.8, −5.9 and −5.5 kcal/mol with the Mpro,
respectively (Table 2). In the quest of finding potential SARS-CoV-2 inhibitors, antiviral
and antimalarial drugs were virtually screened against the Mpro (PDB ID: 6LU7) and S-
protein. Remdesivir, hydroxychloroquine, and chloroquine were reported to possess
binding affinities of −6.5, −5.3 and −5.1 kcal/mol with the Mpro, respectively, consistent
with the results obtained herein [66]. Although, the binding affinities are relatively low,
it does not exclude them as anti-SARS-CoV-2 Mpro molecules.

Molecular Docking Studies of RBD

For the RBD, the grid box was set with dimensions of 42.54 * 42.73 * 42.44 Å3 and
centered at 41.19, 47.74, and 55.37 Å. A total of 26 compounds from the ANC library, 22 from
the ML-based study and 9 known drugs demonstrated binding affinities ≤−7.5 kcal/mol,
thereby complying with the threshold. Ledipasvir showed the highest binding affinity
(−9.9 kcal/mol), followed by velpatasvir and imatinib, which also had binding affinities of
−8.5 and −8.1 kcal/mol, respectively (Table S1). A recent study reported that ledipasvir
and velpatasvir have high binding affinities of −8.4 and −7.9 kcal/mol with the spike
glycoprotein, respectively [67].

From the ANC library, ZINC000095486008, NANPDB2403 (retusolide B), NANPDB2245
(helioscopinolide B) and NANPDB2510 (jolkinolide E) had binding affinities of −7.8, −7.8,
−7.7 and −7.6 kcal/mol, respectively (Table 2). For the ML library, ZINC001657931232,
ZINC001181689720 and ZINC001460974086 had the highest binding affinities to the Mpro

with binding affinities of −7.8, −7.5 and −7.6 kcal/mol, respectively. Remdesivir, hydroxy-
chloroquine and chloroquine also had low binding affinities of −6.3, −5.5 and −4.9 kcal/mol,
respectively (Table 2).

Shortlisted Compounds for Downstream Analysis

Thirteen compounds from the ANC library, fourteen from the ML library and nine
known antivirals met the threshold for both RBD and Mpro (Table 2). In total, 36 compounds,
including experimental drugs had binding affinities of ≤−7.5 kcal/mol with both receptors
(Table 2) and were shortlisted for further analysis.

https://clinicaltrials.gov/ct2/show/record/NCT04394416
https://clinicaltrials.gov/ct2/show/record/NCT04394416
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Table 2. The binding energies and intermolecular interactions between selected compounds and Mpro as well as RBD. Compounds are from the African Natural Compounds (ANC)
database and Machine Learning Study (ML). In addition, antivirals and experimental drugs are included.

Compound Source Binding Energy (kcal/mol) Hydrogen Bonds [Bond Length (Ȧ)] Hydrophobic Bonds

Mpro RBD Mpro RBD Mpro RBD

Selected Hits

NANPDB2403 ANC −8.1 −7.8 Leu287 (3.22) - Thr199, Tyr237, Tyr239, Leu271,
Leu272, Leu286.

Leu335, Cys336, Phe338, Phe342,
Asn343, Asp364, Val367, Leu368,

Ser371,

NANPDB2245 ANC −8.0 −7.7 Arg131 (2.92) Asn343 (2.96)
Lys137, Thr199, Tyr237, Tyr239,

Leu271, Leu272, Leu286,
Leu287, Asp289

Leu335, Cyc336, Phe338, Gly339,
Asp364, Val367, Leu368,

Ser371, Phe374

ZINC000055656943 ML −8.0 −8.0 Asp197 (2.80) - Arg131, Thr198, Thr199, Tyr237,
Tyr239, Leu272, Leu287

Leu335, Cys336, Phe338, Phe342,
Asp364, Val367, Leu368,

Ser371, Phe374,

ZINC000095486008 ANC −8.2 −7.8 Lys5 (3.1), Glu288 (3.02) Cys336 (2.96), Phe338 (3.26),
Gly339 (3.3)

Lys137, Asp197, Thr199, Tyr239,
Leu272, Leu286, Leu287,

Asp289, Glu290

Pro337, Phe342, Asn343, Val367,
Leu368, Ser371, Phe374, Trp436

ZINC001645993538 ML −7.7 −7.5 Thr199 (314) - Lys137, Asp197, Tyr239, Leu272,
Leu286, Leu287, Glu288, Asp289

Cys336, Phe338, Asp364, Val367,
Leu368, Ser371, Phe374

Known Antivirals and Experimental Drugs

Oxymetholone −7.8 −7.7 Thr25 (2.81), Glu166 (2.9, 3.00) Cys336 (3.0), Asn343 (3.09) His41, Ser46, Thr45, Asn142,
Gly143, Cys145, His164, Met165

Leu335, Phe338, Gly339, Phe342,
Asp364, Val367, Leu368,

Ser371, Phe374

Dexamethasone −7.6 −6.7 Asp197 (2.9, 3.24), Met276 (3.01),
Leu287 (3.29, 3.32)

Arg355 (2.99, 3.01), Thr430 (3.18),
Glu516 (2.76)

Lys137, Thr198, Thr199, Tyr239,
Leu271, Gly275, Leu286,

Leu287, Asp289

Pro426, Phe429, Pro463,
Phe464, Phe515

Remdesivir −6.8 −6.3 Lys137 (3.19), Thr199 (2.82, 3.05),
Leu287 (3.09), Asp289 (2.84) Gly496 (2.84, 2.96), Asn501 (2.9)

Arg131, Asp197, Thr198, Tyr237,
Asn238, Tyr239, Leu271, Leu272,
Asn274, Gly275, Met276, Leu286

Arg403, Tyr453, Leu455, Ser494,
Tyr495, Phe497, Tyr505

Hydroxychloroquine −5.9 −5.5 Asp197 (3.05, 3.22), Thr199 (3.26) Thr345 (2.97), Asn354 (3.04),
Ala397 (2.72), Ser399 (2.99),

Arg131, Thr198, Tyr237, Tyr239,
Leu272, Met276, Ala285, Leu286,

Leu287, Asp289

Glu340, Val341, Ala344, Arg346,
Phe347, Ala348, Arg355,

Lys356, Asp398

Chloroquine −5.5 −4.9 Tyr239 (3.2) -
Arg131, Asp197, Thr198, Thr199,

Tyr237, Leu272, Leu286,
Leu287, Asp289,

Arg403, Tyr449, Tyr453, Ser494,
Tyr495, Gly496, Phe497,

Asn501, Tyr505
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2.2.2. Characterization of the Protein-Ligand Interactions

The nature of the active site and the functional groups on the ligands are critical for
stabilization within the binding pocket of a receptor [68]. Studies into these interactions are
key in determining whether a ligand is considered as a promising lead. The protein-ligand
interactions of the 36 shortlisted compounds were studied using LigPlot+ [69] and PyMOL.
After analyzing their binding interactions, five compounds comprising NANPDB2403,
NANPDB2245, ZINC000055656943, ZINC000095486008 and ZINC001645993538 were se-
lected as hits (Table 2). The interactions of the known antivirals and experimental drugs
with the respective targets were compared. Characterizing the binding interactions enabled
the identification of certain critical residues within the active pockets of the respective
protein targets.

