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See the editorial comment for this article ‘Infrared spectral analysis for the classification of patients with acute coronary syndrome. The 
questions run so deep’, by A. Scoccia and P. de Jaegere, https://doi.org/10.1093/ehjdh/ztad017.

Aims Clinical differentiation of acute myocardial infarction (MI) from unstable angina and other presentations mimicking acute 
coronary syndromes (ACS) is critical for implementing time-sensitive interventions and optimizing outcomes. However, 
the diagnostic steps are dependent on blood draws and laboratory turnaround times. We tested the clinical feasibility of 
a wrist-worn transdermal infrared spectrophotometric sensor (transdermal-ISS) in clinical practice and assessed the per
formance of a machine learning algorithm for identifying elevated high-sensitivity cardiac troponin-I (hs-cTnI) levels in pa
tients hospitalized with ACS.

Methods 
and results

We enrolled 238 patients hospitalized with ACS at five sites. The final diagnosis of MI (with or without ST elevation) and 
unstable angina was adjudicated using electrocardiography (ECG), cardiac troponin (cTn) test, echocardiography (regional 
wall motion abnormality), or coronary angiography. A transdermal-ISS–derived deep learning model was trained (three 
sites) and externally validated with hs-cTnI (one site) and echocardiography and angiography (two sites), respectively. 
The transdermal-ISS model predicted elevated hs-cTnI levels with areas under the receiver operator characteristics of 
0.90 [95% confidence interval (CI), 0.84–0.94; sensitivity, 0.86; and specificity, 0.82] and 0.92 (95% CI, 0.80–0.98; sensitivity, 
0.94; and specificity, 0.64), for internal and external validation cohorts, respectively. In addition, the model predictions were 
associated with regional wall motion abnormalities [odds ratio (OR), 3.37; CI, 1.02–11.15; P = 0.046] and significant coron
ary stenosis (OR, 4.69; CI, 1.27–17.26; P = 0.019).

Conclusion A wrist-worn transdermal-ISS is clinically feasible for rapid, bloodless prediction of elevated hs-cTnI levels in real-world 
settings. It may have a role in establishing a point-of-care biomarker diagnosis of MI and impact triaging patients with 
suspected ACS.
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Key Question
Can a wrist-worn transdermal infrared spectrophotometric sensor (transdermal-ISS) be utilized in real-world clinical settings for the bloodless es-
timation of elevated high-sensitivity cardiac troponin-I (hs-cTnI) levels?

Key Finding
In a multi-centre prospective study of patients presenting with acute coronary syndrome (ACS), a transdermal-ISS–derived deep learning model
showed high diagnostic accuracy in predicting elevated hs-cTnI levels and was associated with left ventricular regional wall motion abnormalities
and obstructive coronary artery disease.

Take Home Message
A transdermal-ISS for rapid bloodless estimation of hs-cTnI levels is feasible and may help establish a point-of-care (POC) biomarker diagnosis of
acute myocardial infarction in patients with ACS.

The study evaluated a wrist-worn troponin-I sensor in hospitalized ACS patients with paired venous blood obtained for centralized troponin-I assay. A deep 
learning model was developed using the optical data from three training sites and externally validated for predicting elevated hs-cTnI (one site) levels and 
clinically associated with obstructive CAD and regional wall motion abnormalities (two sites).

Keywords Acute myocardial infarction • Cardiac troponin-I • Infrared spectrophotometry • Deep learning

Introduction
Acute coronary syndromes (ACS) are the leading cause of mortality 
and morbidity worldwide and represent a spectrum of presentations 
ranging from unstable angina to acute myocardial infarction (MI).1 In 
contemporary settings, symptom, or ECG-based differentiation of MI 
from unstable angina (∼10% cases) or conditions mimicking ACS de
pends on biomarker demonstration of myocardial necrosis.2–4

Moreover, difficulties in early recognition of MI and delays in initiating 
effective evidence–based medical therapies can impact survival and 
quality of life.4–7

Measurement of cardiac troponin levels, as a marker of myocyte ne
crosis, is routinely recommended in patients presenting with ACS, with 
blood draws required within a recommended turnaround time of 
60 min.8 However, these turnover times for laboratory tests show 
wide variability and are challenging to implement in acute care settings 
confronted with staffing shortages and decreasing hospital resources.9

Specifically, overcrowding in emergency rooms can be associated with 
delays in blood sampling, overall diagnostic workup, and increased costs 
for assessing patients presenting with ACS.10

