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Abstract

Background: The number of panicles per plant, number of grains per panicle, and 1000-grain weight are important
factors contributing to the grain yield per plant in rice. The Rice Diversity Panel 1 (RDP1) contains a total of 421
purified, homozygous rice accessions representing diverse genetic variations within O. sativa. The release of High-
Density Rice Array (HDRA, 700 k SNPs) dataset provides a new opportunity to discover the genetic variants of
panicle architectures in rice.

Results: In this report, a new method genome-phenome wide association study (GPWAS) was performed with 391
individuals and 27 traits derived from RDP1 to scan the relationship between the genes and multi-traits. A total of
1985 gene models were linked to phenomic variation with a p-value cutoff of 4.49E-18. Besides, 406 accessions
derived from RDP1 with 411,066 SNPs were used to identify QTLs associated with the total spikelets number per
panicle (TSNP), grain number per panicle (GNP), empty grain number per panicle (EGNP), primary branch number
(PBN), panicle length (PL), and panicle number per plant (PN) by GLM, MLM, FarmCPU, and BLINK models for
genome-wide association study (GWAS) analyses. A total of 18, 21, 18, 17, 15, and 17 QTLs were identified tightly
linked with TSNP, GNP, EGNP, PBN, PL, and PN, respectively. Then, a total of 23 candidate genes were mapped
simultaneously using both GWAS and GPWAS methods, composed of 6, 4, 5, 4, and 4 for TSNP, GNP, EGNP, PBN,
and PL. Notably, one overlapped gene (Os01g0140100) were further investigated based on the haplotype and gene
expression profile, indicating this gene might regulate the TSNP or panicle architecture in rice.

Conclusions: Nearly 30 % (30/106) QTLs co-located with the previous published genes or QTLs, indicating the
power of GWAS. Besides, GPWAS is a new method to discover the relationship between genes and traits, especially
the pleiotropy genes. Through comparing the results from GWAS and GPWAS, we identified 23 candidate genes
related to panicle architectures in rice. This comprehensive study provides new insights into the genetic basis
controlling panicle architectures in rice, which lays a foundation in rice improvement.
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Background
Rice is an important cereal for people in 39 countries
around the world, particularly in Asia, Latin America,
and parts of Africa. In Asia alone, 2.7 billion people take
rice as their staple food [1]. Yield increasing is an im-
portant goal in the rice improvement process, which
could be divided into three major components - number
of panicles per plant, number of grains per panicle, and
1000-grain weight [2]. Besides, the yield is also corre-
lated to plant height, panicle length, seed setting rate, etc
[3]. Several genes have been reported regulating the
grains per panicle in rice, including Gn1a [4], GNP1 [5],
GAD1 [6], An-1 [7], OsCBL8 [8], OsDim1 [8],
OsMADS18 [9], PAY1 [10], and SAPK2 [11]. Gibberellins
(GAs) and cytokinins play antagonistic roles in modulat-
ing the activity of the reproductive meristem. Up-
regulated cytokinin activity leads to increased grain
number, while GAs negatively affects meristem activity.
The Gn1a encodes cytokinin oxidase/dehydrogenase,
which can degrade the phytohormone cytokinin. De-
creased expression of OsCKX2 will lead to the accumula-
tion of cytokinins in inflorescence meristems, and
increase of the number of reproductive organs, resulting
in an increased grain yield [4]. Whereas the GNP1 is in-
volved in GA biosynthesis. When the GNP1 was up-
regulated, the activity of cytokinin was increased because
of a KNOX-mediated transcriptional feedback loop,
resulting in an increased grain number and grain yield in
rice [5]. Moreover, OsOAT [12] and LSSR1 [13] are two
reported genes regulating the seed setting rate in rice.
OsOAT is associated with floret development and seed
setting rate in rice [12] and LSSR1 [13] regulates seed
setting rate through enhancing fertilization in rice. SD1
is also a GA biosynthetic gene, regulating plant height
through manipulating the level of gibberellin in plants
[14]. OsSPL16 could increase the yield by promoting
grain filling in rice [15]. GS3 is a major gene regulating
the grain size in rice grain [16], which has been used to
improve yield with the CRISPR-Cas9 system [17].
Genome-wide association study (GWAS) is an efficient

method to map QTLs or genes related to target traits and
has been successfully applied in many plants, including
Arabidopsis [18], maize [19], soybean [20], rice [21], etc.
The general linear model (GLM) and mixed linear models
(MLM) are two univariate models to perform GWAS ana-
lysis that have successfully mapped several trait-associated
genes [22, 23]. Alternative methods such as Fixed and ran-
dom model Circulating Probability Unification (Farm-
CPU) [24] and Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) [25]
are multivariate methods to reduce the false-positive rate
and increase the statistic power. A previous study reported
that using the univariate and multivariate in a combined
way could increase the mapping efficiency of QTLs [26].