Characterization of the Mpro-Ligand Interactions

Considering the molecular interactions of the Mpro, all the 36 compounds that met
the ≤−7.5 kcal/mol threshold, except for ZINC000544552417 and ZINC000621286015,
formed at least one hydrogen bonding with the Mpro residues. Oxymetholone docked into
pocket 1 (Figure 2d, and Tables 1 and 2), the known active site of the Mpro [36,50]. It formed
a hydrogen bond with Thr25 (bond length 2.81 Å); two with Glu166 (bond lengths 2.9 Å
and 3.00 Å); and hydrophobic bonds with His41, Ser46, Thr45, Asn142, Gly143, Cys145,
His164 and Met165. A recent study also revealed that tipranavir, which is a nonpep-
tidic protease inhibitor used in combination with ritonavir to treat HIV, interacted with
Gln192 and Met165 (both formed hydrogen bonds) and Gln189, Asp187, Met49, Arg188,
Ser46, Cys44, Thr25 and His41 in a different conformation from that of the α-ketoamide
inhibitor [70]. It was further identified that raltegravir demonstrated a high binding affinity
to the Mpro than the co-crystallized α-ketoamide, with interactions from His164, Arg188,
Gln192, Glu166, Met49, Met165, Phe140, Pro168 and Leu167 [70]. Considering our results
and references to existing literature, we suggest that Gly143, Cys145 and Glu166 are critical
residues for binding.

Interestingly, ledipasvir, NANPDB2403, NANPDB2245 (Figure 3a), ZINC0095486008
(Figure 3b), and ZINC001645993538 (Figure 2c) were found to interact with the main protease
in a different binding cavity with binding energies of −9.6, −8.1 and −8.0, respectively (Table 2).
The residues lining this cavity include Arg131, Lys137, Thr199, Tyr237, Tyr239, Leu271, Leu272,
Gly275, Leu286, Leu287, Glu288, Asp289 and Glu290. This binding pocket is located between
pockets 2, 3 and 4. Other in silico studies also identified this binding cavity [71,72]. Ledipasvir
formed hydrogen bonding with Met276 of a bond length 2.92 Å and hydrophobic contacts with
Lys5, Gly124, Tyr126, Gln127, Lys137, Gly138, Ser139, Thr199, Tyr237, Tyr239, Leu272, Gly275,
Asn277, Gly278, Leu286, Leu287 and Glu290. NANPDB2245 formed a hydrogen bond with
Arg131 (bond length 2.92 Å) and nine hydrophobic contacts with Mpro residues comprising
Lys137, Thr199, Tyr237, Tyr239, Leu271, Leu272, Leu286, Leu287 and Asp289 (Table 2 and
Figure 2a). ZINC000095486008 formed two hydrogen bonds with Lys5 (bond length 3.1 Å)
and Glu288 (bond length 3.02 Å), and interacted with Lys137, Asp197, Thr199, Tyr239, Leu272,
Leu286, Leu287, Asp289, and Glu290 via hydrophobic contacts (Table 2 and Figure 2b).

Characterization of the RBD-Ligand Interactions

A total of 27 out of the 36 compounds formed hydrogen bonds of varying lengths with the
RBD (Figure S1 and Table S1). Ledipasvir interacted via hydrogen bonding with Gly339 and
formed hydrophobic contacts with Leu335, Cys336, Pro337, Phe338, Phe342, Asn343, Ala363,
Asp364, Leu368, Ser371, Ala372, Ser373, Phe374, Ser375, Trp436, Asn437 and Tyr508 (Table S1).

Oxymetholone formed hydrogen bonding with Cys336 (bond length of 3.0 Å) and Asn343
(bond length of 3.09 Å); and hydrophobic contacts with Leu335, Phe338, Gly339, Phe342,
Asp364, Val367, Leu368, Ser371 and Phe374 (Table 2). ZINC000095486008 also interacted
with the RBD via three hydrogen bonds with Cys336, Phe338 and Gly339 of bond lengths
2.96, 3.26 and 3.3 Å, respectively (Table 2 and Figure S3B). NANPDB2245 interacted via nine
hydrophobic contacts Leu335, Cys336, Phe338, Gly339, Asp364, Val367, Leu368, Ser371 and
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Phe374, and formed one hydrogen bond with Asn343 (Figure S3A). Therefore, we suggest
Cys336, Ser373 and Phe374 as potential critical residues.Molecules 2021, 26, x FOR PEER REVIEW 10 of 35 
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The residues Leu455, Phe486 and Gln493 of RBD have been reported to interact with
Lys31 (hotspot 31), whereas residues Asn487 and Ser494 of the RBD are described to
interact with Lys353 (hotspot 353) of the human ACE2 [73,74]. Compounds KT185, KT203,
GSK1838705A, BMS195614 and RS504393 were reported to bind to the RBD by interacting
with Leu455, Phe486, Asn487, Gln493 and Ser494 [75]. These compounds were predicted to
interact and block key RBD residues responsible for recognizing hotspot 31 and hotspot
353 of SARS-CoV-2 [75].

2.2.3. Predictions of Biological Activities

The biological activities for the 36 shortlisted compounds were elucidated. All the 13 ANC
compounds shortlisted and two of the machine learning compounds were predicted to be
antivirals, with a probable activity (Pa) > 0.3 and Pa > Pi (probable inactivity). Furthermore,
the propensity of the compounds to be cell adhesion molecule inhibitors and membrane
permeability inhibitors was considered in this study. The mechanisms of entry into the host
cell are key in the survival of viruses, including coronaviruses [76]. More so, the first step
in coronavirus entry is the adhesion to the host cell surface. The inhibition of SARS-CoV-2
spike proteins is a critical antiviral strategy, since it serves as the major barrier to block the
infection [15,77]. A total of seven ANC and one machine learning compound were predicted
to be cell adhesion inhibitors or membrane permeability inhibitors. The stimulation of human
nuclear factor kappa B (NF-κB) transcription factors has been linked to the mediation of the
induction of antiviral and inflammatory responses [78]. NANPDB2403 was predicted to be a
cell adhesion inhibitor with a Pa of 0.760 and Pi of 0.005; anti-influenza activity with a Pa of
0.543 and Pi of 0.021; an anti-rhinovirus with a Pa of 0.499 and Pi of 0.02; and an anti-herpes
activity with a Pa of 0.366 and Pi of 0.068. NANPDB2245 was predicted to possess anti-herpes
activity with a Pa of 0.446 and Pi of 0.019. The ZINC000095486008 was also predicted to have
anti-rhinovirus activities with a Pa of 0.511 and Pi of 0.021; an anti-influenza with a Pa of 0.431
and Pi of 0.037; and anti-herpes with a Pa of 0.431 and Pi of 0.037. ZINC000095486008 possesses
potential anti-Ebola activity with a free binding energy of −114.650 kcal/mol against the VP24
protein target [45]. Since the Pa > Pi, these compounds can be considered as prospective
antivirals, necessitating further experimental testing.

2.3. Existing Drugs Proposed as Potential Frontline Treatment Options

After molecular docking, nine known antivirals and experimental drugs comprising
ledipasvir, velpatasvir, imatinib, dactinomycin, dolutegravir, bictegravir, oxymetholone,
raltegravir and sirolimus were predicted to have high binding affinities (≤−7.5 kcal/mol)
to both Mpro and RBD of the spike glycoprotein (Table S1). A recent study also proposed
the use of ledipasvir and velpatasvir for the treatment of SARS-CoV-2 [64]. Since all these
drugs are FDA-approved, more attention must be focused on exploring their therapeutic
potentials against SARS-CoV-2.

2.3.1. Similarity Search of Hits

A structural similarity search of the hits was conducted via DrugBank. The search
revealed that fusidic acid is structurally similar to NANPDB2245 and NANPDB2403,
with similarity scores of 0.729 and 0.717, respectively. The structural similarity search also
revealed that betulinic acid is similar to oxymetholone, with a score of 0.712. Oxymetholone
used to treat HIV/AIDS wasting syndrome had binding energies of −7.8 and −7.7 kcal/mol
against Mpro and RBD, respectively (Table 2).