Innovations in sensor and computing technologies have led to in
creased adoption of smart wearable devices in cardiovascular medicine 
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for disease prevention, diagnosis, and management.11 A potential solu
tion to avoiding delay during symptoms of acute coronary artery occlu
sion is to implement a POC tool that confirms and accurately risk 
stratifies patients with suspected MI.12 Although POC tests for estimat
ing high-sensitivity cardiac troponin are available, currently, there are no 
hand-held devices approved for clinical use by the FDA. In this regard, 
we have recently reported the development of a novel wrist-worn 
transdermal infrared spectrophotometric sensor (transdermal-ISS) 
that can assess raised troponin-I levels based on infrared spectros
copy.13 Infrared spectroscopy can interrogate the material at the mo
lecular level and is one of the cornerstones of analytical tools used to 
study structural and compositional chemistry.14 The most significant 
advantage is that a sensitive sensor can produce results within 5 min, 
without collecting blood and transferring the sample to the testing de
vice. Although our preliminary laboratory and benchtop translational 
studies have provided initial feasibility data, the device has not been 
adequately evaluated in real-life clinical settings.

This multi-centre, observational study aimed to test the feasibility of 
implementing a remotely analysable, transdermal-ISS with machine 
learning analytics in the clinical setting for predicting elevated circulating 
high-sensitivity cardiac troponin-I (hs-cTnI) levels during a single time
point evaluation of patients hospitalized with ACS. Consenting and exe
cuting research for patients with ACS can be challenging, considering 
the need to implement the device for several minutes of recordings 
with a parallel blood draw while encountering confounding patient- 
related factors like stress, pain, the use of analgesics or sedatives, and 
time-sensitive therapies. Serum hs-cTnI levels increase within 3–4 h 
after the onset of symptoms and remain high for up to 4–7 days.15

We, therefore, sought a head-to-head comparison of hs-cTnI levels 
and transdermal-ISS recordings at a single random timepoint during 
the hospital stay after the patient was clinically stabilized to develop 
and validate deep learning models for predicting elevated hs-cTnI levels.

Methods
Study population
This study was an analysis of prospectively collected data from five centres 
in India (March 2022–November 2022) to train and test machine learning 
models based on the optical data derived from a molecular spectroscopic- 
based optical sensor device algorithm to predict the diagnosis of MI in 
patients presenting with the suspected ACS.12 The development cohort 
comprised data from 3 sites, and the validation cohort comprised data 
from 2 locations (Figure 1).

The main inclusion criteria were patients admitted with new-onset chest 
pain and ischemic changes on the surface electrocardiography (ECG) sug
gestive of an ACS. Acute MI was defined clinically using ECG and the evi
dence of myocardial injury, manifested by a rising and/or falling pattern of 
cardiac troponin (cTn) values.16 MI was further categorized as 
ST-elevation MI (STEMI) based on typical symptoms and new ST segment 
elevation at the J point in more than two contiguous leads (>0.2 mV in 
V1 through V3 and >0.1 mV in other leads) or new left branch bundle 
block.17 In contrast, patients without ST segment elevation, with elevated 
cardiac troponin at presentation, were designated as non-ST–elevation 
MI (nSTEMI). Patients were defined to have unstable angina in the presence 
of chest pain resulting into hospitalization within 24 h of the most recent 
symptoms and absence of Hs-cTn elevation with one of the following: (i) 
ECG changes, (ii) regional wall motion abnormality on echocardiography, 
or (iii) angiographic evidence of CAD.7,18 In the absence of any of the above, 
an alternative diagnosis was sought based on the integrated clinical assess
ment. Patients with tattoos, scars, open wounds, or lesions that may inter
fere with the transdermal device, idiopathic pulmonary hypertension, 
implanted device, pregnancy, active malignancy, or refusing or an inability 
to provide informed consent were excluded. All study participants provided 
written informed consent, and the institutional ethics committee approved 
the study. All study procedures were performed in accordance with the 
declaration of Helsinki.

Study protocol
If eligible, informed consent was obtained, and the patient was enrolled only 
after initiating time-sensitive standard-of-care investigations and therapies 
so that the patient could comfortably undergo a transdermal-ISS recording. 
A detailed history, physical examination, a 12-lead ECG, and clinically indi
cated laboratory tests including troponin assays were recorded. The venous 
blood sample was taken within 15 min of optical data recording, one por
tion was processed locally for Hs-cTn measurement (at all five sites), and 
another portion (four sites) was sent for further hs-cTnI assessment at a 
central laboratory. Patients at all five sites also underwent echocardiog
raphy and coronary angiography assessments as clinically indicated. A 
deep learning model was trained using transdermal-ISS data from 3 sites 
to predict elevated hs-cTnI levels (based upon central laboratory analysis). 
External validation of the deep learning model was performed for predicting 
elevated hs-cTnI (one site) levels and associated with angiographic and 
echocardiographic data (both external sites).