As a novel algorithm, Genome-phenome wide associ-
ation study (GPWAS) has been developed to identify
the links between genes and quantitative phenotypic
variations via a multi-trait multi-SNP framework [27].
In general, GWAS scans the variation of the SNPs cor-
related to the divergence of target traits, while GPWAS
is a reverse process compared to GWAS. GPWAS uses
phenotypic traits as a matrix and evaluates the relation-
ship between multi-trait and gene models and then the
best-fit gene model was selected associated with the
multiple phenotypes. GPWAS has been successfully ap-
plied in Arabidopsis and maize [27], but no reported in
rice by far.
The Rice Diversity Panel 1 (RDP1) contains a total of

421 purified, homozygous rice accessions representing a
diverse genetic variation within O. sativa [28]. Fifteen
yield-related traits have been studied in RDP1 with
MLM using GWAS, and more than 100 overlapped
QTLs were selected via comparing the GWAS results
with bi-parental populations [29]. In this study, through
a combination of GWAS and GPWAS methods, we
identified QTLs or genes associated with TSNP, GNP,
EGNP, PBN, PL, and PN. Besides, the overlapped gene
Os01g0140100 was further investigated by haplotype
analysis based on non-synonymous SNPs. Haplotype C
(Pro4Ser501) exhibits the highest number of spikelets
and grain number per panicle among the four types of
haplotypes. Moreover, gene expression patterns mani-
fested that this gene is highly expressed in pre-
emergence inflorescence, seed-5 DAP (seed 5 days after
pollination), and pistil tissues. We suggested that
Os01g0140100 is a candidate gene linked to the yield by
regulating the florets per panicle in rice.

Results
Population structure and linkage disequilibrium
Principal component analysis (PCA) was performed
based on the 411,066 SNPs. Five conceivable subpopu-
lations were separated by the first three principal com-
ponents (PCs) (Fig. 1a-c), explaining over 45% of the
genetic variation. The PC1 separated IND, Japonica
(TEJ and TRJ), and ARO subpopulations (31.20%), the
PC2 (7.13%) distinguished the AUS and IND varieties,
and the PC3 (6.90%) separated TEJ and TRJ varietal
subgroups. Moreover, the kinship analysis (Supplemen-
tary Fig. 1) was performed to study the relativeness be-
tween the varieties. The results exhibited that the
population could be divided into five groups (the red
line in Supplementary Fig. 1), which was corresponding
to the PCA analysis. The linkage disequilibrium (LD)
decay of the physical distance between SNPs in all pop-
ulations occurred at 250 kb when the pairwise coeffi-
cient of determination dropped to half of its maximum
value (r2 = 0.107). The IND subgroup exhibited the
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most rapid LD decay and ARO displayed the most ex-
tended LD (Fig. 1d).

Genome-Phenome Wide Association Study (GPWAS)
Based on the filtering criteria in the method section, 23,
623 of 37,860 annotated genes containing 95,324 SNPs
were left for the GPWAS study. The majority of genes
(22,233, 94.12%) possessed less than 10 SNPs, while
1390 (5.88%) genes harbored more than 10 SNPs (Sup-
plementary Fig. 2). The genome-phenome wide associ-
ation study was performed by GPWAS software
(https://github.com/shanwai1234/GPWAS). The de-
tailed information of 1985 selected genes related to
TSNP, GNP, EGNP, PBN, PL, or PN was listed in Sup-
plementary Table 2. Based on the permutation analysis,
a p-value cutoff was 4.49E-18, resulting in an estimated
FDR of < 2.00E-3.

Notably, the most significant gene (OsROS1,
Os01g0218032) with a p-value of 3.79E-59 encodes a
DNA demethylase that could remove 5-methylcytosine.
This locus was identified associated with 12 traits in-
cluding EGNP, HULGRLGWDRO, CULMHAB, PTHT,
FLFLG, FLFWD, PL, DTHD, TSNP, GNP, PN, and PBN.
A previous study reported that loss-of-function muta-
tions of this gene showed sterile or with extremely low
seed setting rate at around 6% [30]. Sterile or lower grain
setting rate is related to EGNP, DTHD, TSNP, and
GNP, which was consistent with our GPWAS study. An-
other gene (OsCOM1, Os06g0613400) was detected to
be associated with DHULGRWD, PTHT, EGNP, TSNP,
GNP, FLFWD, LFLPUBES, PN, HHULGRWT, and
CULMHAB traits with a significant p-value of 1.10E-50.
OsCOM1 plays a key role in regulating recombination in
rice meiosis [31]. Oscom1–1 mutant caused entangled

Fig. 1 Genetic structure of the rice diversity panel 1. Principal component analysis shows the genetic variation in the rice accessions with (a) first
and second principal components (PCs), (b) second and third PCs, and (c) first and third PCs. (d) Genome-wide average linkage disequilibrium
decay estimated of the whole population and subpopulations
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chromosome mass in metaphase I, producing unequal
segregation of chromosomes to the two daughter cells
anaphase I, resulting in a sterile architecture. This
phenotype was also related to the EGNP, GNP, etc. The
Ghd7.1 (Os07g0695100) was proved to be related to
spikelet per panicle, plant height, and heading date in
rice [32], and this gene was identified associated with
PTHT, PBN, GNP, DHULPROTCN, HULGRLGWDRO,
LFLPUBES, AMYCN with the p-value of 1.41E-20. All of
the above genes demonstrated the statistical power of
the GPWAS method.

Genome-Wide Association Study (GWAS)
All the six traits were analyzed using two univariate
GWAS (GLM and MLM) and two multivariate GWAS
(FarmCPU and BLINK) methods to identify QTLs. The
PCA matrix was used in the GLM approach to correct
the population structure. Both the PCA and relatedness
matrixes were incorporated in the MLM model to re-
duce the false-positive rate. FarmCPU uses both the
fixed-effect model and the random effect model itera-
tively to control false positives and avoid the over-fitting
problem. BLINK approximates the maximum likelihood
using Bayesian Information Content (BIC) in a fixed-
effect model to reduce the amount of calculation. All the
detailed Manhattan and quantile-quantile figures were
depicted in Supplementary Figs. 3, 4, 5, 6, 7, and 8.
Using the threshold mentioned in method, 18, 21, 18,
17, 15, and 17 QTLs were identified associated with
TSNP, GNP, EGNP, PNB, PL, and PN, respectively (Fig.
2).
Among the 18 unique loci correlated with TSNP

tightly, 13, 1, 4, and 5 QTLs were detected by GLM,
MLM, FarmCPU, and BLINK method, respectively