2.3.2. Fusidic Acid and Betulinic Acid as Potential Anti-SARS-CoV-2 Compounds

Fusidic acid and betulinic acid were virtually screened against both the Mpro and
RBD. Fusidic acid had binding affinities of −6.9 and −7.2 kcal/mol against the Mpro and
RBD, respectively. Betulinic acid also demonstrated good binding affinities of −7.7 and
−7.4 kcal/mol with the Mpro and RBD, respectively. A recent in silico study proposed the
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use of betulinic acid for the treatment of SARS-CoV-2, since it had a good binding affinity
to the main protease [79].

The interaction profiles between the receptors and these two compounds were also
investigated. Fusidic acid formed hydrogen bonds with Lys137 (bond length of 2.8 Å),
Leu271 (bond length of 2.94 Å) and Leu272 (bond length of 3.05 Å), and hydrophobic contacts
with Arg131, Asp197, Thr199, Tyr239, Gly275, Met276, Leu286 and Asp289 (Table S1). For the
RBD, fusidic acid formed hydrogen bonding with Ser371 (bond length of 2.7 Å) and Ser373
(bond length of 2.92 Å); and hydrophobic bonding with Leu335, Cys336, Gly339, Phe342,
Asn343, Val367, Leu368, Phe374 and Trp436, which lined binding pocket B (Table 1 and
Table S1). Fusidic acid is a natural product-derived bacteriostatic antibiotic classified under
both approved and investigational drug categories in DrugBank. Fusidic acid suppresses
bacterial growth and enhances the clearance of infections by the immune system by inhibiting
translocation during the synthesis of protein. Fusidic acid was reported to inhibit the repli-
cation of feline infectious peritonitis virus (FIPV) in vitro by significantly reducing the viral
titer [80]. Since fusidic acid is already an FDA-approved drug for humans, this offers the
opportunity to further explore its therapeutic potential against SARS-CoV-2.

Additionally, betulinic acid formed a hydrogen bond with Asp289 of a bond length
2.79 Å and interacted with Arg131, Lys137, Asp197, Thr198, Thr199, Tyr237, Tyr239, Leu271,
Leu272, Gly275, Met276, Leu286 and Leu287 via hydrophobic bonds. For the RBD, betulinic
acid formed two hydrogen bonds with Phe515 (lengths 2.73 Å and 3.16 Å) and one with
Thr430 (2.71 Å). Betulinic acid also interacted with the RBD via hydrophobic interactions
with residues Pro426, Asp428, Phe429, Lys462, Pro463, Phe464 and Ser514. Betulinic acid
was also reported to possess inhibitory activity against SARS-CoV Mpro with an IC50 value
of 10 µM [81]. Based on modelization studies, the inhibition by betulinic acid was attributed
to the multiple hydrogen bonds formed between betulinic acid and the Mpro [81]. Betulinic
acid is an HIV-1 inhibitor with an EC50 value of 1.4 µM [82]. Other studies have also
shown that derivatives of betulinic acid can interfere with HIV-1 virus entry in cells [83,84].
Since the S2 subunit of the spike protein of SARS-CoV and the glycoprotein 41 (Gp41)
of HIV-1 are similar, blocking of the entry or fusion of the SARS-CoV viral particles to the
human cell membrane was proposed as anti-SARS-CoV mechanisms [81].

2.4. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) Calculations

Molecular dynamics (MD) simulations are performed after docking to assess the pre-
dicted binding modes of the top-ranking compounds as a filter in silico or to guide chemical
synthesis for hit optimization [85]. At a quantitative level, simulation-based methods pro-
vide substantially more accurate estimates of ligand binding affinities (free energies) [86].
To understand the biophysical basis of recognition of inhibitors, MM/PBSA is employed
for each system to identify stable MD trajectories, and the results are evaluated based on
the total binding free energy of the ligand-receptor complex [48,87]. Binding free energy
(∆Gbind) is used to quantify the affinity of a ligand to its target and is the free energy differ-
ence between the ligand-bound state (complex) and the corresponding unbound states of
proteins and ligands. Assessing the ∆Gbind of a series of ligands against a particular target
can unravel those ligands with higher binding affinities with the target. Thus, the ∆Gbind
calculations are important to gain in-depth knowledge about the binding modes of the
hits in drug design [88]. The various contributing energy terms were computed in this
study (Table 3). Binding free energies between the hits and the respective targets were
calculated after a 10 ns production MD run of the respective complexes using GROMACS.
The binding free energies between fusidic acid, oxymetholone and remdesivir with the
respective targets were also calculated.

2.4.1. MM/PBSA-Binding Free Energy Computational Analysis of Mpro

Talampicillin was found to have a binding energy of −11.17 kcal/mol and MM/PBSA-
binding free energy of −2.8 kcal/mol (−11.7152 kJ/mol) [89]. Talampicillin formed a net-
work of bonds with residues His41, Met49, Gly143, Cys145, Met165, Glu166, Leu167, Pro168,
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Gln189 and Gln192 [89]. ZINC000015988935 also had binding energy of −12.39 kcal/mol
and free binding energy of −4.62 kcal/mol (−19.33008 kJ/mol). It also showed a p-sulfur
interaction with Met49; seven hydrogen bonds with the residues Arg188, Asp187, Gln189,
Ser144, Cys145 and Glu166; an alkyl interaction with Met165; and a p-alkyl interaction
with Cys145 [89].

Table 3. Contributing energy terms of the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) computa-
tions for receptor–ligand complexes. Values are shown as average ± standard deviations in kJ/mol. The terms consist of
van der Waals, electrostatic, polar solvation, solvent-accessible surface area (SASA) and binding energies.

Compound van der Waals Energy
(kJ/mol)

Electrostatic Energy
(kJ/mol)

Polar Solvation Energy
(kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

Mpro

NANPDB2245 −85.61 +/− 11.970 −6.274 +/− 7.537 46.495 +/− 10.814 −10.829 +/− 1.110 −56.223 +/− 11.988
NANPDB2403 −77.965 +/− 12.063 −6.624 +/− 7.992 36.397 +/− 13.775 −9.939 +/− 1.139 −58.132 +/− 13.000

ZINC000095486008 −98.620 +/− 15.067 −20.464 +/− 14.240 84.718 +/− 29.042 −12.692 +/− 1.538 −47.058 +/− 20.877
ZINC000055656943 −18.966 +/− 26.649 −2.907 +/− 8.983 7.468 +/− 57.684 −2.692 +/− 4.061 −17.097 +/− 45.262
ZINC001645993538 −84.952 +/− 12.296 −20.470 +/− 13.867 62.338 +/− 24.852 −10.702 +/− 1.140 −53.785 +/− 18.652

Oxymetholone −60.820 +/− 13.039 −3.207 +/− 5.288 27.787 +/− 20.226 −8.485 +/− 1.967 −44.724 +/− 17.562
Remdesivir −114.276 +/− 18.798 −19.410 +/− 12.604 89.056 +/− 41.414 −13.726 +/− 2.248 −58.356 +/− 31.051

RBD

NANPDB2245 −30.310 +/− 43.669 −2.337 +/− 4.496 14.435 +/− 40.707 −3.930 +/− 5.769 −22.142 +/− 39.775
NANPDB2403 −79.080 +/− 14.764 −2.714 +/− 7.624 39.552 +/− 18.265 −10.898 +/− 1.698 −53.140 +/− 20.905

