Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length

Jung Wan Kim, ${ }^{1}$ Youngsub Eom, ${ }^{2,3}$ (D) Eun Gyu Yoon, ${ }^{2,3}$ Young Choi, ${ }^{2,3}$ Jong Suk Song, ${ }^{2}$ Ji Won Jeong, ${ }^{1}$ Seh Kwang Park ${ }^{1}$ and Hyo Myung Kim ${ }^{2}$
${ }^{1}$ BGN Jamsil Lotte Tower Eye Clinic, Seoul, Korea
${ }^{2}$ Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
${ }^{3}$ Department of Ophthalmology, Korea University Ansan Hospital, Gyeonggi-do, Korea

Abstract

. Purpose: To compare the prediction accuracy of algorithmic intraocular lens (IOL) power calculation formula selection method using conventional formulas (Haigis, Hoffer Q, Holladay 1, SRK/T and/or Barrett Universal II) based on keratometry (K), anterior chamber depth (ACD) and axial length (AL). Methods: A total of 1653 patients (1653 eyes) implanted with Tecnis ZCB00 IOL during cataract surgery were enrolled in this study. Intraocular lens (IOL) power calculation formulas with a small absolute value in the sum of the area under the curve measured by $K, A C D$ and AL subgroup were selected to calculate IOL power in the relevant biometry subgroup. The median absolute error (MedAE) calculated by the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas individually was compared to that calculated by the algorithmic selection method using four formulas, Haigis, Hoffer Q, Holladay 1 and SRK/T, or five formulas when Barrett is included. Results: The MedAE was 0.27 D in the Haigis, 0.30 D in the Hoffer Q, 0.27 D in the Holladay 1, 0.29 D in the SRK/T and 0.26 D in the Barrett Universal II formulas. The MedAEs determined by the algorithmic selection method using four (019 D) and five $(0.21 \mathrm{D})$ formulas were significantly lower than those by the conventional IOL power calculation formulas. Conclusions: The IOL power calculation formula selection method by biometry subgroup combined with biometric parameters K, ACD and AL may offer a more superior postoperative refractive error prediction in cataract surgery.

Key words: anterior chamber depth - axial length - intraocular lens - keratometry - power

Acta Ophthalmol. 2022: 100: e701-e709

© 2021 The Authors. Acta Ophthalmologica published by John Wiley \& Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.
This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.
doi: 10.1111/aos. 14956

Introduction

An accurate intraocular lens (IOL) power calculation and IOL implantation could offer patients an optimal postoperative refractive state following cataract
surgery (Olsen 2007). In particular, the minimization of refractive errors by an accurate IOL power calculation improves the postoperative satisfaction of patients implanted with premium

IOLs such as multifocal IOL (Kim et al. 2020). In this regard, ophthalmologists and researchers have developed a variety of formulas for more accurate IOL power calculation and have reported comparisons between the formulas (Olsen 2007; Roh et al. 2011; Cooke \& Cooke 2016; Melles et al. 2018).

Previous studies have revealed that in eyes with average biometric values, such as axial length (AL) and keratometry (K), there is not much difference in the accuracy of the postoperative refractive error prediction between IOL power calculation formulas (Melles et al. 2018; Fernández et al. 2020). Conversely, for eyes with biometric values that deviate from the average, accuracy can vary depending on the formulas (Gavin \& Hammond 2008; Eom et al. 2013a; Eom et al. 2014; Melles et al. 2018; Kane \& Melles 2020). Thus, to improve the accuracy of the postoperative refractive error prediction, there have been efforts to select IOL power calculation formulas by a subgroup composed of the biometric parameters of eyes to be operated (Gavin \& Hammond 2008; Eom et al. 2014; Hoffer \& Savini 2017). Traditionally, there is a method of selection by using AL, such as the Ladas Super Formula, with its proven advantages and effectiveness (Ladas et al. 2015; Hoffer \& Savini 2017; Wang et al. 2018a; Wang et al. 2018b). For eyes with short AL, the accuracy between the formulas is altered depending on the anterior chamber depth (ACD) because the change in
effective lens position (ELP) has an increased effect on IOL power (Eom et al. 2014). A recent study reported that the IOL power calculation formula selected by the ratio of AL and K was evaluated to be more accurate than that by AL subgroup alone (Omoto et al. 2020).

Melles et al. (2018) explored 13301 eyes and reported the tendency of refractive prediction error in the diversity of IOL power calculation formulas according to K, ACD and AL. Based on the refractive prediction error tendency proposed by Melles et al. (2018), this study suggests a method to select the optimal IOL power calculation formula from conventional formulas (Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II) using K, ACD and AL and assessed the accuracy of the calculations.

Materials and Methods

Study population

This retrospective consecutive case study included 1653 eyes of 1653 cataract patients who underwent uncomplicated phacoemulsification with implantation of a Tecnis ZCB00 (Johnson \& Johnson Vision Care, Inc.; Santa Ana, CA, USA) IOL at our institute between August 2011 and Jan 2021. We excluded patients who had a best-corrected visual acuity (BCVA) of less than 20/40 in the operated eye after cataract surgery, patients with traumatic cataracts, a history of previous ocular surgery (e.g. refractive surgery), complicated cataract surgery (e.g. posterior capsular ruptures), or postoperative complications. Institutional Review Board approval was obtained from the Korea University Ansan Hospital, Gyeonggi, Korea for this study (2021AS0078). All research and data collection adhered to the tenets of the Declaration of Helsinki.

Patient examination

Preoperative K, ACD and AL were measured using an IOLMaster 500 (Carl Zeiss Meditec, Jena, Germany). Intraocular lens (IOL) power was calculated using the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas. Because IOLMaster 500 does not provide the Barrett Universal II formula, an online calculator was used (Barrett GD 2019).