(Supplementary Table 3 and Supplementary Fig. 3). S4_
30920978 was located 18.19 kb away from the previously
reported gene OsERF77 (ETHYLENE RESPONSE FAC-
TOR 77), detected only using the GLM method. Overex-
pression of OsERF77 led to a reduction in yield by
decreasing the biomass and the number of seeds in the
transgenic lines [33]. The S5_23732692 was a significant
QTL located on chromosome 5 identified by three
methods, including GLM, FarmCPU, and BLINK. This
locus is located at the reported gene EUI1 (ELON-
GATED UPPERMOST INTERNODE 1), encoding a pu-
tative cytochrome P450 monooxygenase and specifically
expressed in young panicles [34]. EUI1 was proved to be
a key regulator controlling the elongation of the upper-
most internode in rice during the heading stage using
overexpression and RNAi technology [34] and a reces-
sive rice eui could increase panicle length [35]. Although
there was no study reported the relationship between
EUI1 and total spikelets number per panicle, we sug-
gested that EUI1 was a candidate gene regulating spike-
lets per panicle from GWAS analyses, which could be
explained by extending the length of panicles. Another
QTL S6_7637690 located on chromosome 6 was de-
tected solely by the GLM method with a p-value of
5.25E-10. This locus was only 11.30 kb away from
OsPFPB. OsPFPB contains a pyrophosphate-fructose 6-
phosphate 1-phosphotransferase (PFP) beta subunit,
which plays a key role in carbon metabolism during rice
grain filling. A defective endosperm mutant pfp1–3
showed a slower grain-filling rate, reduced 1000-grain
weight, decreased number of panicles per plant, lower
plant height, and declined grain yield per plant [36].
Nevertheless, no significant difference was detected in
grain number per panicle [36]. The S7_28205415 locus

Fig. 2 QTLs associated with six traits of total spikelets number per panicle (TSNP), empty grain number per panicle (EGNP), grain number per
panicle (GNP), primary branch number (PNB), panicle length (PL), and panicle number per plant (PN) with four different methods
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was detected by GLM, MLM, and FarmCPU methods
with the p-value of 2.16E-12, 6.54E-08, and 1.13E-09, re-
spectively. Besides, this was the only QTL detected with
MLM function. This locus located at the 28,205,415 bp
on chromosome 7 and a previous reported gene
OsCOL13 posits 17.57 kb downstream of the QTL. The
OsCOL13 gene is a CONSTANS-like transcriptional ac-
tivator and negatively mediates the flowering in rice
through manipulating OsphyB and Ehd1 [37]. Another
QTL S7_28316717 was only detected by the BLINK
method. This locus lied on 17.12 kb downstream of a re-
ported gene FZP [38]. The FZP gene encodes an ERF
(ethylene-responsive factor) transcription factor, which
regulates the transition from spikelet to floret meristem.
The loss-of-function mutant showed abnormal on devel-
oping florets without impacting primary rachis-branches
[38]. Moreover, three QTLs were reported in the bi-
parental population covering the region of OsERF77,
EUI1, and OsPFPB gene, respectively (Supplementary
Table 3). Another QTL qSPBp10–2 was reported associ-
ated with number of spikelets on primary branches per
panicle on chromosome 10, which was located in the
same physical region of S10_11692566. In addition, nine
novel QTLs linked with TSNP were identified by GLM.
One unique QTLs (S1_37112077) were detected by
FarmCPU. Three new loci (S7_24847205, S8_18445162,
and S11_12703414) associated with TSNP were discov-
ered by BLINK.
A total of 21 unique QTLs were picked out to be asso-

ciated with GNP. Sixteen, six, and three QTLs were de-
tected by GLM, FarmCPU, and BLINK method,
respectively (Supplementary Table 3 and Supplementary
Fig. 4). No loci were discovered by MLM due to the
overcorrection with PCA and kinship matrix. Five loci
(S4_30920978, S5_23732692, S6_7637690, S7_28208986,
and S6_28075474) were mapped to previously reported
genes (OsERF77, EUI1, OsPFPB, OsCOL13, and DEP3
[33, 34, 36, 37, 39] related to seed, panicle, or flowering
development. A previously reported gene DEP3 is lo-
cated 33.76 kb downstream of the S6_28075474. The
DEP3 encodes a patatin-related phospholipase A, playing
a key role in regulating panicle length, grain shapes, and
grain number per panicle [39]. Four new loci (S1_
27584958, S10_11692566, S12_4022340, and S12_
23573438) were identified by the FarmCPU method, two
(S1_27584958 and S12_4022340) of which were mapped
by FarmCPU algorithm exclusively. The S10_11692566
was detected by BLINK and S12_23573438 was identi-
fied by the GLM method as well. Also, two more novel
loci (S1_30211939 and S11_26117686) were discovered
by BLINK.
Among the 18 unique QTLs associated with EGNP,

14, 1, 6, and 4 loci were discovered by GLM, MLM,
FarmCPU, and BLINK methods, respectively