Clinical data collection
The following data were collected: basic demographics, risk factors for cor
onary artery disease including smoking history, comorbid conditions, phys
ical findings, ECG findings, final diagnosis, and disposition. The length of stay 
was also recorded with diagnostics such as echocardiography, medications 
including thrombolysis, coronary angiography, percutaneous coronary in
terventions, or coronary artery bypass surgery. The discharged patients 
were followed up for one month through their clinical information system 
for revisits with cardiac symptoms or adverse clinical events (death and 
readmissions for cardiac reasons).

The data extracted from the echocardiography report consisted of the 
left ventricular ejection fraction (as calculated using Simpson’s rule) and 
the presence of regional wall motion abnormalities (RWMA, assessed ac
cording to the American Society of Echocardiography guidelines) if identi
fied in 2 contiguous segments in a coronary territory.19 The data 
extracted from the catheterization report consisted of the degree of sten
osis visualized and type of intervention performed (e.g. balloon angioplasty 
and/or stent placement). Significant stenosis was defined in ≥1 major cor
onary artery (left main, left anterior descending, left circumflex, and right) 
at invasive coronary angiogram and defined as >50% reduction in lumen 
diameter.20 The severity of each stenosis was further using a CASS-50 
angiographic score since this score has a strong angiographic correlation 
with plaque burden.21

Endpoints
The primary endpoint of training the machine learning model was the pres
ence of elevated troponin, as defined as a binary endpoint based upon cen
tral lab analysis (elevated vs. normal). The central lab utilized Abbott– 
Architect hs-cTnI assay with the use of the Architect system (Abbott 
Diagnostics), with an LoD of 0.01 ng/mL (10 ng/L), a 99th percentile cut-off 
point of 0.028 ng/mL (28 ng/L), and a coefficient of variation of <10% at 
0.032 ng/mL (32 ng/L), as specified by the manufacturer. This analysis was 
utilized for training a machine learning model using transdermal-ISS data 
from 3 sites with external testing of the model performed one site. We 
also performed a secondary analysis to associate the transdermal-ISS–based 
prediction with the presence of RWMA on echocardiography and signifi
cant coronary artery disease for the data originating from two external 
sites, as defined in the previous sections.

Optical sensor data collection and analysis
A transdermal-ISS is a spectrophotometric device that functions based on 
an attenuated total internal reflection configuration. It non-invasively mea
sures the infrared absorption corresponding to the troponin concentration 
in the system through the dermis. The detailed development of the device is 
outlined elsewhere.13 Briefly, our previous study included four phases of de
velopment. First, in an ex vivo exploratory work, we tested blood samples of 
patients (n = 30) with various cTnI levels on a research-grade attenuated 
total reflectance–based infrared spectrometer. The optical readouts repre
senting the signature cTnI absorbance peaks were investigated and showed 
a positive linear correlation of 0.71. Subsequently, we developed the 
transdermal-ISS device and tested its ability to fit on the wrist in two co
horts of patients (n = 9 and n = 24) to assess the potential to classify 



148                                                                                                                                                                                         S. Sengupta et al.

patients with elevated troponins. This exploratory analysis revealed an area 
under the receiver operator characteristic curve of 0.85 with a sensitivity of 
100% and specificity of 70.59%. We further tested a higher fidelity point of 
care device and in a controlled clinical setting and observed a positive linear 
correlation of 0.77 over a wide range of hs-cTnI concentrations. These 
steps subsequently form the basis of testing the device further in real-life 
settings in the present study.

A transdermal-ISS was used on recruited and consented patients to get 
an optical readout. First, the patient’s volar aspect of the wrist is scrubbed 

with a 70% alcohol wipe, following which the button is pressed on the op
tical device. After completion of the 45-second background, the device is 
strapped on the wrist with the sensor surface contacting the prepped por
tion of the wrist for 3 min. The transdermal-ISS is then removed while the 
data are wirelessly transmitted to the Amazon cloud. Following this, blood 
was drawn within 15 min of using the optical device to determine the 
ground truth troponin value with the Abbott–Architect STAT high- 
sensitivity assay. All optical data were further processed to segment and re
move three electronic noise–related spikes occurring at the same locations 

Figure 1 CONSORT diagram for clinical evaluation of the wrist-worn transdermal troponin-I-sensor. CONSORT, Consolidated Standards of 
Reporting Trials.

Figure 2 Deep learning framework. Schema representing a deep convolution neural network (CNN) architecture with recurrent neural networks 
(RNN) for detecting troponin using signalling data from a wrist-worn wearable sensor device.