The Haigis formula IOL constants a_{0}, a_{1} and a_{2} were $-1.302,0.210$ and 0.251 , respectively, the A-constant was 119.3 for the SRK/T formula, pseudophakic ACD was 5.80 for the Hoffer Q formula, the surgeon factor was 2.02 for the Holladay 1 formula, and the Barrett Universal II A-constant was 119.39 (Haigis W 2016; Barrett GD 2019). Postoperative uncorrected visual acuity, BCVA and manifest refraction were measured at postoperative visits between 4 and 10 weeks.

Surgical technique

All phacoemulsification and IOL implantations were performed by one of eleven experienced surgeons at our institute. After topical anesthesia with proparacaine hydrochloride 0.5% (Paracaine; Hanmi Pharm, Seoul, Korea or Alcaine; Alcon Laboratories Inc, Fort Worth, TX, USA), a $2.75-\mathrm{mm}$ clear corneal incision was made and a continuous curvilinear capsulorrhexis (CCC) slightly smaller than the IOL optic size was created with a 26 -gauge needle and CCC forceps. A standard phacoemulsification technique was used and the IOL was inserted into the capsular bag using an injector system.

Algorithmic IOL power calculation formula selection

To determine an algorithm that selects IOL power calculation formulas (Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II) by a biometry subgroup composed of biometric parameters, the present study measured the area under the curve (AUC) of the refractive prediction error figure of the formulas by K , ACD and AL, as proposed by Melles et al. (2018) using the images program (Figure 1; 1.43u, https://imagej.nih.gov/ ij; National Institutes of Health, Bethesda, MD, USA). The unit of measurement of the refractive prediction error figure was changed from distance in pixels to dioptre using Set Scale. Next, the AUC was selected and measured by using the 'Polygon Selection tool' of images (Eom et al. 2013b; Eom et al. 2016). The measured AUCs were recorded to be a positive or negative value depending on whether postoperative refractive errors are hyperopia or myopia, respectively. The sum of the AUCs measured by each biometry subgroup (K, ACD and AL)
was defined as refractive prediction error predicted by IOL power calculation formulas selected by the combination of three biometric parameters: K in 1.00 D steps, ACD in $0.25-\mathrm{mm}$ steps, and AL in $1.00-\mathrm{mm}$ steps (Fig. 1).

To prevent repetition of refractive prediction errors by the formulas owing to the correlation between K and AL or $A C D$ and AL, a linear relation table was compiled of the correlation analysis between the biometric values of eyes enrolled in this study. If ACD and AL values are linearly related and the AUC of the refractive prediction error of the formulas by ACD and AL has the same sign, the larger error was selected for the sum of AUC. For example, as AL is positively correlated with ACD, the larger AUC of ACD and AL will be selected for the sum of AUC because the AUC of the refractive prediction error of the Hoffer Q formulas by ACD (Fig. 1B) and AL (Fig. 1C) have the same sign in eyes with K between 46.0 and 47.0 D , ACD between 2.50 and 2.75 mm , and AL between 21.0 and 22.0 mm .

In the Hoffer Q, Holladay 1 and SRK/T formulas, only K is used to predict ELP by assuming that the ACD is deep for a steep K . Thus, to prevent the refractive prediction errors from being duplicated and added again in the situation that the refractive prediction error tendency by K and ACD is the same in the Hoffer Q, Holladay 1 and SRK/T formulas, the larger AUC of the refractive prediction error based on K and ACD was used when K and ACD deviate from average and the sign of the AUC is the same.

Comparing the sum of AUC of refractive prediction error predicted by the four formulas (Haigis, Hoffer Q, Holladay 1 and SRK/T) in each biometry subgroup of the combination of three biometric parameters (K, ACD and AL), the formula with the lowest absolute value of refractive prediction error calculated by the sum of AUC was set as the IOL power calculation formula to be used in the biometry subgroups composed of the combination. However, if the first- and second-place formulas with the smallest absolute values of the sum of AUC exhibit a slight difference of less than double, and the signs of the sum of AUC are different from each other, the formula with a negative value (myopic shift) of the sum of AUC was selected as a formula for IOL power calculation (the algorithmic selection

Fig. 1. An example of measurements of the area under the curve (black area) of refractive prediction error in eyes with keratometry between 46.0 and 47.0 D (A), anterior chamber depth between 2.50 and $2.75 \mathrm{~mm}(B)$, and axial length between 21.0 and $22.0 \mathrm{~mm}(\mathrm{C})$ in the Hoffer Q formula
method using four formulas). In the same way, comparing the five formulas, the formula with the lowest absolute value of the sum of AUC in the biometry subgroups combined with the three biometric parameters was selected as the IOL power calculation formula to be used in the relevant biometry subgroup (the algorithmic selection method using five formulas).

Main outcome measures

The median absolute error (MedAE) and mean absolute error (MAE) were defined as the median absolute value and mean absolute value of the refractive prediction error, respectively. The refractive prediction error was defined
as the difference between the manifest refraction measured between 4 to 10 weeks postoperatively and the preoperative refraction predicted by the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas (refractive prediction error $=$ postoperative manifest refraction - preoperative predicted refraction). In terms of accuracy, the MedAE and the percentage of eyes that achieved a postoperative refractive prediction error within $\pm 0.50 \mathrm{D}$ from the preoperative predicted refraction of the algorithmic selection methods using the four or five formulas were compared to those of the conventional IOL power calculation formulas, Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II .

Statistical analysis

Descriptive statistics for all patient data were obtained using statistical software (Statistical Package for Social Sciences Statistics Standard 20; IBM Corp., Armonk, NY, USA). Statistical analyses included the linear regression analysis, Friedman's test and chi-square tests. Results were considered statistically significant if the p -value was <0.05.