(Supplementary Table 3 and Supplementary Fig. 5). A
QTL (S3_24818570) located on chromosome 3 was
identified by GLM with a p-value of 1.32E-09. This locus
stood on merely 0.53 kb downstream of an Ornithine δ-
aminotransferase gene named as OsOAT. OsOAT has an
impact on reutilizing nitrogen through regulating argi-
nase activity and the loss-of-function mutation exhibits
abnormal seed shape and lowers seed setting rate [12].
S4_4674594 was another locus related to EGNP recog-
nized by GLM and FarmCPU methods. This QTL was
located in the 4,674,594 bp on chromosome 4, about
67.18 kb away from OsBOR4. OsBOR4 is an active efflux
transporter of boron, which regulating pollen germin-
ation and tube elongation in rice [40]. Under the defi-
ciency of boron, the mutant osbor1–1 plants showed
significantly smaller architecture with immature seeds
compared to the wild-type at the mature period [41]. Be-
sides, four QTLs (S1_35375938, S2_8170035, S6_
3547612, and S11_5603525) were also reported associ-
ated with spikelet fertility in the Q-TARO database
(http://qtaro.abr.affrc.go.jp/) (Supplementary Table 3).
Moreover, eight novel QTLs related to EGNP were iden-
tified by GLM. Among them, S5_18792970, S7_
25286267, and S9_6774209 were also mapped by Farm-
CPU or BLINK model. The S6_3547612 was an unique
QTL detected only by FarmCPU, S1_23581796 and S9_
6774209 were two novel QTLs mapped by the BLINK
model solely.
Seventeen unique QTLs were associated with PBN, 11,

1, 6, and 5 QTLs were identified by GLM, MLM, Farm-
CPU, BLINK methods (Supplementary Table 3 and Sup-
plementary Fig. 6). S3_1337624 was a significant QTL
detected by GLM, MLM, and BLINK with a p-value of
4.63E-12, 1.35E-08, and 5.08E-16. A previously reported
gene TAD1 located only 6.60 kb upstream of this locus.
TAD1 is an activator of the anaphase-promoting complex/
cyclosome (APC/C) complex. The tad1 mutant exhibited
a reduced plant height and increased tiller number com-
pared to the wild type [42]. The distance between S5_
1405289 and S5_1408688 was merely 3.40 kb, which could
be considered as a single locus. This locus was detected by
GLM, FarmCPU, and BLINK. OsSIZ1 was only 18.25 kb
away from this QTL. Loss-of-function ossiz1 mutation
presented a significant decrease in root length, plant
height, biomass, panicle length, number of primary rachis
branches, and 1000-grain weight [43]. S9_19466707 is an-
other QTL discovered by the GLM method with over-
lapped with previously reported genes LGD1 [44]. LGD1-
RNAi-4 and LGD1-RNAi-17 showed reduced tiller num-
ber, panicle length, the number of primary panicle
branches, the number of grains per plant, and seed set
percentages in comparison with wild type [44]. Through
comparing the results with the Q-TARO database, the
S4_31385963 was remapped by a previous study
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associated with the number of primary branches per pan-
icle (Supplementary Table 3). Twelve novel QTLs were
detected in the current study associated with PBN with
four different methods.
Fifteen unique QTLs were significantly associated with

PL in the current study. Six of them were identified by
the GLM method and none of them was detected by
MLM. In addition, 10 of them were detected by Farm-
CPU, and three were identified by the BLINK method
(Supplementary Table 3 and Supplementary Fig. 7). Not-
ably, S10_13359353 was discovered by GLM and Farm-
CPU simultaneously with the p-value of 3.80E-08 and
9.60E-09. This locus was nearby the reported gene
OsBRD2, which is brassinosteroid (BR) biosynthesis. The
brd2 mutation showed a reduced plant height, shortened
leaf sheaths, malformed panicles, reduced numbers of
spikelets and rachis branches, and shorter first and sec-
ond rachis branches compared to the wild type [45]. In
addition, QTL S7_19447373 shared the region with a
QTL sp2(t) for panicle length.
As for PN, a total of 17 QTLs were identified. Among

them, 11, 1, 8, and 3 were detected by GLM, MLM, Farm-
CPU, and BLINK, respectively (Supplementary Table 3 and
Supplementary Fig. 8). Three loci (S6_28002112, S7_
25328075, and S9_16361023) were remapped to reported
genes. The S6_28002112 was detected by GLM, FarmCPU,
and BLINK with the p-value of 3.50E-11, 1.73E-08, and
4.58E-13, just 107.13 kb away from a previously reported
gene DEP3 [39]. The S7_25328075 and S9_16361023 were
only detected by GLM with the p-value of 5.13E-10 and
6.13E-11, which are consistent with the reported gene EP2/
SRS1 and DEP1. The EP2/SRS1 is predominantly expressed
in vascular bundles, and the protein is localized to the
endoplasmic reticulum [46]. The srs1 mutants showed sig-
nificantly reduced panicle number per plant compared to
wild type and the loss-of-function also causes reduced grain
length, width, thickness, as well as grain weight [47]. The
DEP1 encodes a phosphatidylethanolamine-binding protein
(PEPB) like domain protein, which is highly similar to the
N-terminus of GS3. NIL-dep1 (gain-of-function mutation)
represented a greater number of grains per panicle, shorter
inflorescence internodes, and a greater number of both pri-
mary and secondary panicle branches compared to NIL-
DEP1 [48]. Besides, S2_24094693 shared the same region
with qPN2, which was associated with panicle number [49].
Plus, six novel QTLs were identified by GLM, three of them
were also detected by FarmCPU or BLINK method. Four
and one unique new QTLs were discovered by FarmCPU
and BLINK, separately.
To explore potential genes that may regulate TSNP,

EGNP, GNP, PNB, PL, and PN in rice, we extracted
genes in the local LD block. The detailed information
of genes in the block was listed in Supplementary
Table 4.