Troponin-I sensor for acute myocardial infarction                                                                                                                                           149

in the time series that are common for all data. They occur due to the 
change in driving voltage states for the emitter/detector pair and completely 
unrelated to the analyte measurement. Upon the unbiased removal of the 
spikes, the data are ingested by the machine learning algorithm without any 
further processing. The average infrared absorbance for training and test 
was 428 475.5 ± 23 474.7 and 398 114.4 ± 23 618.1 AU with a coefficient 
of variation of 5.6% and 7.4% respectively.

Machine learning model development & 
evaluation
A hybrid convolutional neural network–recurrent neural network 
(CNN-RNN) model was used to develop a classifier to distinguish between 
patients with and without elevated troponin levels using transdermal-ISS 
sensor data as input. While data collected from three different sites (n =  
134; Figure 1—model training data set) were included in the final model de
velopment and internal evaluation using a cross-validation approach, an un
seen cohort of patients (n = 45 patients, Figure 1—external validation data 
set) from the fourth site—not included during the model training—was in
cluded to evaluate the performance and generalizability of the developed 
model. The architecture for the proposed CNN-RNN model is illustrated 
in Figure 2. Briefly, a CNN-RNN-based architecture combines the capabil
ities of convolutional neural networks (CNNs) to learn local patterns and 
features in the data using convolutional filters22 and recurrent neural net
works (RNNs) that can process sequential data such as time series by using 
recurrent connections that allow the network to retain information from 
previous time steps.23 While the CNN-RNN hybrid model applied a 
CNN to process and extract local features from the time series data, the 
RNN was used to capture the temporal dependencies between the time 
steps of the transdermal-ISS signalling data. Thus, the input for the pro
posed CNN-RNN model is the time series in a time window of size 20 
from the optical sensor. Let the input time series be X = [x0, x1, x2,…, 
xt, xt + 1,…], where xt ∈ R is the input at time point t. The CNN embedding 
layer is composed of multiple 1D convolutional layers, a max pooling layer, 
and batch normalization layers. The output of the CNN, a set of reduced- 
dimensionality features from the pooling layer, is then fed as input to the 
RNN, which processes the sequence of features and produces the final pre
dictions. While ADAM optimization techniques were used to learn model 
parameters,24 Bayesian optimization was adapted for hyperparameter tun
ing during cross-validation. A summary of the hyperparameters for the pro
posed CNN-RNN model is presented in Supplementary material online, 
Table S1. Further details corresponding to the model development process 
and technical specifications of the CNN-RNN classifier are described in 
Supplementary material online, e-Methods I.

Statistical methods
We describe the algorithm performance in the test set by (1) visual inspec
tion of a calibration curve to show how accurately transdermal-ISS esti
mates the likelihood of elevated troponins and by (2) the area under the 
receiver operating characteristic curve (AUC) to quantify how well the 
transdermal-ISS discriminated between those with and without elevated 
troponin. In addition, we compared diagnostic metric outputs from the al
gorithm (sensitivity, negative predictive value, specificity, and positive pre
dictive value) for each patient with the metrics determined in the test set 
using the individual’s prediction probability as a threshold (cut-off: 0.5). 
Differences between potential moderator effects of clinical covariates on 
the predictive accuracy were evaluated using Cochrane’s Q test for hetero
geneity of the AUC across categories of a moderating variable. 
Between-group comparisons were conducted using Pearson’s chi-square 
test (for the goodness of fit) or Fisher’s exact test (for categorical variables) 
and Student’s t-test (for continuous variables) after testing for normal dis
tribution using the Kolmogorov–Smirnov test. Using our previous13 AUC 
for differentiating elevated troponins of 0.85 and 0.5 for a null hypothesis 
value, assuming that at least 70% of patients with suspected MI will have ele
vated troponin value, a sample size of at least 40 in the test set was esti
mated to provide 90% power, assuming an α-level of 0.05.

Logistic regression models were used to analyse associations between 
abnormal transdermal-ISS prediction and the presence of RWMA and sig
nificant CAD using the data from the two external test sites. The following 
covariates were a priori selected and included in the regression models as 

adjustments for known confounders: age, sex, smoking, a history of CAD, 
diabetes, hypertension, body mass index (BMI), and dyslipidaemia. All cov
ariates were first assessed for univariable associations, followed by multi
variate modelling of significant predictors utilizing a stepwise backward 
elimination approach [MedCalc ver. 20.0.11 (MedCalc Software, Ostend, 
Belgium)]. The ML modelling was performed using Python 3.8 (Ljubljana, 
Slovenia). The AI model was developed by conforming to the JACC 
PRIME checklist.25 Statistical significance was tested at a global type I error 
rate of 0.05.