Results

The mean age of patients enrolled in this study was 67.1 ± 10.9 years (range: 19-93 years). Of these, 671 patients were male (40.6%) and there were 810 right eyes (49.0%). Before
cataract surgery, the mean K value was measured to be $44.29 \pm 1.65 \mathrm{D}$ (range: 37.44-49.86 D), the mean ACD value $3.08 \pm 0.48 \mathrm{~mm} \quad$ (range: $\quad 1.55-$ 4.79 mm), and the mean AL $23.54 \pm 1.23 \mathrm{~mm} \quad$ (range: $20.32-$ 30.20 mm). The mean IOL power applied to the surgery was $21.3 \pm 2.9 \mathrm{D}$ (range: $\quad 10.0-27.0 \mathrm{D}$; Table 1). Table 2 shows distribution of the number and percentage of eyes in each biometry subgroup of the combination of three biometric parameters. Linear regression analysis showed that AL was negatively correlated with $\quad \mathrm{K} \quad(\mathrm{K}=-0.796$ $\mathrm{AL}+63.039, \quad R^{2}=0.356 \quad$ and $\mathrm{p}<0.001$) and positively correlated with ACD (ACD $=0.197$ AL - 1.558 , $R^{2}=0.257$ and $\mathrm{p}<0.001$).

The measurements of AUC in the refractive prediction error trend curve of each IOL power calculation formula by K, ACD and AL, as proposed by Melles et al. (2018), are shown in Fig. 2. Figure 3 shows the recommended IOL power calculation formula by the algorithmic selection method using four formulas in each biometry subgroup of the three biometric parameters, K, ACD and AL. In each AL subgroup in 1.00 mm steps, the number of K-ACD combinations was 64 , and that of overall $\mathrm{K}-\mathrm{ACD}-\mathrm{AL}$ combinations was 448 . In the algorithmic selection method using four formulas, the Haigis formula was selected in 153 out of the $448 \mathrm{~K}-\mathrm{ACD}-\mathrm{AL}$ combinations, SRK/T in 117, Holladay 1 in 110 and Hoffer Q in 68. Therefore, the Haigis formula was selected the most.

Figure 4 shows the recommended IOL power calculation formula by the algorithmic selection method using five formulas in each biometry subgroup of the three biometric parameters. As with the four formulas, there were 448 K -ACD-AL combinations. In the algorithmic selection method using five formulas, the Haigis formula was selected in 115 out of the 448 K -ACD-AL combinations, $\mathrm{SRK} / \mathrm{T}$ in 26 , Holladay 1 in 48, Hoffer Q in 38 and Barrett Universal II in 221 which shows that Barrett Universal II formula was selected the most.

When the four formulas were used as algorithmic selection methods, there was regularity that the Haigis formula was selected for flat K and SRK/T for steep K in the eyes with AL of more

Table 1. Clinical characteristics of cataract patients and their eyes in a study of algorithmic intraocular lens power calculation formula selection according to the keratometry, anterior chamber depth and axial length ($n=1653$).

Parameter	Mean (SD)	Range
Age, years	$67.1(10.9)$	$19-93$
Sex	$671(40.6)$	
\quad Male, $n(\%)$	$982(59.4)$	
Female, $n(\%)$		
Laterality	$810(49.0)$	
\quad Right eye, $n(\%)$	$843(51.0)$	$37.44-49.86$
Left eye, $n(\%)$	$44.29(1.65)$	$1.55-4.79$
Keratometry, D*	$3.08(0.48)$	$20.32-30.20$
Anterior chamber depth, mm*	$23.54(1.23)$	$10.0-27.0$
Axial length, mm*	$21.3(2.9)$	
IOL power, D		

Data are mean (SD) except for sex and laterality, which are $n(\%)$.
$\mathrm{D}=$ dioptres, $\mathrm{IOL}=$ intraocular lens, $\mathrm{SD}=$ standard deviation.

* Keratometry, anterior chamber depth and axial length measured by IOLMaster 500.

Table 2. Distribution of the number and percentage of eyes in each biometry subgroup of the combination of three biometric parameters of keratometry, anterior chamber depth and axial length ($n=1653$).

AL (mm)	K (D)	ACD (mm)			
		<2.75	2.75-3.25	3.25-3.75	≥ 3.75
<22.0 ($n=154$)	<42.0	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)
	42.0-44.0	5 (0.30)	1 (0.06)	0 (0.00)	0 (0.00)
	44.0-46.0	32 (1.94)	12 (0.73)	0 (0.00)	0 (0.00)
	≥ 46.0	53 (3.21)	45 (2.72)	6 (0.36)	0 (0.00)
22.0-23.5 $(n=706)$	<42.0	8 (0.48)	2 (0.12)	$1(0.06)$	0 (0.00)
	42.0-44.0	68 (4.11)	87 (5.26)	27 (1.63)	2 (0.12)
	44.0-46.0	107 (6.47)	190 (11.49)	85 (5.14)	7 (0.42)
	≥ 46.0	26 (1.57)	67 (4.05)	26 (1.57)	3 (0.18)
$23.5-25.0(n=623)$	<42.0	17 (1.03)	34 (2.06)	19 (1.15)	1 (0.06)
	42.0-44.0	44 (2.66)	125 (7.56)	149 (9.01)	30 (1.81)
	44.0-46.0	14 (0.85)	66 (3.99)	76 (4.60)	34 (2.06)
	≥ 46.0	1 (0.06)	5 (0.30)	5 (0.30)	3 (0.18)
$\geq 25.0(n=170)$	<42.0	1 (0.06)	8 (0.48)	29 (1.75)	9 (0.54)
	42.0-44.0	2 (0.12)	11 (0.67)	25 (1.51)	26 (1.57)
	44.0-46.0	4 (0.24)	13 (0.79)	22 (1.33)	16 (0.97)
	≥ 46.0	0 (0.00)	0 (0.00)	4 (0.24)	0 (0.00)

Values are presented as number (percentage).
$\mathrm{ACD}=$ anterior chamber depth, $\mathrm{AL}=$ axial length, $\mathrm{D}=$ dioptres, $\mathrm{K}=$ keratometry.
than 26.0 mm . When the algorithmic selection method used five formulas, the SRK/T formula was replaced by Barrett Universal II formula, and it was also regularly found that the Haigis formula was selected for flat K and Barrett Universal II formula for steep K in the eyes with AL of more than 26.0 mm .