Mining putative genes controlling the number of grain
number per panicle
A total of 65, 215, 91, 42, 11, and 25 genes are located
in the LD block for TSNP, GNP, EGNP, PBN, PL, and
PN traits, respectively, from GWAS analyses (Supple-
mentary Table 3). Then, we compared these genes to
the results detected by GPWAS. A total of 6 (TSNP), 4
(GNP), 35(EGNP), 4 (PBN), and 4 (PN) genes were
overlapped from the two distinct studies (Supplemen-
tary Table 5). Strikingly, we found a gene
(Os01g0140100) was detected by GWAS (p-value =
3.21E-10) and GPWAS (p-value = 9.01E-19) related to
TSNP simultaneously. In the GWAS analysis, QTL (S1_
2122019) was identified significantly associated with
TSNP using the GLM method (Fig. 3a). Then a 6.35 LD
block (Fig. 3b) was defined by the solid spine method.
A unique gene (Os01g0140100) is located in this region.
Besides, Os01g0140100 was detected to be related to
PN, TSNP, DHULGRLG, and EGNP traits by GPWAS
(Supplementary Table 2). A total of three SNPs (1_
2120529, 1_2122019, and 2,122,036) were detected in
this gene, and two (1_2120529 and 1_2122019) of them
could cause missense mutations identified by SnpEFF
software (Supplementary Table 7). The first SNP lo-
cates on the eleventh coding sequence of
Os01g0140100, changed nucleotide from C to A that re-
sulted in the fourth amino acid altered from Proline
(Pro) to Histidine (His). The second SNP posits at the
1501st place of the Os01g0140100 coding sequence, the
variation of SNP (A to T) led to the mutation of the
501st amino acid from Threonine (Thr) to Serine (Ser).
Besides, we searched the promoter of this gene on
PlantPromoterDB website (http://ppdb.agr.gifu-u.ac.jp/
ppdb/cgi-bin/index.cgi). The results showed that two
Y-patch promoter elements located in the upstream
2000 bp (Supplementary Table 8), while no SNP was
found in the two promoter elements. Therefore, we de-
fined four types of haplotypes (Hap.A [His4Ser501],
Hap. B [His4Thr501], Hap. C [Pro4Ser501], and Hap. D
[Pro4Thr501]) based on the two non-synonymous SNPs
(Fig. 3c), the heterozygous individuals were removed
due to failed classification. Then, we compared the dis-
tribution of four haplotypes in ARO, AUS, IND, TEJ,
and TRJ subpopulations (Fig. 3d). In general, Hap. C
and Hap. D were predominant haplotypes in the RDP1
population, with haplotype frequency of 50.86% (178/
350) and 42.57% (149/350), separately. In the ARO sub-
population, only three haplotypes (Hap.B, Hap. C, and
Hap.D) were observed. The Hap. B didn't exist in the
AUS subgroup. The percentages of Hap. C and Hap. D
in IND, TEJ, and TRJ were significantly diversified. The
ratio of Hap. C (45.57%) and Hap. D (40.51%) was simi-
lar in IND. Notably, the percentage of Hap. D in the
TEJ subpopulation reached 89.11%, accounting for
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barely 5.83% in TRJ. In contrast, the ratio of Hap. C in
the TRJ subgroup achieved 88.35%, while the value in
TEJ was only 6.93% (Supplementary Table 6). Such sig-
nificant differences in the two Japonica rice subpopula-
tions (TEJ and TRJ) suggested the distinct evolutionary
patterns, where intensive studies needed to address the
mechanisms. Particularly, OsMYB80 was reported to
mediate anther development and pollen fertility by tar-
geting multiple biological pathways [50], which could
directly regulate Os01g0140100 revealed by yeast one-
hybrid assay. All the above hinted that Os01g0140100 is
a candidate gene regulating spikelets per panicle in rice.

Accordingly, we compared the phenotypic differences
of TSNP between the four haplotypes within the whole
population. The findings revealed significant differences
between Hap. A and Hap. C, Hap. B and Hap. C, Hap.D
and Hap. C with the p-value of 0.014, 0.01, and 4.8E-16,
respectively, as for TSNP values (Fig. 4a). The results in-
dicated that rice plants with Hap. C haplotype of
Os01g0140100 highly enhanced the number of spikelets
per panicle in contrast to other haplotypes. Considering
the number of the haplotypes in each subpopulation, we
next compared the differences between Hap. C and Hap.
D of the total number of spikelets per panicle for
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Fig. 3 Identification of candidate gene associated with total spikelets number per panicle (TSNP). a Manhattan plot of TSNP with general linear
model method. The red arrow indicates the interested QTL (S1_2122019) region. b Zoom in Manhattan plots of S1_2122019 and linkage
disequilibrium (LD) heatmap (bottom). LD block was defined by the solid spine method. The gene structure is shown in the middle, the yellow,
pink, and orange color indicate coding sequence (CDS), untranslated region (UTR), and intergenic regions, respectively. c Haplotype analysis of
two non-synonymous SNPs in Os01g0140100. d Haplotype distribution in the different subgroups of the RDP1

Zhong et al. BMC Genomics           (2021) 22:86 Page 7 of 13



different subgroups and observed significant differences
from the AUS, IND, and TEJ subgroups (Fig. 4b). More-
over, we also performed comparisons in GNP (Fig. 4c
and d) and EGNP (Fig. 4e and f), and similar results
were obtained. Then, we calculated the seed setting rate
(SSR) through dividing GNP by TSNP, and no distinct
difference was found in the whole population (Fig. 4g).
On the contrary, there was a significant difference in
IND subgroups with a p-value at 0.01 level (Fig. 4h).
Furthermore, we analyzed the gene expressing pattern

of Os01g0140100 in 9 different tissues. We found
Os01g0140100 highly expresses in pre-emergence inflor-
escence, seed-5 DAP (seed 5 Days After Pollination), and

pistil tissues. While in the anther, endosperm, and
leaves, the expressing level is relatively lower than in the
other tissues (Supplementary Fig. 9).