Results
Baseline and clinical characteristics
The overall study cohort from the five different sites included 238 patients 
(mean age 55 ± 12 years and 77% males), of whom 136 (57%) presented 
with STEMI, 53 (22%) with nSTEMI, and 49 (21%) with unstable angina 
and others causes (Table 1). Coronary angiogram was performed in 
223 (94%) patients, and obstructive CAD was present in 192 (86%). 
A total of 13 (6%) patients had MI with non-obstructed or normal 
coronaries (MINOCA). There was a higher prevalence of males 
(P = 0.02) and a lower prevalence of smokers (P = 0.0003) in the develop
ment cohort in comparison with the validation cohort (Table 1). Similarly, 
a higher prevalence of obstructive CAD and reduced left ventricular ejec
tion fraction (<50%) was noted in the development cohort in comparison 
to the validation cohort (Table 1, P < 0.05). Participants in the validation 
group were more frequently thrombolyzed; however, the total burden 
of patients receiving percutaneous coronary revascularization and coron
ary artery bypass surgery was similar in both groups. (Figure 1).

Model performance in predicting elevated 
troponins
The model was developed using participants from 3 sites (n = 134 after 
excluding patients with unmeasured cTnl; Figure 1 and Supplementary 
material online, Figure S1) to develop and train a CNN-RNN-based hy
brid deep learning model (Figure 2). The performance of the developed 
model as assessed by AUC plots, precision, recall, and other threshold 
evaluation metrics is shown in Table 2 and Supplementary material 
online, Figure S2. The trained model showed excellent performance 
by five-fold cross-validation in the training set with an AUC of 0.90 
[95% confidence interval (CI), 0.84–0.94; sensitivity, 0.86; and specifi
city, 0.82] (Figure 3). Across the five-fold cross-validation, the AUC ran
ged from 84.3% to 94.8% with a mean of 90.4%. The model 
performance in the external validation data set (n = 45) demonstrated 
a similar performance with an AUC of 0.92 (95% CI, 0.80–0.98; sensi
tivity, 0.94; and specificity, 0.64), further suggesting the generalizability 
of the model to identify elevated hs-cTnI levels across independent co
hort (Figure 3 and Table 2). To overcome limitations imposed by fewer 
patients with non-elevated hs-cTnI levels, we developed additional 
models using under-sampling and over-sampling techniques (see 
Supplementary material online, Table S2). However, there was no 
change in model performance.

Putative moderation of the predictive 
performance
We investigated whether important clinical covariates are likely to influ
ence the predictive performance of the transdermal-ISS machine learn
ing model performance (Table 3). No variables demonstrated a 
statistically significant moderator-type association with the predictive 
performance of the transdermal-ISS–based machine learning model 
to predict elevated troponin-I. Considering the small sample size of 
the test set, we also investigated the predictive performance across 
the covariates in the developmental set. However, no significant 
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statistical heterogeneity was detected even in the training set (see 
Supplementary material online, Table S3).

Association between abnormal 
transdermal-ISS prediction and 
obstructive CAD
For the two external test sites, abnormal transdermal-ISS prediction 
was associated with obstructive CAD in unadjusted analyses [abnormal 
prediction: odds ratio (OR) 3.64, 95% CI (1.11–11.83), P = 0.031]. 
Moreover, after adjusting for sex and smoking, abnormal 
transdermal-ISS prediction remained significantly associated with the 
presence of obstructive CAD [OR 4.69 (1.27–17.26), P = 0.019] 

(Table 4). No significant association was seen between 
transdermal-ISS predictions, the number of vessels with obstructive 
CAD, or the severity of angiographic disease measured using the 
CASS-50 angiographic score. Abnormal transdermal-ISS prediction 
was also associated with the presence of RWMA [abnormal prediction 
OR 3.37, 95% CI (1.02 to 11.15), P = 0.046]. This association persisted 
even after adjustment of the presence of the underlying obstructive 
CAD [adjusted OR, 3.7500, 95% CI (1.16 to 12.07), P = 0.026].