The MedAEs (interquartile range) of Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II were 0.27 (0.13:0.49), $\quad 0.30 \quad(0.15: 0.58), \quad 0.27$ (0.11:0.51), 0.29 (0.12:0.49) and 0.26 ($0.08: 0.48) \mathrm{D}$, respectively, and the MAEs (\pm standard deviation) were $0.33 \pm 0.26,0.41 \pm 0.35,0.34 \pm 0.29$,
0.35 ± 0.29 and $0.31 \pm 0.26 \mathrm{D}$, respectively. Friedman's test indicated the best results in postoperative refractive error prediction were obtained using Barrett Universal II formula, followed by Haigis formula (Table 3). The MedAE and MAE calculated by the algorithmic selection methods using four formulas were 0.19 (0.06:0.42) and $0.27 \pm 0.26 \mathrm{D}$, respectively, and by using five formulas they were 0.21 (0.07:0.44) and $0.28 \pm 0.26 \mathrm{D}$, respectively. Collectively, these results revealed that the two algorithmic selection methods proposed in the present study offer better results than the Haigis and Barrett Universal II

Fig. 2. The measurements of the area under the curve in the refractive prediction error trend curve of each intraocular lens power calculation formula by keratometry (A), anterior chamber depth (B) and axial length (C).
formulas for IOL power calculation. However, there was no significant difference between MedAEs calculated by the algorithmic selection method using four or five formulas (Table 4).

The percentages of postoperative refractive prediction error within $\pm 0.50 \mathrm{D}$ were $76.4 \%, 71.0 \%, 75.0 \%$, 75.9% and 77.4% in the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas, respectively (Table 3), which were significantly smaller than those of the algorithmic selection method using four (82.8%) and five (81.1%) formulas (Table 4).

Discussion

This study proposed an IOL power calculation formula selection method using four (Haigis, Hoffer Q, Hollday 1 and SRK/T) or five (the four formulas including Barrett Universal II.) formulas. The formulas were compared in the 448 combinations of K-ACD-AL subgroups and the formula with the lowest absolute value of the sum of

AUCs measured by each biometry subgroup (K, ACD and AL) was selected for the IOL power calculation. The results of this study demonstrated that the algorithmic selection methods using four or five formulas provided more accurate postoperative refractive error prediction than the IOL power calculation by each conventional formula. The recommended IOL power calculation formula by this study is presented in the tables of Figs 3 and 4. Users can select the recommended formula depending on the biometric values of patients by referring to the table.

In the present study, the formula selection by the method using four formulas tended to be simplified in eyes with AL of more than 26.0 mm compared to those with an average or shorter AL and indicated that the Haigis formula should be selected for flat K and the SRK/T formula for steep K. The reason for these results could be the tendency of constant refractive errors by K values in the Haigis and

SRK/T formulas. The conventional IOL power calculation formulas, such as Haigis and $\mathrm{SRK} / \mathrm{T}$ formulas, showed a tendency of postoperative hyperopic shift in long eyes. Previous studies have reported that postoperative refractive errors have a myopic shift for flat K and a hyperopic shift for steep K in the Haigis formula (Reitblat et al. 2017; Melles et al. 2018). Therefore, if K is flat in eyes with long AL, the postoperative refractive errors might shift toward emmetropization in the Haigis formula because the myopic shift tendency by flat K cancels out the hyperopic shift tendency of long eyes. Conversely, in the SRK/T formula, postoperative refractive errors tend to be myopia for steep K and are hyperopia for flat K (Eom et al. 2013; Reitblat et al. 2017; Melles et al. 2018). Accordingly, if K is steep in eyes with long AL, eyes might shift toward emmetropization because the myopic shift tendency by steep K cancels out the hyperopic shift tendency of long eyes.