Discussion
In this study, four different methods of GWAS were
used to identify the QTLs associated with TSNP, GNP,
EGNP, PBN, PN, and PL. The results showed that GLM
identified more QTLs compared to MLM, FarmCPU,
and BLINK. However, the GLM method employs the
first three PCs as covariates, which may have a higher
rate of false-positive. MLM uses both PCs and kinship
matrix to reduce the false-positive rate, which

Fig. 4 Boxplot of the 4 traits phenotypic variation in the whole population and subgroups. a Total spikelets number per panicle (TSNP) in the
whole population. b TSNP in subgroups. c Grain number per panicle (GNP) in the whole population. d GNP in subgroups. e Empty grain number
per panicle (EGNP) in the whole population. f EGNP in subgroups. g Seed setting rate (SSR) in the whole population. h SSR in subgroups. The
bold lines in the middle represent the median values, the box edges represent the 0.25 and 0.75 quantiles, whiskers represent 1.5 times the
interquartile range of the trait data, and points represent outliers. Differences between haplotypes were statistically analyzed using Wilcoxon test
by R (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001). The numbers of plants carrying Hap. a, Hap. b, Hap. c, and Hap. d are shown in
Supplementary Table 6
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sometimes causes overcorrection and could result in a
reduced detecting power. Only a single QTL was discov-
ered for TSNP, EGNP, PBN, and PN with MLM, and
none QTL was identified for GNP and PL. FarmCPU
and BLINK are two alternative methods to detect QTLs,
which have higher statistical power and less false posi-
tives. EUI1 and OsCOL13 were simultaneously detected
to be associate with TSNP by GLM and FarmCPU. EUI1
and OsPFPB were identified related to GNP using GLM
and FarmCPU. OsBOR4 was discovered related to EGNP
by GLM and FarmCPU. All of the above verified the
power of GLM and FarmCPU. Meanwhile, OsERF77,
OsCOL13, OsOAT, and EP2 were recognized respectively
related to TSNP, GNP, EGNP, and PN just by the GLM
method. These three cases implied that although several
alternative models were developed, the statistical power
of GLM should not be ignored.
A total of 30 QTLs identified in the current study

shared the same region as the previous study (Supple-
mentary Table 3). In which, 20 genes and 12 QTLs were
reported in GWAS or bi-parental populations. Through
comparing the candidate genes mapped by GWAS and
GPWAS, we identified 23 candidate genes related to rice
panicle architectures, with 6, 4, 5, 4, and 4 associated
with TSNP, GNP, EGNP, PBN, and PN, respectively.
Among these candidate genes, all of them were identi-
fied by the GLM method except for the Os07g0669700
gene. These results indicated that the GPWAS has more
consistent results with the GLM method. Moreover,
some of the homologous of the co-mapped genes have
been reported related to grain number or yield in rice.
On chromosome 7, a candidate gene (Os07g0669700)
was identified related to TSNP by GWAS which was a
potassium transporter 7 (OsHAK7). Besides, this gene
was also associated with TSNP, PBN, DHULGRLG,
FLFWD, DHULGRWD, AWNPLU using GPWAS. A
homologous Os04g0401700 (OsHAK1) has been reported
regulating yield in rice. The loss-of-function mutant
oshak1 showed a significant decrease in K concentration,
reduced length of root and shoot, grain yield, panicle
length, and seed setting rate compared to wild type [51].
The Os08g0159900 (OsRH42) gene is a homologous gene
to Os08g0416100 with an E-value of 2E-58. The OsRH42
RNAi knockdown and overexpression lines were re-
ported to display reduced panicle number, tiller number,
panicle length, fewer seeds, and lighter seeds [52].
With the rapid development of automatic, multifunc-

tional, and high-throughput phenotypic technologies,
phenomics has become a new research area and provide
a new scheme to develop new algorithms to study the
relationship between markers and traits. Genome-
Phenome Wide Association Study is recently designed
to discover the relationship between genotype and
multi-trait and has been employed to Arabidopsis and

maize successfully [27]. This method focuses on the bio-
logical function to identify the potential multi-trait asso-
ciated gene models. In addition to the overlapped gene
Os01g0140100 associated with TSNP identified by both
GWAS and GPWAS, OsROS1 and OsCOM1 were an-
other two genes discovered by GPWAS that related to
EGNP, TSNP, GNP, and other traits, which were in line
with the previous study [30, 31]. Besides, Os01g0801700
(OsGCD1) was identified by GPWAS that related to
HULGRWD, PTHT, DHULPROTCN, PL, FLFLG,
HULGRVOL, DHULGRLG, TSNP, and LFLPUBES. This
gene has been reported to play a vital role in rice fertility
[53]. Os02g0809800 (OsPHO1;2) is a phosphate trans-
porter associated with HULGRWD, PTHT, FLFWD,
DHULGRCL, PBN, PL, and TSNP according to GPWA
S. The ospho1;2 mutant showed significantly lower plant
height, decreased panicle number, reduced grain number
per panicle, declined 1000-grain weight, and yield per
plant in rice [54]. Additionally, WX1 (Os06g0133000)
[55] is a well-studied gene controlling starch synthesis in
rice. Using the GPWAS algorithm, this gene was found
to be tightly (p-value = 4.14E-52) associated with AMYC
N, which is consistent with previous studies. On the
other hand, there are some limitations in GPWAS.
Firstly, the GPWAS only considers the variant within
genes, which ignores much potentially useful informa-
tion on intergenic regions, such as the transposable ele-
ments (TE) and conserved non-coding sequence (CNS)
regions. Secondly, the demand for SNP numbers is rela-
tively higher than GWAS to cover more genes. In this
study, we used a total of 411,066 SNPs which covered
62.40% (23,623/37,860) genes in rice. Taking GS3 [16]
and GW5 [56] as an example, GS3 is a well-studied gene
controlling grain length and grain size in rice, which is
also identified to be associated with DHULGRLG,
CULMHAB, and ALKDIG with a p-value of 2.73E-39
(data was not shown). However, there was no SNP found
in the GW5 gene, resulting in a failed association of
GW5 using GPWAS. Deep resequencing data rather
than SNP array data could be more suitable for the
GPWAS approach to capture as much as gene regions.