Discussion
This investigation is the first multi-centre, real-world clinical evaluation 
of a wrist-worn device that utilizes mid-infrared (MIR) spectroscopy for 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Demographics and baseline characteristics of the study participants (including overall model development and 
validation cohort)

Variable Overall Development cohorts (3 sites) Validation cohorts (2 sites) P-value

n 238 150 88
Patient demographics
Age in years, (mean ± SD) 54.9 ± 12.2 55.3 ± 12.0 54.2 ± 12.7 0.46

Sex (M), n (%) 185 (77.7) 124 (82.7) 61 (69.3) 0.02§

BMI, (mean ± SD) 24.4 ± 2.9 24.3 ± 3.2 24.6 ± 2.8 0.90

Risk factors, n (%)
Diabetes 105 (44.1) 73 (48.7) 32 (36.4) 0.058
Hypertension 120 (50.4) 73 (48.7) 47 (53.4) 0.479

Smoking 60 (25.2) 26 (17.3) 34 (38.6) 0.0003§

Hypercholestrolaemia 11 (4.6) 4 (2.7) 7 (7.9) 0.061
Clinical presentation
STEMI, n (%) 136 (57.1) 87 (58.0) 49 (55.7) 0.727

NSTEMI, n (%) 53 (22.3) 32 (21.3) 21 (23.9) 0.651
Unstable angina/other, n (%) 49 (20.6) 31 (20.7) 18 (20.4) 0.969

Central laboratory assay, n 179 134 45
Time to assay in days, (mean ± SD) 1.3 ± 1.0 1.4 ± 1.0 1.2 ± 0.9 0.07
Elevated cTnI, n (%) 137 (76.5) 106 (79.1) 31 (68.9) 0.162

Day of sampling 1.3 ± 1.0 1.4 ± 1.0 1.2 ± 0.9 0.07

Echo, n 229 141 88
LVEF < 50%, n (%) 101 (44.1) 70 (49.6) 31 (35.2) 0.033§

RWMA, n (%) 175 (76.4) 102 (72.3) 73 (83.0) 0.066

Coronary angiogram, n 223 142 81
Obstructive CAD, n (%) 192 (86.1) 128 (90.1) 64 (79.0) 0.021§

MINOCA, n (%) 13 (5.8) 6 (4.2) 7 (8.6) 0.176

CASS SCORE-50
0, n (%) 31 (13.9) 14 (9.9) 17 (21.0) 0.021§

1, n (%) 104 (46.6) 68 (47.9) 36 (44.4) 0.620

2, n (%) 47 (21.1) 28 (19.7) 19 (23.5) 0.510
3, n (%) 34 (15.3) 28 (19.7) 6 (7.4) 0.014§

4, n (%) 7 (3.1) 4 (2.8) 3 (3.7) 0.715

Interventions
Thrombolytics, n (%) 28 (11.8) 3 (2.0) 25 (28.4) P < 0.0001§

PCI, n (%) 129 (54.2) 81 (54.0) 48 (54.5) 0.933

CABG, n (%) 10 (4.2) 6 (4.0) 4 (4.5) 0.839

Values reported are counts (%) or mean ± standard deviation (SD). The items in bold indicate the specific tests performed with their corresponding sample sizes. 
cTnI, cardiac troponin-I; LVEF, left ventricular ejection fraction; RWMA, regional wall motion abnormalities; CAD, coronary artery disease; MINOCA, myocardial infarction with 
non-obstructive coronary arteries; PCI, percutaneous coronary intervention; CABG, coronary artery bypass surgery; CASS, coronary angiographic scoring systems. 
§P < 0.05 using the chi-square test.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad015#supplementary-data
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transdermal assessment of elevated hs-cTnI levels in patients hospita
lized with ACS. The proposed algorithm comprises two key compo
nents (central illustration): an algorithm for signal processing, 
transmission, and feature extraction from a wrist-worn wearable de
vice and a deep learning model to classify samples as clinically normal 
or abnormal based on a clinically recommended cut-off value of 
troponin-I. The principal findings of the study are as follows: (i) the re
cording of transdermal-ISS waveforms and the transmission of data 
over the web occurred accurately and confirms the feasibility of obtain
ing the optical-sensor readings in routine clinical settings; (ii) the ma
chine learning models showed stability and high accuracy for 
detecting elevated troponin-I which differentiated patients with MI 

from unstable angina and other causes; and (iii) the model prediction 
was associated with the presence of significant coronary artery disease 
on coronary angiography and the presence of regional wall motion ab
normalities on 2D echocardiographic imaging. These data should in
form the design of future clinical trials where optical sensor-based 
machine learning models can be further optimized for detecting myo
cardial injury and understanding potential underlying pathophysiology 
for each phenotype of troponin elevation.