AL (mm)	K(0) ${ }^{\text {ACD }}$ (mm)	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
21.0-22.0	40.0-41.0	Haigis	Holladay1	Holladay 1	Holladay	Holladay 1	Haigis	Haigis	HofferQ
	41.0-42.0	Haigis	Haigis	Holladay 1	Holladay 1	Holladay 1	Haigis	Haigis	HofferQ
	42.0-43.0	Haigis	Haigis	Haigis	Haigis	Holladay 1	Haigis	Haigis	Haigis
	43.0-44.0	SRK/T	SRKTT	SRK/T	SRK/T	Holladay 1	HofferQ	HofferQ	HofferQ
	44.0-45.0	SRK/T	SRKT	SRK/T	SRKT	SRK/T	SRKTT	HofferQ	HofferQ
	45.0-46.0	SRK/T	SRKT	Holladay 1	Holladay 1	Holladay 1	SRKT	HofferQ	SRK/T
	46.0-47.0	Holladay1	Holladay 1	Holladay 1	Holladay 1	Holladay 1	HofferQ	HofferQ	SRK/T
	47.0-48.0	Holladay 1	HofferQ	HofferQ					
AL (mm)	$K_{K(0)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
22.0-23.0	40.0-41.0	Haigis	Holladay 1	Holladay 1	Holladay 1	Holladay	Holladay1	HofferQ	HofferQ
	41.0-42.0	Haigis	Holladay 1	HofferQ	Haigis				
	42.0-43.0	Haigis	Haigis	Holladay 1	Holladay 1	Holladay 1	HofferQ	Haigis	Haigis
	43.0-44.0	SRK/T	Haigis						
	44.0-45.0	SRK/T	Haigis	Haigis	Haigis	Haigis	SRK/T	Haigis	Haigis
	45.0-46.0	SRK/T	SRKT	Holladay 1	Holladay1	HofferQ	HofferQ	SRK/T	SRK/T
	46.0-47.0	Holladay1	Holladay1	Holladay 1	HofferQ	HofferQ	Holladay 1	Holladay 1	SRKTT
	47.0-48.0	Holladay 1	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	Holladay1	Holladay1
AL (mm)	$K_{K(0)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
23.0-24.0	40.0-41.0	Holladay 1	Holladay 1	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	Haigis
	41.0-42.0	Haigis	Holladay 1	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	Haigis
	42.0-43.0	SRK/T	SRK/T	Holladay 1	Holladay 1	HofferQ	HofferQ	Haigis	Haigis
	43.0-44.0	SRK/T	Haigis	SRK/T	SRK/T	Haigis	Haigis	Haigis	Haigis
	44.0-45.0	SRK/T	Haigis						
	45.0-46.0	SRK/T	SRK/T	HofferQ	HofferQ	Holladay 1	Holladay 1	SRK/T	SRK/T
	46.0-47.0	Holladay1	Holladay 1	HofferQ	Hoffera	Holladay 1	Holladay1	SRK/T	SRK/T
	47.0-48.0	Holladay 1	Holladay 1	HofferQ	HofferQ	Holladay 1	Holladay	Holladay	Holladay1
AL (mm)	$\underbrace{A C D(m m)}_{K(0)}$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
24.0-25.0	40.0-41.0	Holladay1	Holladay 1	Holladay 1	Holladay 1	HofferQ	Holladay1	Haigis	Haigis
	41.0-42.0	Haigis	Holladay 1	HofferQ	Holladay 1	HofferQ	Holladay 1	Haigis	Haigis
	42.0-43.0	Haigis	SRK/T	HofferQ	Holladay 1	HofferQ	Holladay1	Haigis	Haigis
	43.0-44.0	SRK/T	Haigis	SRK/T	SRKT	Holladay	Haigis	Haigis	Haigis
	44.0-45.0	SRK/T	Haigis	Haigis	Haigis	Holladay 1	Haigis	Haigis	Haigis
	45.0-46.0	SRK/T	Haigis	HofferQ	Holladay1	Holladay 1	SRK/T	SRK/T	SRK/T
	46.0-47.0	HofferQ	HofferQ	HofferQ	Holladay 1	Holladay 1	Holladay1	Holladay 1	SRKTT
	47.0-48.0	HofferQ	HofferQ	HofferQ	Holladay 1	Holladay 1	Holladay 1	Holladay	SRKT
AL (mm)	${ }_{K(0)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
25.0-26.0	40.0-41.0	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	HofferQ	Haigis	Haigis
	41.0-42.0	Haigis	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	Haigis	Haigis
	42.0-43.0	Haigis	Haigis	Holladay 1	Holladay 1	Haigis	Haigis	Haigis	Haigis
	43.0-44.0	SRK/T	Haigis	SRK/T	Holladay 1	Haigis	Haigis	Haigis	Haigis
	44.0-45.0	SRK/T	HofferQ	SRK/T	SRKT	SRK/T	SRKTT	Haigis	Haigis
	45.0-46.0	SRK/T	HofferQ	Holladay 1	Holladay1	Holladay 1	SRKT	SRK/T	SRKTT
	46.0-47.0	HofferQ	HofferQ	Holladay 1	Holladay 1	Holladay 1	Holladay 1	SRK/T	SRKT
	47.0-48.0	HofferQ	HofferQ	Holladay 1	Holladay 1	Holladay 1	Holladay 1	Holladay1	SRKTT
AL (mm)	${ }_{\text {K(0) }}{ }^{\text {ACDO }} \mathrm{mm}$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
26.0-27.0	40.0-41.0	HofferQ	Haigis						
	41.0-42.0	Haigis							
	42.0-43.0	HofferQ	Haigis						
	43.0-44.0	HofferQ	Haigis						
	44.0-45.0	SRK/T	SRKTT	SRK/T	SRK/T	SRK/T	SRKT	SRK/T	Haigis
	45.0-46.0	SRK/T	SRKKT	SRK/T	SRKTT	SRK/T	SRK/T	SRK/T	SRKT
	46.0-47.0	HofferQ	SRKT	SRKIT	SRK/T	SRK/T	SRK/T	SRK/T	SRK/T
	47.0-48.0	HofferQ	SRK/T						
AL (mm)	$\underbrace{A C D(m m)}_{K(0)}$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
27.0-28.0	40.0-41.0	Haigis							
	41.0-42.0	Haigis							
	42.0-43.0	Haigis							
	43.0-44.0	HofferQ	Haigis						
	44.0-45.0	SRK/T	SRK/T	SRK/T	SRK/T	Haigis	Haigis	Haigis	Haigis
	45.0-46.0	SRK/T	SRKTT	SRK/T	SRKTT	SRK/T	SRKTT	SRK/T	SRKTT
	46.0-47.0	SRKIT	SRKT	SRK/T	SRKTT	SRK/T	SRKTT	SRK/T	SRKTT
	47.0-48.0	SRK/T	SRKTT						

Fig. 3. Table of recommended intraocular lens power calculation formula by the algorithmic selection method using four formulas in each biometry subgroup of the combination of three biometric parameters: keratometry, anterior chamber depth and axial length.