ZINC000095486008 −119.217 +/− 10.410 −8.227 +/− 7.728 77.567 +/− 12.472 −15.298 +/− 1.031 −65.174 +/− 10.495
ZINC000055656943 −58.972 +/− 54.205 −11.991 +/− 12.656 34.870 +/− 57.870 −7.003 +/− 6.417 −43.096 +/− 39.685
ZINC001645993538 −109.967 +/− 10.090 −0.990 +/− 6.308 63.10 +/− 8.655 −13.921 +/− 0.760 −61.778 +/− 9.594

Oxymetholone −109.874 +/− 9.028 −15.240 +/− 7.816 74.123 +/− 15.363 −13.752 +/− 0.876 −64.742 +/− 14.235
Remdesivir −100.708 +/− 18.622 −11.616 +/− 11.476 80.060 +/− 24.762 −12.206 +/− 1.981 −44.471 +/− 19.222

Herein, the binding free energies of hits ranged from −17.097 to −61.090 kJ/mol
(Table 3). Fusidic acid demonstrated the highest binding affinity with a binding free
energy of −61.090 kJ/mol, while ZINC000055656943 had the highest binding free energy of
−17.097 kJ/mol. NANPDB2245, NANPDB2403, ZINC000095486008, ZINC001645993538,
remdesivir and oxymetholone had binding free energies of −56.223, −58.132, −47.058,
−53.785, −58.356 and −44.724 kJ/mol, respectively, with Mpro (Table 3).

2.4.2. MM/PBSA-Binding Free Energy Computational Analysis of RBD

For the RBD, ZINC000095486008 demonstrated the highest affinity with a binding free
energy of −65.174 kJ/mol. NANPDB2245 demonstrated the highest binding free energy
(−22.142 kJ/mol) with the RBD. NANPDB2403, fusidic acid, ZINC000055656943, ZINC0016
45993538, remdesivir and oxymetholone also had binding free energies of −53.140, −55.858,
−43.096, −61.778, −44.471 and −64.742 kJ/mol, respectively (Table 3). The low binding free
energies exhibited by these compounds make them promising anti-SARS-CoV-2 molecules
worthy of in vitro studies.

2.5. Other Contributing Energy Terms

The nonpolar component of the solvation free energy is estimated by the molecular
solvent-accessible surface area (SASA) [90]. The SASA analysis measures the interaction
between complexes and solvents. The Mpro-ligand complexes had SASA energies ranging
from −2.692 to −13.726 kJ/mol. Mpro-Remdesivir demonstrated the lowest SASA energy
of −13.726 kJ/mol, while Mpro-ZINC000055656943 had a SASA energy of −2.692 kJ/mol.
Mpro-ZINC000095486008, Mpro-fusidic acid, Mpro-NANPDB2245, Mpro-ZINC001645993538,
Mpro-NANPDB2403 and Mpro-oxymetholone also had −12.692, −12.623, −10.829, −10.702,
−9.939, and −8.485 kJ/mol, respectively. For the RBD-ligand complexes, the SASA energy
values observed were between −3.930 and −15.298 kJ/mol (Table 3). ZINC000095486008
demonstrated the lowest SASA energy value of −15.298 kJ/mol.

The energy terms van der Waals, electrostatic and polar solvation energies are use-
ful for analyzing free binding energies. Studies have shown that electrostatic and van der
Waals forces contribute predominantly and continuously to the binding energy, along with
simulations that favor the binding of complexes [91,92]. All the Mpro-ligand complexes



Molecules 2021, 26, 406 13 of 30

demonstrated very low van der Waals energies ranging from −18.966 to −114.276 kJ/mol
(Table 3). Mpro-Remdesivir demonstrated the lowest van der Waals energy of −114.276 kJ/mol,
while ZINC000055656943 showed the highest van der Waals energy of −18.966 kJ/mol
(Table 3). Fusidic acid, ZINC000095486008, NANPDB2245, ZINC001645993538, NANPDB2403
and oxymetholone demonstrated van der Waals energies of −99.476, −98.620, −85.615,
−84.952, −77.965 and −60.820 kJ/mol, respectively (Table 3). For the RBD-ligand com-
plexes, the van der Waals energies ranged between −30.310 and −119.217 kJ/mol. RBD-
ZINC000095486008 demonstrated the lowest van der Waals energy of −119.217 kJ/mol,
while RBD-NANPDB2245 had −30.310 kJ/mol (Table 3).

Compounds with low electrostatic energies and high polar energies have been reported
to be active against receptors [93]. The electrostatic energies ranged between −2.907 to
−20.464 kJ/mol for the Mpro-ligand complexes and −2.337 to −16.338 kJ/mol for the RBD-
ligand complexes. (Table 3). High polar solvation energies were also observed for all protein-
ligand complexes. For the Mpro-ligand complexes, the polar solvation energies ranged between
7.468 and 89.056 kJ/mol (Table 3). Mpro-Remdesivir demonstrated the highest polar energy of
89.056 kJ/mol, while Mpro-ZINC000055656943 had the lowest (7.468 kJ/mol). For the RBD-
ligand complexes, polar solvation energies ranging from 14.435 to 80.060 kJ/mol were observed
(Table 3). RBD-Remdesivir demonstrated the highest polar solvation energy of 80.060 kJ/mol.

2.5.1. Energy Decomposition per Residue

MM/PBSA computations are used to decompose calculated free energies either by
per-residue or pair-wise decompositions [90,94]. The per-residue decomposition involves
the decomposition of each residue by including the interactions in which one residue
atom is involved. Alternatively, pair-wise decomposition interactions can be decomposed
by specific residue pairs by including only those interactions in which one atom from
each of the analyzed residues is participating [90,94]. These techniques provide useful
insight into important interactions of key residues in free energy contribution. Residues
contributing binding free energy greater than 5 kJ/mol or less than −5 kJ/mol are worthy
of consideration as key residues for the binding of a ligand to a protein [95].

Per-Residue Energy Decomposition of Mpro-Ligand Complexes

Generally, amino acid residues within the range of 230 to 290 were observed to contribute
energies beyond the ±5 kJ/mol threshold. For the Mpro-ligand complexes, Tyr237, Tyr239 and
Leu272 were common residues that contributed energies greater than 5 kJ/mol or lesser than
5 kJ/mol (Figure 4 and Figure S5A–G). For the Mpro-NANPDB2245 complex, Tyr237, Tyr239,
Leu271, Leu272 and Ala285 were involved in the protein-ligand interaction with individual
residue energies of 9.4613, 7.4232, 5.8197, 8.5205, and 5.4298 kJ/mol, respectively (Figure S5B).
Lys236, Tyr237, Asn238, Tyr239 and Leu272 contributed energies of 9.4957, 10.5023, 5.0114,
9.6197 and 10.2874 kJ/mol, respectively, in the Mpro-fusidic acid complex (Figure S5D). For the
Mpro-Remdesivir, only Tyr237 was observed to contribute energy beyond the ±5 kJ/mol
threshold (−5.5271 kJ/mol) (Figure S5A).