Since the 1990s, cardiac troponin has been used as a biomarker to 
evaluate myocardial injury. While immunoassays are highly developed 
and accurate, they call for time-sensitive logistics coordination between 
the lab and the ordering providers for blood draws and sample trans
port. Point-of-care assays, like Abbott’s iSTAT,26 are now more widely 
available, but their low sensitivity may confound the accuracy of quick 
rule out algorithms.27 While new strategies in using high-sensitivity im
munoassays and microneedle patches are worthy of continued consid
eration, the alternate strategy evaluated in this study using MIR has been 
used previously for analysis of serum,28 urine,29 breath,30 skin,31 and 
other bodily fluids. Infrared spectroscopy has since been used in 
food, drug, the environment, forensics, and, most significantly, the 
therapeutic area for diagnosing cancer32 and even cardiac care.14,33 In 
addition, complex MIR spectrometers have recently reduced their foot
prints to fit into tabletop portable devices like OceanInsight’s MZ5. 
However, due to its footprint and significant sensitivity to mechanical 
vibrations, MIR is frequently restricted to ex vivo modalities. This study 
introduces one of the earliest POC devices that fit over the wrist yet 
can provide an objective associated with elevated blood hs-cTnI pa
tients diagnosed or suspected to have MI. Moreover, alike breathaly
zers, bilirubinometers, and pulse oximeters, this device can be used 
free of Clinical Laboratory Improvement Amendments of 1988 
(CLIA) regulations34 because no bodily samples are required.

MIR spectroscopy fingerprints (2000–800 cm−1) biological materials 
up to a finite depth determined by the wavelength and the refractive 
indices of the materials that the light passes through. The MIR light in
teracts with many proteins, cytokines, and amino acids in the epidermis, 
interstitial fluid, sweat, or sebum, considering the optical sensor surface 
placed under the wrist (palmar surface). We used troponin elevation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Performance metrics of the CNN-RNN hybrid 
model for predicting whether the recorded 
transdermal-ISS signal represents elevated or 
non-elevated cTnl levels in the train and test sets using 
cross-validation and external validation, respectively

Primary model

Train set  
(5-fold CV)

Test set  
(external validation)

n = 134 n = 45

AUC-ROC 0.90 (0.84–0.94) 0.92 (0.80–0.98)
F1-score 0.90 (0.87–0.93) 0.89 (0.81–0.96)

Accuracy 0.85 (0.81–0.90) 0.84 (0.73–0.95)
Specificity 0.82 (0.72–0.92) 0.64 (0.40–0.84)

Sensitivity (recall) 0.86 (0.80–0.91) 0.94 (0.87–1.0)

Precision (PPV) 0.95 (0.91–0.98) 0.85 (0.74–0.94)
NPV 0.60 (0.48–0.75) 0.82 (0.61–1.0)

AUC, area under the curve; ROC, receiver operating curve; PPV, positive predictive 
value; NPV, negative predictive value; CV, cross-validation.

Figure 3 Model performance in the model training and external validation data sets. The receiver-operating characteristic curves demonstrate the 
performance of the CNN-RNN hybrid model in predicting elevated vs. non-elevated troponin levels in the (A) model training (five-fold cross-validation) 
and (B) external validation data sets.
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(higher than the 99th percentile value) as the gold standard–recom
mended method to diagnose ACS.12 The transdermal-ISS device is de
signed to be sensitive largely to the wavelengths of interest for the 
detection of troponin.13 However, the exact nature of the biomarker 
[troponin T-I-C, binary complexes (I-C), free submits (T and C), and 
fragments or related molecules thereof) tracked by the spectroscopy 
can be speculative. Moreover, co-presenting biomarkers such as 
CKMB, h-FABP, and NT-proBNP, albeit small, could contribute to 
the optical absorption window of hs-cTnI. Irrespective of the exact mo
lecules tracked, one of the strengths of the study design was to use a 
centralized hs-cTnI assay to train the machine learning algorithm for 
predicting one-specific standardized threshold. The device’s high accur
acy in tracking elevated hs-cTnI levels, coupled with the ease of clinical 
application, suggests a potentially broader role of using this technology. 
Specifically, it may be implemented similarly to a single measurement of 
hs-cTn to facilitate the rapid diagnosis of ACS.35 However, many fac
tors impact troponin elevation and confound the clinical presentation, 
such as gender, age group, time of symptom onset, comorbidities, and 
biological variability.36,37,38 Although we performed subgroup analysis 
to investigate any potential moderator effect of clinical variables, fur
ther studies will be needed for a more in-depth understanding of the 
impact of these factors on device performance.

Besides the biological and clinical variabilities of circulating troponin, 
several device-related factors can impact the device’s accuracy. 