AL (mm)	${ }_{\text {(ID) }}{ }^{\text {ACD } / \mathrm{mm} /}$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
21.0-22.0	40.0-41.0	Haigis	Barrett	Holladay1	Holladay1	Holladay 1	Haigis	Haigis	HofferQ
	41.0-42.0	Haigis	Haigis	Holladay1	Barrett	Holladay 1	Haigis	Haigis	HofferQ
	42.0-43.0	Barrett	Barrett	Barrett	Barrett	Holladay 1	Barrett	Haigis	Haigis
	43.0-44.0	Barrett	Barrett	SRK/T	SRKT	Holladay 1	Barrett	Barrett	Barrett
	44.0-45.0	Barrett	Barrett	Barrett	SRKTT	SRK/T	SRKTT	HofferQ	Barrett
	45.0-46.0	Barrett	Barrett	Barrett	Barrett	Holladay 1	Barrett	Barrett	Barrett
	46.0-47.0	Barrett	Barrett	Barrett	Barrett	Holladay1	Barrett	Barrett	Barrett
	47.0-48.0	Barrett							
AL (mm)	${ }_{K(D)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
22.0-23.0	40.0-41.0	Haigis	Holladay1	Holladay1	Holladay1	Holladay 1	Holladay1	HofferQ	HofferQ
	41.0-42.0	Haigis	Barrett	Holladay1	Holladay1	Holladay1	Holladay1	HofferQ	Haigis
	42.0-43.0	Haigis	Barrett	Barrett	Barrett	Holladay1	HofferQ	Haigis	Haigis
	43.0-44.0	Barrett	Barrett	Barrett	Barrett	Haigis	Haigis	Haigis	Haigis
	44.0-45.0	Barrett	Haigis						
	45.0-46.0	Barrett	Barrett	Barrett	Barrett	HofferQ	Barrett	Barrett	Barrett
	46.0-47.0	Barrett	Barrett	Barrett	Barrett	HofferQ	Holladay1	Barrett	Barrett
	47.0-48.0	Barrett	Barrett	Barrett	Barrett	HofferQ	Barrett	Holladay1	Barrett
AL (mm)	$\mathrm{KlD}^{\mathrm{ACD}(\mathrm{~mm})}$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
23.0-24.0	40.0-41.0	Barrett	Holladay1	Holladay	Holladay1	HofferQ	HofferQ	HofferQ	Haigis
	41.0-42.0	Barrett	Barrett	Holladay1	Holladay1	HofferQ	HofferQ	Barrett	Haigis
	42.0-43.0	SRK/T	Barrett	Barrett	Holladay1	HofferQ	Barrett	Barrett	Haigis
	43.0-44.0	Barrett	Haigis	Barrett	Barrett	Barrett	Barrett	Haigis	Haigis
	44.0-45.0	Barrett	Haigis						
	45.0-46.0	Barrett	Barrett	Barrett	HofferQ	Holladay 1	Barrett	Barrett	SRK/T
	46.0-47.0	Barrett	Barrett	HofferQ	HofferQ	Holladay1	Holladay1	Barrett	Barrett
	47.0-48.0	Barrett	Barrett	Barrett	HofferQ	Barrett	Holladay 1	Barrett	Barrett
AL (mm)	${ }_{K(D)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
24.0-25.0	40.0-41.0	Holladay 1	Holladay1	Holladay 1	Holladay1	HofferQ	Holladay 1	Haigis	Haigis
	41.0-42.0	Haigis	Barrett	HofferQ	Holladay1	HofferQ	Holladay1	Haigis	Barrett
	42.0-43.0	Haigis	Barrett	Barrett	Holladay1	Barrett	Barrett	Haigis	Haigis
	43.0-44.0	Barrett	Barrett	Barrett	Barrett	Holladay 1	Haigis	Haigis	Haigis
	44.0-45.0	Barrett	Haigis	Haigis	Haigis	Holladay 1	Haigis	Haigis	Haigis
	45.0-46.0	Barrett	Barrett	HofferQ	Barrett	Barrett	Barrett	Barrett	SRK/T
	46.0-47.0	Barrett	Barrett	HofferQ	Barrett	Barrett	Barrett	Barrett	SRKTT
	47.0-48.0	Barrett	Barrett	HofferQ	Barrett	Barrett	Barrett	Barrett	Barrett
AL (mm)	${ }_{K(D)} A C D /(\mathrm{mm})$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
25.0-26.0	40.0-41.0	Holladay 1	Holladay 1	HofferQ	HofferQ	HofferQ	HofferQ	Haigis	Haigis
	41.0-42.0	Haigis	Holladay 1	Holladay1	HofferQ	HofferQ	HofferQ	Haigis	Haigis
	42.0-43.0	Haigis	Barrett	Barrett	Holladay 1	Barrett	Barrett	Haigis	Haigis
	43.0-44.0	SRK/T	Haigis	SRK/T	Holladay1	Haigis	Haigis	Haigis	Haigis
	44.0-45.0	Barrett	Barrett	Barrett	Barrett	SRK/T	Barrett	Barrett	Haigis
	45.0-46.0	Barrett							
	46.0-47.0	Barrett	HofferQ	Barrett	Barrett	Holladay 1	Barrett	Barrett	SRK/T
	47.0-48.0	Barrett	HofferQ	Barrett	Barrett	Barrett	Barrett	Barrett	Barrett
AL (mm)	${ }_{K(D)} A C D(\mathrm{~mm})$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
26.0-27.0	40.0-41.0	HofferQ	Haigis						
	41.0-42.0	Haigis							
	42.0-43.0	HofferQ	Haigis						
	43.0-44.0	HofferQ	Barrett	Haigis	Haigis	Haigis	Haigis	Haigis	Haigis
	44.0-45.0	SRK/T	Barrett						
	45.0-46.0	Barrett	Barrett	Barrett	Barrett	SRKKT	SRKTT	SRKTT	Barrett
	46.0-47.0	Barrett	SRK/T						
	47.0-48.0	Barrett	SRK/T						
AL (mm)	${ }_{K(D)} A C D(m m)$	2.25-2.50	2.50-2.75	2.75-3.00	3.00-3.25	3.25-3.50	3.50-3.75	3.75-4.00	4.00-4.25
27.0-28.0	40.0-41.0	Haigis							
	41.0-42.0	Haigis							
	42.0-43.0	Barrett	Haigis						
	43.0-44.0	Barrett	Barrett	Barrett	Barrett	Barrett	Haigis	Barrett	Barrett
	44.0-45.0	Barrett							
	45.0-46.0	Barrett							
	46.0-47.0	SRKT	SRKT	SRKT	Barrett	SRK/T	Barrett	SRKT	SRK/T
	47.0-48.0	Barrett	Barrett	Barrett	Barrett	Barrett	SRKT	Barrett	Barrett

Fig. 4. Table of recommended intraocular lens power calculation formula by the algorithmic selection method using five formulas in each biometry subgroup of the combination of three biometric parameters: keratometry, anterior chamber depth and axial length.

Table 3. Median absolute error and mean refractive prediction error calculated by the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas ($n=1653$).