The Mpro-ZINC000095486008 complex had the greatest number of residues con-
tributing energies to the interaction (Figure 4). Lys137 contributed the highest energy
(33.1602 kJ/mol), followed by Leu287 (16.6352 kJ/mol). Thr199, Tyr239, Met276, Leu286,
Glu288 and Asp289 also contributed individual energies of 5.9548, 10.5721, 5.6664, 5.7757,
7.8710 and 9.4673 kJ/mol, respectively (Figure 4). In a previous study, ZINC000095486008
in a complex with Ebola virus viral protein 24 (EBOV VP24) also had high interaction ener-
gies per residue [45]. Only Lys137 contributed beyond the threshold (10.7331 kJ/mol) in the
Mpro-ZINC000055656943 complex (Figure S5E). The interaction between ZINC001645993538
and Mpro caused residues Tyr237, Tyr239, Leu271, Leu272, Gln273 and Gly275 to con-
tribute energies of 9.7242, 7.5793, 5.6107, 15.8221, 8.4805 and 5.0989 kJ/mol, respectively
(Figure S5F). The interaction with oxymetholone also involved Ser46 and Gln189 with
energy contributions 8.2579 and 12.2857 kJ/mol, respectively (Figure S5G).
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Per-Residue Energy Decomposition of the RBD-Ligand Complexes

For the RBD-ligand complexes, residues within the range 340–375 were observed to
be involved in interactions contributing energies beyond ±5 kJ/mol (Figure S5H–O). Only
Tyr505 showed energy beyond ±5 kJ/mol for the RBD-Remdesivir complex (−5.9154 kJ/mol)
(Figure S5H). Residues from RBD complexes of NANPDB2245, ZINC000095486008 and
ZINC001645993538 were observed to contribute individual energies beyond the ±5 kJ/mol
thresholds (Figure S5I,L,N). For the RBD-NANPDB2245 complex, Asn343 and Ser373 were ob-
served to contribute 5.3285 and 5.286 kJ/mol, respectively (Figure S5I). Leu368 and Phe374 con-
tributed −5.0598 and −5.3661 kJ/mol, respectively, in the RBD-ZINC0000 95486008 complex
(Figure S5L). Additionally, Leu335, Asp364 and Val367 contributed energies of −6.3651, 5.5776
and −7.2196 kJ/mol in the RBD-ZINC001645993538 interactions, respectively, (Figure S5N).
These residues need to be investigated to ascertain their critical roles in RBD-ligand binding.

2.6. Molecular Dynamics

To further understand the dynamic behavior of the hits within the active sites of
the protein structures, 100 ns MD simulations were performed for the unbound protein
structures and two selected protein-ligand complexes (NANPDB2403 and ZINC95486008)
in duplicates. The root mean square deviation (RMSD), the root mean square fluctuations
(RMSF), and the radius of gyration (Rg) were assessed. In addition, graphs for the 10 ns
MD simulations were provided in Figure S4.

2.6.1. Root Mean Square Deviation of the Complexes for 100 ns MD Simulations

The RMSD is a plausible measure of protein stability. For the unbound protein,
its RMSD sharply rose to 0.2 nm and plateaued around this figure during the simulation
(Figure 5a). A similar occurrence was observed for the duplication run. Both runs for the
Mpro-NANPDB2403 complex showed similar RMSD, with little deviations (Figure 5a).
The duplicate run of the Mpro-ZINC000095486008 complex was observed to have a stable
RMSD with an average value of 0.2 nm until about 30 ns, where a rise was observed
until the end of the 100 ns period (Figure 5a). In all the structures, the RMSDs were
observed to fluctuate within the range of 0.13–0.32 nm (except the duplicate run of Mpro-
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ZINC000095486008) (Figure 5a). A recent study virtually screened FDA-approved antiviral
drugs against the Mpro and performed 100 ns molecular dynamics simulations of protein-
ligand complexes [96]. The study reported an RMSD range of 1.5 Å (0.15 nm) to 3 Å (0.3 nm),
with an average RMSD of 2.25 Å (0.225 nm) for all complexes [96], consistent with the
RMSD range reported (Figure 6a) and other studies [97,98].

Molecules 2021, 26, x FOR PEER REVIEW 18 of 35 
 

 

 
Figure 5. Root mean square deviation (RMSD), root mean square fluctuations (RMSF), and the radius of gyration (Rg) 
plots of the extended molecular dynamics (MD) simulations of the Mpro–ligand complexes generated over 100 ns using 
GROMACS. (a) RMSD versus a time graph of the Mpro–ligand, (b) analysis of RMSF trajectories of residues of the Mpro–
ligand, and (c) the Rg versus a time graph of the Mpro–ligand complexes. In all the three graphs, the unbound Mpro, un-
bound Mpro duplicate run, Mpro-NANPDB2403, Mpro-NANPDB2403 duplicate run, Mpro-ZINC000095486008, and Mpro-
ZINC000095486008 duplicate run are represented as black, red, green, blue, yellow and brown, respectively. 

Figure 5. Root mean square deviation (RMSD), root mean square fluctuations (RMSF), and the radius of gyration (Rg)
plots of the extended molecular dynamics (MD) simulations of the Mpro-ligand complexes generated over 100 ns using
GROMACS. (a) RMSD versus a time graph of the Mpro-ligand, (b) analysis of RMSF trajectories of residues of the Mpro-
ligand, and (c) the Rg versus a time graph of the Mpro-ligand complexes. In all the three graphs, the unbound Mpro,
unbound Mpro duplicate run, Mpro-NANPDB2403, Mpro-NANPDB2403 duplicate run, Mpro-ZINC000095486008, and Mpro-
ZINC000095486008 duplicate run are represented as black, red, green, blue, yellow and brown, respectively.



Molecules 2021, 26, 406 16 of 30Molecules 2021, 26, x FOR PEER REVIEW 19 of 35 
 

 

 

 
Figure 6. RMSD, RMSF and Rg plots of the extended MD simulations of the RBD–ligand complexes generated over 100 ns 
using GROMACS. (a) RMSD versus time graph of the RBD–ligand complexes, (b) analysis of RMSF trajectories of residues 
of the RBD–ligand complexes, and (c) Rg versus time graph of the RBD–ligand complexes. In all the three graphs, the 
unbound RBD, unbound RBD duplicate run, RBD-NANPDB2403, RBD-NANPDB2403 duplicate run, RBD-
ZINC000095486008, and RBD-ZINC000095486008 duplicate run are shown as black, red, green, blue, yellow and brown, 
respectively. 

2.6.2. Root Mean Square Fluctuation of the Complexes for 100 ns MD simulations 
The RMSF was computed to analyze the residual fluctuations over the simulation 

time. For the Mpro and its complexes, fluctuations were observed at regions from residue 
indexes of 50–55, 150–160, 215–230 and 275–280 (Figure 5b). For the RBD, fluctuations 
were observed in all the RBD–ligand complexes around regions 420–430, 470–480 and 
520–530 (Figure 6b). A few residues in the range 470–480 showed more flexibility in the 
RBD for both duplicate runs than the RBD-NANPDB2403 and RBD-ZINC95486008 com-
plexes (Figure 6b). The results obtained corroborate with that of a previous study that 
identified SARS-CoV-2 RBD inhibitors via molecular docking and dynamics simulations 
studies of terpenes [99]. 

2.6.3. Radius of Gyration of the Complexes for 100 ns MD simulations 

Figure 6. RMSD, RMSF and Rg plots of the extended MD simulations of the RBD-ligand complexes generated over 100 ns
using GROMACS. (a) RMSD versus time graph of the RBD-ligand complexes, (b) analysis of RMSF trajectories of residues of
the RBD-ligand complexes, and (c) Rg versus time graph of the RBD-ligand complexes. In all the three graphs, the unbound
RBD, unbound RBD duplicate run, RBD-NANPDB2403, RBD-NANPDB2403 duplicate run, RBD-ZINC000095486008,
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The RMSD values of the RBD and RBD–ligand complexes were also computed. For the
unbound RBD, the RMSD averaged between 0.2 nm and 0.25 nm during the first 20 ns of the
simulation (Figure 6a). It then rose to about 0.3 nm, where it was fairly stable during the rest
of the simulation. The RMSD of the unbound protein averaged around 0.15 nm (Figure 6a).
For both runs, the RBD-ZINC95486008 complex showed the most stable RMSD, with both
averaging around 0.1 nm. During the two duplicate runs, the RBD-ZINC000095486008 complex
maintained an average RMSD of 0.125 nm throughout the 100 ns simulation period (Figure 6a).
Generally, the unbound RBD structures had the highest RMSD values (Figure 6a). A recent
molecular dynamics study of RBD and terpene compounds reported a similar RMSD range of
0.08 and 0.25 nm [99].