Conclusions
Our study provides new insights into TSNP, GNP,
EGNP, PBN, PL, and PN regulation in rice using both
GWAS and GPWAS approaches. A novel candidate gene
(Os01g0140100) was mapped associated with TSNP.
Through defining the haplotypes based on the two non-
synonymous SNPs, we found significant differences be-
tween the Hap. C and Hap. D in the whole population
and subgroups. This finding lays the foundation for
maker-based improvement in rice. In-depth studies are
needed to validate the function of this gene.
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Methods
Plant materials
The rice diversity panel 1 (RDP1) consists of 421 puri-
fied homozygous varieties [28] including indica (IND),
aus (AUS), tropical japonica (TRJ), temperate japonica
(TEJ), and aromatic (ARO) subgroups. Among them,
406 individuals have been genotyped by High-Density
Rice Array [57], which was used in this study. The High-
Density Rice Array (HDRA, 700 k SNPs) dataset for
RDP1 was obtained from the Rice Diversity website
(http://www.ricediversity.org/data/). The detailed infor-
mation of the varieties was listed in Supplementary
Table 1.

Traits related to panicle architecture
A total of six traits were analyzed in the current study,
including TSNP (total spikelets number per panicle),
GNP (grain number per panicle), EGNP (empty grain
number per panicle), PBN (primary branch number), PL
(panicle length), and PN (panicle number per plant). All
the traits were obtained from the USDA website
(https://www.ars.usda.gov/southeast-area/stuttgart-ar/
dale-bumpers-national-rice-research-center/docs/rice-
diversity-panel-1-rdp1/).

SNP dataset and population structure
Through comparing the samples of genotype and pheno-
type data, 406 individuals were overlapped and remained
for GWAS analysis in total. Firstly, the genotype file was
filtered by PLINK software [58] (minor allele frequencies
≥0.05 and integrity ≥0.6), and 411,066 SNPs were passed
for further study. Sequentially, genotype imputation was
performed for the remaining 411,066 SNPs with Beagle
5.0 [59]. The PCA and kinship were used to evaluate the
population structure with GAPIT software.

Genome-Phenome Wide Association Study (GPWAS)
analysis
For GPWAS analysis, multiple phenotypes are prerequi-
sites. Therefore, we downloaded all the available pheno-
typic data for PDP1 from the USDA website (https://
www.ars.usda.gov/southeast-area/stuttgart-ar/dale-
bumpers-national-rice-research-center/docs/rice-
diversity-panel-1-rdp1/). Fifteen individuals were filtered
out due to the severe missing of phenotypic data. Over-
all, 391 individuals (Supplementary Table 1) with 27
traits (AMYCN [Amylose], ALKDIG [Alkali spreading
value], DHULPROTCN [Protein content], DTHD [Days
to heading], PTHT [Plant height], FLFLG [Flag leaf
length], FLFWD [Flag leaf width], PN [Panicle number
per plant], PL [Panicle length], PBN [Primary branch
number], TSNP [Total spikelets number per panicle],
EGNP [Empty grain number per panicle], GNP [Grain
number per panicle], HULGRLG [Seed length],

HULGRWD [Seed width], HULGRLGWDRO [Seed
length/width ratio], HULGRVOL [Seed volume],
HHULGRWT [100-Seed weight], DHULGRLG [Grain
length], DHULGRWD [Grain width], DHULGRVOL
[Grain volume], CULMHAB [Culm habit], SDSH [Seed
shattering], AWNPLU [Awns], LFLPUBES [Leaf pubes-
cence], HULCL [Hull color], and DHULGRCL [Bran
color]) were collected and the missing values of pheno-
types were further imputed with the median value of
each traits. Based on the annotation file (37,860 genes,
2020-06-03 version) downloaded from The Rice Annota-
tion Project Database (RAP-DB), the SNPs were assigned
into individual genes while those posited intergenic re-
gions were removed. The longest genes were selected for
further study if overlapping was found among those
genes. The genome-phenome wide association study was
performed by GPWAS software [27]. The first three PCs
were used as the covariates to correct the population
structures as well as in GWAS analysis. The top 10% of
genes were extracted from GPWAS results after sorting
the genes’ p-value from low to high for the next step. In
the current study, we focused on TSNP, GNP, EGNP,
PBN, PL, and PN traits. Thus, candidate genes related to
these six traits were kept for further analysis. Fifty times
of permutations were performed to calculate the false
discovery rate (FDR).