Specifically, implementing MIR spectroscopy has been complex since 
the efficiency of IR-based devices can be confused by stray light because 
the signal-to-noise ratio substantially affects the minimal detectable lim
it. This effect has been overcome by modulating the incoming light and 
sensitizing the detection system to the specific frequency of modula
tion, thus making it agnostic to ambient light. Compared with conven
tional spectrometers, the impact of mechanical vibrations has been 
greatly reduced by obviating any moving parts such as gratings or mir
rors and replacing them with customized filters. Moreover, in pursuing 
a ubiquitous form factor solution, these devices can be susceptible to 
noise related to user errors. Some examples include sub-optimal and 
inconsistent contact between the wrist and sensor surface, which de
pends on the strap’s tightness and the arm’s steadiness during measure
ment. Another reason for signal occlusion is the insufficient cleaning of 
the wrist with alcohol wipes to help standardize the measurement site. 
We undertook a series of development to overcome these challenges 
during our clinical implementation. During several minutes of recording, 
noise related to motion and sensor–wrist contact quality may have con
tributed to the small coefficient of variation in infrared absorbance 
(5.6% and 7.4%) observed in the training and test sets, respectively. 
However, the binary ML classifier used in this study was adequate to 
address this range of variation in data. We have developed since then 
an algorithm which allows alerts to be provided for optimizing and re
peating the recording. Future developments are underway to address 
development of the regression algorithm and addressing additional po
tential confounding effect of factors such as the wrist size, skin health, 
and melanin content to provide higher fidelity correlations with tropo
nin levels.

Limitations and future directions
Several limitations of the study design are worth further consideration. 
First, this feasibility study enrolled patients hospitalized with ACS (in
cluding STEMI) and observed that a small fraction of patients had 
non-elevated hs-cTnI. While in contemporary practice, unstable angina 
represents a small cohort of ACS patients (∼10%), its clinical differen
tiation from MI is clinically important.4,6,39 While under-sampling and 
over-sampling techniques showed that our machine learning model 
was stable, these data may be considered preliminary and hypothesis 
generating given the small sample size, population characteristics, and 
status of the technology. Future studies with larger sample size should 
address the diagnostic performance of the algorithm in chest pain units 
with a larger prevalence of normal hs-cTnI. Second, the diagnosis of 
acute myocardial injury requires a rise and/or fall of cardiac troponin 
on serial testing, which was not incorporated into the study design. 
The transdermal-ISS and the collection of a simultaneous additional 
blood sample for hs-cTnI measurement within 15 min of the recordings 
in the hospitalized patients after the standard of care assessments and 
diagnosis were established were critical for accessing standardized data 
for the model development and executing the research protocol with
out interrupting patient care. Since the device can be worn continuous
ly to get a serial assessment, future studies would need to incorporate 
the device’s potential use for serial measurements of cardiac troponin. 
Third, as stated previously, we utilized a ML-based binary classifier in
stead of regression for understanding the feasibility using the device 
in real-world settings. Finally, further developments need to address de
vice and software settings to adapt to biological variability in disease, 
mechanical factors that impact data acquisition, and human factors 
that lead to performance variability.

Conclusions
The use of a transdermal-ISS for bloodless estimation of hs-cTnI shows 
the feasibility and may have a role in real-world settings for diagnosing 
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Table 3 Evaluation of moderator effects on the 
diagnostic performance of transdermal-ISS to detect 
elevated troponin-I in the external validation cohort

Moderator 
variables and 
categories

n AUC (95% CI) Q (df)a Phet-value

Overall 45 0.92 (0.79–0.98) —

Age, years 0.88 (1) 0.34
<60 29 0.89 (0.72–0.97)

≥60 16 0.96 (0.73–1.00)

Sex 1.53 (1) 0.21
Male 27 0.96 (0.80–0.99)

Female 18 0.83 (0.58–0.96)

Obese (BMI ≥  
25 kg/m2)

0.96 (1) 0.32

Yes 10 0.82 (0.53–0.97)

No 35 0.94 (0.79–0.99)
Diabetes, 

hypertension, or 
dyslipidaemia

0.68 (1) 0.40

Yes 18 0.96 (0.75–1.00)

No 27 0.90 (0.72–0.98)

Smoking NA —
Yes 7 1.00 (0.59–1.00)

No 38 0.90 (0.76–0.97)

Significant CAD 
(>50%)

1.18 (1) 0.27

Yes 26 0.98 (0.84–1.00)

No 14 0.75 (0.45–0.93)

AUC, area under the curve; BMI, body mass index; CI, confidence interval; CAD, 
coronary artery disease. 
aCochrane’s Q statistic of heterogeneity.
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AMI in patients presenting with ACS. Future larger studies and prag
matic clinical trials would need to investigate the impact of 
transdermal-ISS on early, pre-hospital infarct diagnosis, triage, and ther
apy in emergency settings, including its utilization in emergency rooms, 
chest pain clinics, and implementation in ambulances and its utilization 
by trained paramedics.
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