2.6.2. Root Mean Square Fluctuation of the Complexes for 100 ns MD Simulations

The RMSF was computed to analyze the residual fluctuations over the simulation
time. For the Mpro and its complexes, fluctuations were observed at regions from residue
indexes of 50–55, 150–160, 215–230 and 275–280 (Figure 5b). For the RBD, fluctuations were
observed in all the RBD–ligand complexes around regions 420–430, 470–480 and 520–530
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(Figure 6b). A few residues in the range 470–480 showed more flexibility in the RBD
for both duplicate runs than the RBD-NANPDB2403 and RBD-ZINC95486008 complexes
(Figure 6b). The results obtained corroborate with that of a previous study that identified
SARS-CoV-2 RBD inhibitors via molecular docking and dynamics simulations studies
of terpenes [99].

2.6.3. Radius of Gyration of the Complexes for 100 ns MD Simulations

The radius of gyration was assessed to evaluate the compactness of the structures. A stably
folded protein maintains a reasonably steady Rg over the simulation time. Considering Mpro,
the Rg of the unbound Mpro for both duplicate runs was relatively steady and averaged around
2.2 nm (Figure 5c). The duplicate run of the Mpro-ZINC000095486008 was observed to have a
similar Rg as the other, maintaining an average Rg value of 2.25 nm until about 30 ns, where it
spiked and then fluctuated throughout the rest of the simulation time (Figure 5c). For the
duplicate runs, Mpro-NANPDB2403 had a steady Rg over the simulation and averaged around
2.25 nm. Previous MD simulation studies of Mpro in complex with lichen spp. compounds
revealed Rg values ranging between 2.175 nm and 2.25 nm [98], consistent with the Rg values
reported elsewhere [100] and in this work.

The Rg curves of the unbound RBD and RBD-ligand complexes for 100 ns ranged
between 1.8 and 1.91 nm (Figure 5c), consistent with the Rg ranges for the 10 ns MD
simulations and in a recent study (1.8 and 1.88 nm) [99]. The unbound RBD had similar
Rg with that of the duplicate, with an average of 1.84 nm until 30 ns, where it increased
gradually to an average of 1.88 nm until the end of the 100 ns period (Figure 5c).

2.7. Comparison of Binding Modes Pre-MD and Post-100 ns MD Simulations

Analyses of the binding modes of potential leads NANPDB2403 and ZINC95486008
in complex with both target structures (Mpro and RBD) were undertaken after both dock-
ing and 100 ns MD simulation. This was to ascertain if the same binding modes were
maintained after undergoing MD simulation. Binding mode superimpositions and visual
inspections revealed that the compounds resided well in the active site pocket of each
target, with almost the same binding modes for the pre-MD docked complex and post-MD
simulations results (Figures 7 and 8). The evaluation of the binding modes based on the su-
perimposition of the complexes gave RMSD values for NANPDB2403 and ZINC95486008
in Mpro pre-MD and post-MD as 1.167Å and 0.703Å, respectively. For the RBD target,
RMSD values 0.807Å and 1.396Å were obtained for both compounds, which were less than
2Å, considered as the threshold for good alignment [101]. Therefore, the binding poses
could be considered similar even after MD simulations.

2.7.1. Binding Modes Interactions Analysis between Mpro and Potential Leads

The pre-MD interaction analysis revealed that the NANPDB2403 complex formed hy-
drogen bond interactions with the Thr199 and Leu287 residues. However, after MD simula-
tions, these hydrogen bond interactions were lost. Instead, the ligand formed hydrophobic
interactions with Leu287 and no interactions with Thr199. Likewise, the pre-existing hy-
drophobic bonds were only maintained for Tyr237, Leu271 and Leu272. The hydrophobic
bond interactions for Tyr237 and Tyr239 were lost after the simulation (Table 4, Figure 7a
and Figure S2A,B).

ZINC95486008 formed only hydrophobic interactions before and after MD simulations.
Surprisingly, the hydrophobic interactions observed after MD simulations were completely
different from those observed before. New hydrophobic interactions were found between
the ligand and residues Trp31, Ala70, Gly71, Asn72, Val73, Leu75 and Ala94 (Table 4,
Figure 7b and Figure S2C,D). Both compounds docked well within the active site after MD
simulations.
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Table 4. Molecular interactions between potential lead compounds and the Mpro target before and after molecular dynamics
(MD) simulations.

Mpro

Pre-MD Interactions Post-MD Interactions (100 ns)

Compound Name H-Bond Residues Hydrophobic Bond Residues H-Bond Residues Hydrophobic Bond Residues

NANPDB2403 Thr199, Leu287 Tyr237, Tyr239, Leu271,
Leu272, Leu286 - Tyr237, Leu271, Leu272, Leu287

ZINC95486008 Gly5, Glu288

Lys137, Asp197,
Thr199, Tyr239,
Leu272, Leu286,
Leu287, Asp289,

Glu290

- Trp31, Ala70, Gly71, Asn72,
Val73, Leu75, Ala94
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2.7.2. Binding Modes Interactions Analysis between RBD and Potential Leads

For the RBD target, hydrogen bond interactions were not observed for NANPDB2403
ligand before and after MD simulations. However, two residues namely Phe342 and Val367
maintained their hydrophobic interactions after the simulation. New interactions were
observed between the ligand and residues Gly339, Ser373 and Phe374 (Table 5, Figure 8a
and Figure S2E,F).

Table 5. Molecular interactions between potential lead compounds and RBD targets before and after MD simulations.

RBD

Pre-MD Interactions Post-MD Interactions (100 ns)

Compound Name H-Bond Residues Hydrophobic Bond Residues H-Bond Residues Hydrophobic Bond Residues

NANPDB2403 -
Leu335, Cys336, Phe338,
Phe342, Asn343, Asp364,
Val367, Leu368, Ser371

- Gly339, Phe342, Val367,
Ser373, Phe374

ZINC95486008 Cys336, Phe338, Gly339
Pro337, Phe342, Asn343,
Val367, Leu368, Ser371,

Phe374, Trp436
Asn343 Cys336, Gly339, Phe342,

Asp364, Val367, Ser373

The interactions for ZINC95486008 and the target before the simulation showed that
hydrogen bond interactions formed between the ligand and residues Cys336, Phe338 and
Gly339. Even though, Cys336 has been reported as a critical residue for binding, it did not
maintain the hydrogen bond after MD simulations but rather formed a hydrophobic contact.
It is worth noting that after MD simulations, ZINC95486008 formed a hydrogen bond
with Asn343, a residue predicted as a critical. Residues whose hydrophobic bonds were
maintained after MD simulations include Phe342 and Val367. However, ZINC95486008
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formed hydrophobic bonds with Gly339, a residue that previously formed a hydrogen
bond during pre-MD simulation (Table 5, Figure 8b and Figure S2G,H).