	Haigis	Hoffer Q	Holladay 1	SRK/T	Barrett U II
MedAE, D*	$0.27(0.13: 0.49)$	$0.30(0.15: 0.58)$	$0.27(0.11: 0.51)$	$0.29(0.12: 0.49)$	$0.26(0.08: 0.48)$
MAE, D	0.33 ± 0.26	0.41 ± 0.35	0.34 ± 0.29	0.35 ± 0.29	0.31 ± 0.26
RE, D (range)	$-0.03(-1.69$ to 1.22)	$0.08(-1.60$ to 2.15$)$	$-0.06(-1.58$ to 1.78$)$	$-0.09(-1.75$ to 1.85$)$	$-0.06(-1.46$ to 1.95$)$
$\pm 0.25 \mathrm{D}, n(\%)$	$775(46.9)$	$707(42.8)$	$793(48.0)$	$772(46.7)$	$863(52.2)$
$\pm 0.50 \mathrm{D}, n(\%)$	$1263(76.4)$	$1174(71.0)$	$1240(75.0)$	$1255(75.9)$	$1279(77.4)$
$\pm 0.75 \mathrm{D}, n(\%)$	$1526(92.3)$	$1420(85.9)$	$1498(90.6)$	$1470(88.9)$	$1539(93.1)$
$> \pm 1.00 \mathrm{D}, n(\%)$	$23(1.4)$	$122(7.4)$	$50(3.0)$	$68(4.1)$	$21(1.3)$

$\mathrm{D}=$ dioptres, $\mathrm{IOL}=$ intraocular lens, $\mathrm{MAE}=$ mean absolute error, $\mathrm{MedAE}=$ median absolute error, $\mathrm{RE}=$ mean refractive prediction error.

* Values are presented as median (interquartile range).
${ }^{\dagger}$ Friedman's test comparing the five formulas.
* Values are presented as mean \pm standard deviation.
${ }^{\S}$ Chi-square test.

Table 4. Median absolute error and mean refractive prediction error calculated by the Haigis and Barrett Universal II formulas and algorithmic intraocular lens calculation formula selection method using 4 formulas and 5 formulas ($n=1653$).

	Haigis	Barrett U II	Using 4 formulas	Using 5 formulas
MedAE, D*	$0.27(0.13: 0.49)$	$0.26(0.08: 0.48)$	$0.19(0.06: 0.42)$	$0.21(0.07: 0.44)$
MAE, D	0.33 ± 0.26	0.31 ± 0.26	0.27 ± 0.26	0.28 ± 0.26
RE, D (range)	$-0.03(-1.69$ to 1.22$)$	$-0.06(-1.46$ to 1.95$)$	$-0.07(-1.55$ to 1.53$)$	$-0.04(-1.55$ to 1.53$)$
$\pm 0.25 \mathrm{D}, n(\%)$	$775(46.9)$	$863(52.2)$	$964(58.3)$	$1369(52.8)$
$\pm 0.50 \mathrm{D}, n(\%)$	$1263(76.4)$	$1279(77.4)$	$1550(94.1)$	$1341(81.1)$
$\pm 0.75 \mathrm{D}, n(\%)$	$1526(92.3)$	$1539(93.1)$	$25(1.5)$	$1552(93.9)$
$> \pm 1.00 \mathrm{D}, n(\%)$	$23(1.4)$	$21(1.3)$	$15(0.9)$	

$\mathrm{D}=$ dioptres, $\mathrm{IOL}=$ intraocular lens, $\mathrm{MAE}=$ mean absolute error, $\mathrm{MedAE}=$ median absolute error, $\mathrm{RE}=$ mean refractive prediction error.

* Values are presented as median (interquartile range).
${ }^{\dagger}$ Friedman's test comparing the four formulas.
*Values are presented as mean \pm standard deviation.
${ }^{\text {§ }}$ Chi-square test.

The SRK/T formula selected by the algorithmic selection method using four formulas was replaced by the Barrett Universal II formula by the algorithmic selection method using five formulas in eyes with AL of more than 26.0 mm . As a result, the Haigis formula was selected for flat K and Barrett Universal II formula for steep K in eyes with long AL. Consistent with the results of the previous study, these results imply that postoperative refractive errors are hyperopia for flat K and are myopia for steep K in the Barrett Universal II formula just as in the SRK/T formula (Reitblat et al. 2017; Melles et al. 2018). A comparison study for accuracy between nine IOL power calculation formulas showed that the Haigis and Barrett Universal II formulas offered the most accurate results in eyes with AL of more than 26 mm except with the Olsen formula (Cooke \& Cooke 2016). Accordingly, it is reasonable to suggest that if the Haigis and Barrett Universal II formulas, which are believed to be accurate in
eyes with long AL, are selected differently by K values, IOL power calculation by using the two formulas may provide more accurate results than using each formula alone.

The Hoffer Q formula is known to be accurate in eyes with short AL (Hoffer 1993; Gavin \& Hammond 2008); however, recent studies have reported that the Hoffer Q formula is not that accurate, and other formulas, including Haigis, are more accurate in these eyes (Roh et al. 2011; Eom et al. 2014; Melles et al. 2018). The present study showed that as a result of using the algorithmic selection method using four formulas, the Hoffer Q formula was selected in a large number of biometry subgroups in eyes with AL of $<22.0 \mathrm{~mm}$ and ACD deeper than 3.50 mm . In contrast, the formula was not selected in eyes with ACD shallower than 3.50 mm . Similar to the results of this study, a previous comparison for accuracy between the Haigis and Hoffer Q formulas in eyes with AL of $<22.0 \mathrm{~mm}$ reported that the

Haigis formula, when compared to the Hoffer Q formula, was more accurate in eyes with ACD of $<2.40 \mathrm{~mm}$.
In this study, the Barrett Universal II formula provided the most accurate results in postoperative refractive error prediction compared to other formulas, Haigis, Hoffer Q, Holladay 1 and SRK/ T. However, the algorithmic selection method using five formulas, with the additional Barrett Universal II formula, did not exhibit further improvements in terms of IOL power calculation accuracy compared to the algorithmic selection method using the four formulas (Haigis, Hoffer Q, Holladay 1 and SRK/ T). These results suggest that the algorithmic selection method using the four formulas depending on the combination of biometric parameters fully reflected the merits of each formula and, thus, further enhanced the accuracy compared to when each formula was used alone.