Genome-Wide Association Study (GWAS) analyses
GWAS was implemented among the 406 rice varieties in
RDP1 with the 411,066 high-quality SNPs. Univariate
GWAS methods (GLM and MLM) and multivariate
GWAS methods (FarmCPU and BLINK) were employed
to evaluate the trait-SNP associations for the six target
traits (TSNP, GNP, EGNP, PBN, PL, and PN) using the
Genomic Association and Prediction Integrated Tool
(GAPIT) [60]. The first three principal components (PCs)
were used as covariates to correct population structure
due to subpopulations in RDP1. The genome-wide signifi-
cant thresholds of the GWAS (p-value = 1.22E-07) was de-
termined by 0.05/n (n is the number of markers) [61]. The
Manhattan and QQ plots for GWAS were visualized using
the R package ‘qqman’ [62]. LD blocks were defined with
the Solid Spine (SS) method and LD heatmap surrounding
peaks in the GWAS was constructed using “LDBlock-
Show” in the R package [63].

Mining putative genes and annotation of SNPs
The QTLs provide important information for under-
standing the genes regulating the grain number per pan-
icle in rice. To explore candidate genes responsible for
each QTL, we defined local LD with the Solid Spine (SS)
method [64] and extracted all genes in the blocks. Add-
itionally, we compared the genes resulted from GPWAS
with the results from GWAS to narrow down the
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candidate genes. Finally, the SnpEff software [65] was
specified to annotate the effect of the variant for the
overlapped genes between GWAS and GPWAS (Supple-
mentary Table 7).

Expression profile of candidate genes
The expression patterns (normalized in fragments per
kilobase of exon per million mapped reads [FPKM]) of a
putative gene in eight tissues (anther, embryo, endo-
sperm, leaves, pistil, inflorescence, and seed) were down-
loaded from the Rice Genome Annotation Project
website (http://rice.plantbiology.msu.edu/index.shtml)
and transformed with Log2 (FPKM+ 1).
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org/10.1186/s12864-021-07391-x.

Additional file 1: Figure S1. The kinship plot of 406 accessions from
RDP1. Figure S2. The distribution of SNP numbers in genes. Figure S3.
Genome-wide association analysis for total spikelets number per panicle
(TSNP) with general linear model (GLM), mixed linear models (MLM),
Fixed and random model Circulating Probability Unification (FarmCPU),
and Bayesian-information and Linkage-disequilibrium Iteratively Nested
Keyway (BLINK) methods (left). Quantile-quantile plot of each model
(right). Red texts indicate reported genes, blue texts indicate candidate
genes. The horizontal solid red line indicates the Bonferroni-corrected sig-
nificance threshold at -log10(P) = 6.91. Figure S4. Genome-wide associ-
ation analysis for grain number per panicle (GNP) with general linear
model (GLM), mixed linear models (MLM), Fixed and random model Cir-
culating Probability Unification (FarmCPU), and Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK) methods (left).
Red texts indicate reported genes. The horizontal solid red line indicates
the Bonferroni-corrected significance threshold and -log10(P) = 6.91. Fig-
ure S5. Genome-wide association analysis for EGNP with general linear
model (GLM), mixed linear models (MLM), Fixed and random model Cir-
culating Probability Unification (FarmCPU), and Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK) methods (left).
Quantile-quantile plot of each model (right). Red texts indicate reported
genes. The horizontal solid red line indicates the Bonferroni-corrected sig-
nificance threshold at -log10(P) = 6.91. Figure S6. Genome-wide associ-
ation analysis for PBN with general linear model (GLM), mixed linear
models (MLM), Fixed and random model Circulating Probability Unifica-
tion (FarmCPU), and Bayesian-information and Linkage-disequilibrium It-
eratively Nested Keyway (BLINK) methods (left). Quantile-quantile plot of
each model (right). Red texts indicate reported genes. The horizontal
solid red line indicates the Bonferroni-corrected significance threshold at
-log10(P) = 6.91. Figure S7. Genome-wide association analysis for PL with
general linear model (GLM), mixed linear models (MLM), Fixed and ran-
dom model Circulating Probability Unification (FarmCPU), and Bayesian-
information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
methods (left). Quantile-quantile plot of each model (right). Red texts in-
dicate reported genes. The horizontal solid red line indicates the
Bonferroni-corrected significance threshold at -log10(P) = 6.91. Figure S8.
Genome-wide association analysis for PN with general linear model
(GLM), mixed linear models (MLM), Fixed and random model Circulating
Probability Unification (FarmCPU), and Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) methods (left). Quantile-
quantile plot of each model (right). Red texts indicate reported genes.
The horizontal solid red line indicates the Bonferroni-corrected signifi-
cance threshold at -log10(P) = 6.91. Figure S9. Expression pattern of
Os01g0140100 in different tissues. Anther: Anther; Embryo-25 DAP: Em-
bryo 25 Days After Pollination; Endosperm-25 DAP: Endosperm 25 Days
After Pollination; Leaves-20 days: 20 Day Leaves; Pistil: Pistil; Pre-
emergence inflorescence: Early Inflorescence; Post-emergence

inflorescence: Emerging Inflorescence; Seed-5 DAP: Seed 5 Days After Pol-
lination; Seed-10 DAP: Seed 10 Days After Pollination.

Additional file 2: Table S1. The sample list and structure information
of 406 accessions. Table S2. Significant genes detected using GPWAS
and the phenotypes selected for each gene model. Table S3. The QTLs
associated with TSNP, GNP, EGNP, PBN, PL, and PN with four different
methods. Table S4. List of genes located in the LD block for TSNP, GNP,
EGNP, PBN, PL, and PN. Table S5. Overlapped genes related to TSNP,
GNP, EGNP, PBN, PN, and PL using GPWAS and GWAS methods. Table
S6. Distribution of four haplotypes in subgroups. Table S7. Annotation
of all SNPs located in the overlapped genes using SnpEff software. Table
S8. Promoter elements anslysis of gene Os01g0140100.
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