2.8. Summary and Implications of the Results

Six potential anti-SARS-CoV-2 biomolecules were identified as leads comprising
NANPDB2245, NANPDB2403, fusidic acid, ZINC000095486008, ZINC0000556656943 and
ZINC001645993538 (Table 6). These molecules were obtained by screening libraries made
up of ANC, known drugs and machine learning-derived compounds against the SARS-CoV-
2 receptors Mpro and RBD. The known drugs included antiviral remdesivir, dexamethasone,
hydroxychloroquine and chloroquine. The techniques utilized included previously de-
scribed methods used to identify potential bioactive compounds against the Ebola virus
protein VP24 [45].

Table 6. A list of selected compounds with their 2D structures and common/IUPAC names generated using the Marvin
suite (http://www.chemaxon.com/).

Ligand ID Common/IUPAC Name 2D Structure

NANPDB2245 Helioscopinolide B
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Table 6. Cont.

Ligand ID Common/IUPAC Name 2D Structure

ZINC001645993538
(4S)-N-((1R,3R,6R)-7,7-difluorobicyclo (4.1.0)

heptan-3-yl)-7-fluoro-2-oxo-1,2,3,4-
tetrahydroquinoline-4-carboxamide
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Fusidic acid was shown to be structurally similar to NANPDB2245 and NANPDB2403
via DrugBank. Betulinic acid was also identified as structurally similar to oxymetholone.
In our previous study, helioscopinolide C which is a structural analog of NANPDB2245
(helioscopinolide B), and ZINC000095486008 were reported as being plausible anti-Ebola
compounds [45]. These compounds warrant further in vitro and in vivo testing to ascertain
their anti-SARS-CoV-2 activity. The results also corroborate ongoing research on the
inhibitory activities of remdesivir and oxymetholone. Since fusidic acid is already an
FDA-approved drug for humans, this offers the opportunity to explore its therapeutic
potential against SARS-CoV-2.

The study proposed potential anti-SARS-CoV-2 compounds, which were reinforced
with antiviral activity predictions. Additionally, the study highlights the repurposing of
existing drugs as potential anti-SARS-CoV-2 molecules. This study complements ongoing
efforts geared towards the identification of SARS-CoV-2 inhibitors. Making these predicted
compounds accessible to the scientific community could stimulate the pace of searching
for effective SARS-CoV-2 drugs.

3. Materials and Methods

A schema showing the step-by-step techniques employed in predicting the potential
leads is shown in Figure 9. A library consisting of ANC, FDA-approved drugs and machine
learning-derived compounds were screened against the structures of SARS-CoV-2 receptors
Mpro and RBD of the spike protein. The compounds were prefiltered using molecular
weights (MW) between 250 and 350 g/mol, good absorption, distribution, metabolism,
excretion and toxicity (ADMET) profiles. The docked complexes were subjected to MD
simulations, and the biological activities of the hits were predicted.

3.1. Data Sources for SARS-CoV-2 Targets

The experimentally solved 3D structures of SARS-CoV-2 Mpro and RBD of the spike
protein (Accession numbers: PDB IDs 5R82 and 6M0J, respectively) were retrieved from the
Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [102].
5R82 is a monomer of the SARS-CoV-2 Mpro with a co-crystallized ligand (6-(ethylamino)
pyridine-3-carbonitrile), while 6M0J is also a monomer of the SARS-CoV-2 RBD in complex
with the human ACE2.

3.2. The Screening Library

A library of 7675 compounds was created from the North African Natural Product
and African Natural Product Databases [42,43]. The natural compounds were filtered
using ADMET Predictor™ (V8.0, Simulations Plus, Inc., Lancaster, PA, USA) and those
with high toxicity levels and molecular weights greater than 350 g/mol and less than
250 g/mol were eliminated [45,103], which reduced the number to 1470. Additionally,
the 1000 top hit compounds generated by a machine learning (ML) study that screened
1.3 billion compounds against the Mpro [28] were also screened based on Lipinski’s rule of
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five using OpenBabel [104]. A total of 60 compounds were eliminated and the remaining
940 added to the library. Additionally, a set of 43 FDA-approved antivirals, including
those undergoing clinical trials [105], were added to the library. Thus, the library used for
molecular docking was composed of 2453 compounds.
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3.3. Preparation of the Protein Structure and Elucidation-Binding Sites

The 3D protein structures of Mpro and RBD were analyzed using PyMOL Version 1.5.0.4
(PyMOL Molecular Graphics System, Schrödinger, LLC) as described [106]. The structures
were first cleaned of all available water molecules and ligands before being subjected to
energy minimization. A 10 ns molecular dynamics (MD) simulation for each of the structures
was performed using the Groningen Machine for Chemical Simulations GROMACS version
2018 [107]. The Optimized Potentials for Liquid Simulations (OPLS)/All Atom (AA) force field
was used to generate the protein topologies and position restrain files. Periodic boundary
conditions (PBC) were applied to each structure, with the protein centered 1 nm from the
edge of a cubic box to monitor the movement of all particles and avoid edge effects on the
surface atoms [108]. The system was solvated with SPC water and neutralized, and the
steepest descent algorithm used for the energy minimization was at 50,000 steps. A 100 ps
equilibration simulation was performed using the NVT and NPT ensembles to ensure that
the system was well-equilibrated to an optimal temperature of 300 K and pressure of 1 bar
before the MD simulation, which was performed for 10 ns. Xmgrace was used to generate
the graphical outputs [109]. The binding sites of the proteins were then predicted using
the Computed Atlas of Surface Topography of proteins (CASTp) version 3.0 (available at
http://sts.bioe.uic.edu/castp/calculation.html), which utilizes theoretical and algorithmic
results of computational geometry to predict pockets and cavities, whiles excluding shallow
depressions [49]. The predicted binding cavities were visualized and analyzed using Chimera
version 1.12 and PyMOL. Predicted sites with very small volumes and areas such that no
ligands could fit were excluded from downstream virtual screening.

3.4. Virtual Screening of Ligand Library

AutoDock Vina [61] was used to screen the integrated library against the energy-
minimized Mpro and RBD. The library was imported into the OpenBabel workspace [104]
in “.sdf” file format and minimized using the Universal Force Field (Uff) for 200 steps
and then optimized using the conjugate gradient before finally converting the file into
the AutoDock format (“.pdbqt”). The file format “.pdbqt” stores the atomic coordinates,
partial charges, and describes the rigid and rotational parts of the molecule, as well as
serves as the input format for AutoDock Vina. AutoDock Vina employs an empirical
and knowledge-based scoring function to predict the binding affinity of compounds [61].
The specified dimensions of the grid box for the Mpro were 37.58 * 64.78 * 62.77 Å3 and
centered at 49.33, 49.36, and 49.56 Å. The corresponding dimensions for the RBD were
42.54 * 42.73 * 42.44 Å3 and centered at 41.19, 47.74, and 55.37 Å. The grid boxes covered all
the predicted binding pockets of the two proteins. The compounds with binding energies
of −7.5 kcal/mol or less for both receptors were selected for downstream analysis [62].

3.5. Characterization of the Protein-Ligand Interactions

LigPlot+ [69] was used to generate the 2D protein-ligand interactions which revealed
hydrogen and hydrophobic interactions. The best poses of the hits were saved in “.pdb”
file format and then visualized in PyMol [106]. The saved protein-ligand complexes served
as inputs for LigPlot+ [69]. The hydrogen bonds were denoted as green dashed lines and
the arcs with spokes radiating towards the ligands as the hydrophobic interactions. Default
parameters were used in generating the interaction profiles.

3.6. Prediction of Antiviral Properties of Hit Compounds

The antiviral activities of the hits were predicted using the Bayesian-based Prediction
of Activity Spectra for Substances (PASS) [110] using the Simplified Molecular Input Line-
Entry System (SMILES) format of the compounds as inputs. PASS determines the relevant
biological activities of compounds based on the structural–activity relationship between the
compound of interest and a training set of over 26,000 compounds with known biological
activities [110]. For any given compound, PASS predicts the Pa and Pi, with both ranging
between 0.000 and 1.000 for a predicted activity. When the Pa is greater than the Pi for

http://sts.bioe.uic.edu/castp/calculation.html
http://sts.bioe.uic.edu/castp/calculation.html
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a particular compound activity and Pa > 0.3, it is worth exploring the pharmacological
activity [111,112]. PASS was used in previous studies to predict the antiviral activity of
novel compounds, and the experimental results corroborated the PASS predictions [113].

3.7. Molecular Dynamics Simulation of Protein-Ligand Complexes

MD simulations of the protein-ligand complexes were performed using GROMACS
2018 [107]. Their protein topologies were generated using the CHARMM36 all-atom
force field. The ligand topologies were generated using the CHARMM force field via the
CHARMM General Force Field (CGenFF) server (available at https://cgenff.umaryland.
edu/). Complexes were generated from the ligands and protein topologies for each of the
selected cases under study. Each complex was solvated with the transferable intermolecular
potential with a 3 points (TIP3P) water model in a cubic box of size 1.0 nm and neutralized
with Na and Cl ions. Energy minimization of each complex was conducted for 50,000 steps
using the steepest descent algorithm. The ligands were restrained before the NVT and
further using the NPT ensemble. Equilibration of each complex was performed for 100 ps
apiece and the final MD simulation was conducted for 10 ns with time steps of 2 fs under the
PME. Extended MD runs (in duplicates) were also conducted for 100 ns for the unbound
proteins and selected protein-ligand complexes of NANPDB2403 and ZINC95486008.
Duplicate MD runs were carried out by generating random seeds for the initial velocities
of each run.

The root mean square deviation (RMSD), root mean square fluctuation (RMSF), and ra-
dius of gyration (Rg) of the unbound proteins and selected protein-ligand complexes were
determined. RMSD is a frequently used measure of the differences between the structures
sampled during the simulation and the reference structure [114]. MD simulations require
systems to be close to their equilibrium (native) conformation. The time trajectory of
RMSD shows how a protein structure deviates from a reference structure as a function of
time [114].

RMSF measures the movement of a subset of atoms concerning the average structure
over the entire simulation. RMSF indicates the flexibility of different regions of a protein,
which can be related to crystallographic B factors [114]. Residues contributing to the
complex structural fluctuation can be assessed using this stability profile analysis. Higher
RMSF values imply greater fluctuations. Greater amounts of structural fluctuations occur
in regions known to be involved in ligand binding and catalysis, notably the catalytic
loop regions [115]. Adaptive variation in flexibility lies principally in these regions of the
sequence that influence the conformational stabilities of the protein-ligand complex [115].

The radius of gyration (Rg) assesses the changes in compactness of a protein-ligand
complex over the simulation time. The loss of compactness affects the stability of the
complex by introducing weak intermolecular bonds. When the Rg of a complex is relatively
steady, the compactness of the protein-ligand complex is high, and the protein is folded
well, whereas the Rg value changes over time if the protein unfolds [45,116].

G_mmpbsa [48] was also used to calculate the free binding energies of each complex
over the 10 ns simulation period, utilizing frames in steps of 0.1 ns. The binding free energy
contribution per residue was calculated using the MM/PBSA and the plots generated using
R programming.

3.8. Analysis of Binding Modes

From the aforementioned, two out of six lead compounds comprising NANPDB2403
and ZINC95486008 were selected for an extended 100 ns MD simulation for both targets,
and their binding modes were analyzed comparatively for the pre- and post-MD simula-
tions. Binding mode analysis was done based on whether the compounds maintained their
poses and interactions with the residues in the binding site pockets after the simulations.
This was evaluated using RMSD resulting from superimposition of the complexes, visual
inspection and intermolecular interactions via LigPlot+.

https://cgenff.umaryland.edu/
https://cgenff.umaryland.edu/
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4. Conclusions

The study utilized cheminformatics techniques to identify six potential anti-SARS-COV-2
compounds from an integrated compound library made up of natural products from Africa,
machine learning-based studies and drugs undergoing clinical trials. The compounds were
screened against the binding pockets of two putative drug targets, namely RBD of the spike pro-
tein and the Mpro. The six potential lead compounds, namely NANPDB2245, NANPDB2403,
fusidic acid, ZINC000095486008, ZINC0000556656943 and ZINC001645993538 had binding
energies ranging from −6.9 kcal/mol to −8.2 kcal/mol and 7.2 kcal/mol to −8.0 kcal/mol
against the Mpro and RBD of spike protein, respectively. Additional molecular dynamics
simulations coupled with MM/PBSA calculations reinforced the potential inhibition of the
two SARS-CoV-2 therapeutic targets. These identified druglike biomolecules have good phar-
macological profiles with insignificant toxicity. The compounds were also predicted to have a
high propensity in inhibiting viral entry and replication. The predicted scaffolds could form
the basis for the de novo design of the next-generation SARS-CoV-2 compounds for clinical
evaluations. Potentially novel critical binding residues were identified that could help in the
design of new inhibitors. The studies are computational and would therefore need in vitro
studies to corroborate the findings.

Supplementary Materials: The following are available online. Figure S1: Cartoon representation of RBD
in complex with: (a) NANPDB2245 (helioscopinolide B), (b) ZINC000095486008, (c) ZINC001645993538,
and (d) Oxymetholone. Figure S2: Binding mode representation and LigPlot+ characterization of:
(a) Mpro and NANPDB2403 before MD simulation (pre-MD), (b) Mpro and NANPDB2403 after MD
simulation (post-MD), (c) Mpro and ZINC95486008 before MD simulation (pre-MD), (d) Mpro and
ZINC95486008 after MD simulation (post-MD), (e) RBD and NANPDB2403 before MD simulation (pre-
MD), (f) RBD and NANPDB2403 after MD simulation (post-MD), (g) RBD and ZINC95486008 before
MD simulation (pre-MD), and (h) RBD and ZINC95486008 after MD simulation (post-MD). Figure S3:
Two-dimensional diagram of the RBD–ligand interaction generated using LigPlot+. (a) Interaction
profile of the RBD-NANPDB2245 complex, and (b) Interaction profile of the RBD-ZINC000095486008
complex. Figure S4: Graphs of the RMSD, RMSF and radius of gyration of the RBD–ligand com-
plexes generated over a 10 ns molecular dynamics simulation using GROMACS. (a) RMSD versus
time graph of the RBD–ligand complexes, (b) Analysis of the RMSF trajectories of the residues of
the RBD–ligand complexes, and (c) Rg versus time graph of the RBD–ligand complexes. Figure S5:
MM/PBSA plot of the binding free energy contribution per residue of the protein-ligand complexes
(a) Mpro-Remdesivir, (b) Mpro-NANPDB2245, (c) Mpro-NANPDB2403, (d) Mpro-fusidic acid, (e) Mpro-
ZINC000055656943, (f) Mpro-ZINC001645993538, (g) Mpro-oxymetholone, (h) RBD-Remdesivir, (i) RBD-
NANPDB2245, (j) RBD-NANPDB2403, (k) RBD-fusidic acid, (l) RBD-ZINC000095486008, (m) RBD-
ZINC000055656943, (n) RBD-ZINC001645993538, and (o) RBD-Oxymetholone. Table S1: The binding
energies and intermolecular interactions between the hits and Mpro as well as RBD.
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