This study has several limitations. First, although preoperative biometry was measured using Lenstar 900 in the
article of Melles et al. (2018), which is used as a reference in this study, IOL power calculations were based on biometric values measured by IOLMaster 500 in this study. The biometric values measured by the two biometric devices showed high accuracy (Kunert et al. 2016); however, the accuracy of IOL power calculation formulas may vary depending on biometric devices (Cooke \& Cooke 2016). Indeed, Cooke \& Cooke (2016) revealed that the accuracy of IOL power calculation formulas was altered depending on whether the biometric values were measured by the IOLMaster 500 or Lenstar 900 . Second, there was no information on the tendency for refractive prediction error of IOL power calculation formulas in eyes with AL of $<21.0 \mathrm{~mm}$ or more than 28.0 mm in the reference study (Melles et al. 2018). Thus, our results do not apply to those eyes. Third, this study was conducted retrospectively and involved eleven surgeons. Thus, a prospective study is needed to confirm the precision of the algorithmic selection method using five formulas in each biometry subgroup of combinations of the three biometric parameters suggested in this study.

In conclusion, the algorithm selection methods using the Haigis, Hoffer Q, Holladay 1, SRK/T and Barrett Universal II formulas for IOL power calculation according to biometry subgroups composed of the combination of three biometric parameters, K, ACD and AL, may more accurately predict postoperative refraction after cataract surgery compared to when conventional formulas are used separately.

References

Barrett GD. (2019). Barrett Universal II formula v1.05 Available at http://calc.apacrs. org/barrett_universal2105. (Accessed July 22 2019).

Cooke DL \& Cooke TL (2016): Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg 42: 1157-1164.
Eom Y, Kang SY, Song JS \& Kim HM (2013a): Use of corneal power-specific constants to improve the accuracy of the SRK/T formula. Ophthalmology 120: 477-481.
Eom Y, Kang SY, Song JS, Kim YY \& Kim HM (2014): Comparison of Hoffer Q and Haigis formulae for intraocular lens power calculation according to the anterior
chamber depth in short eyes. Am J Ophthalmol 157: 818-824.e812.
Eom Y, Lee JS, Kang SY, Kim HM \& Song JS (2013b): Correlation between quantitative measurements of tear film lipid layer thickness and meibomian gland loss in patients with obstructive meibomian gland dysfunction and normal controls. Am J Ophthalmol 155: 1104-1110.el102.
Eom Y, Song JS, Lee HK, Kang B, Kim HC, Lee HK \& Kim HM (2016): The effect of ambient titanium dioxide microparticle exposure to the ocular surface on the expression of inflammatory cytokines in the eye and cervical lymph nodes. Invest Ophthalmol Vis Sci 57: 6580-6590.
Fernández J, Rodríguez-Vallejo M, Poyales F, Burguera N \& Garzón N (2020): New method to assess the accuracy of intraocular lens power calculation formulae according to ocular biometric parameters: New method to assess IOL power calculation. J Cataract Refract Surg, 46(6): 849-856.
Gavin EA \& Hammond CJ (2008): Intraocular lens power calculation in short eyes. Eye (London, England) 22: 935-938.
Haigis W. (2016). Optimized IOL Constants for the ZEISS IOLMaster. Available at http://ocusoft.de/ulib/cl.htm. (Accessed July 22, 2019).
Hoffer KJ (1993): The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg 19: 700-712.
Hoffer KJ \& Savini G (2017): IOL power calculation in short and long eyes. AsiaPacific J Ophthalmol (Philadelphia. Pa) 6: 330-331.
Kane JX \& Melles RB (2020): Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more Diopter. J Cataract Refract Surg, 46(9): 1236-1239.
Kim JW, Eom Y, Chung HW, Song JS, Jeong JW, Park SK \& Kim HM (2020): Factors for good near and distance visual outcomes of multifocal intraocular lens with inferior segmental near add. Graefes Arch Clin Exp Ophthalmol 258: 1735-1743.
Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J \& Büehren T (2016): Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg 42: 76-83.
Ladas JG, Siddiqui AA, Devgan U \& Jun AS (2015): A 3-D "super surface" combining modern intraocular lens formulas to generate a "super formula" and maximize accuracy. JAMA Ophthalmol 133: 1431-1436.
Melles RB, Holladay JT \& Chang WJ (2018): Accuracy of intraocular lens calculation formulas. Ophthalmology 125: 169-178.
Olsen T (2007): Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85: 472-485.

Omoto MK, Torii H, Hayashi K, Ayaki M, Tsubota K \& Negishi K (2020): Ratio of axial length to corneal radius in japanese patients and accuracy of intraocular lens power calculation based on biometric data. Am J Ophthalmol 218: 320-329.
Reitblat O, Levy A, Kleinmann G, Lerman TT \& Assia EI (2017): Intraocular lens power calculation for eyes with high and low average keratometry readings: comparison between various formulas. J Cataract Refract Surg 43: 1149-1156.
Roh YR, Lee SM, Han YK, Kim MK, Wee WR \& Lee JH (2011): Intraocular lens power calculation using IOLMaster and various formulas in short eyes. Korean J Ophthalmol 25: 151-155.
Wang Q, Jiang W, Lin T, Wu X, Lin H \& Chen W (2018): Meta-analysis of accuracy of intraocular lens power calculation formulas in short eyes. Clin Exp Ophthalmol 46: 356-363.
Wang Q, Jiang W, Lin T, Zhu Y, Chen C, Lin H \& Chen W (2018): Accuracy of intraocular lens power calculation formulas in long eyes: a systematic review and meta-analysis. Clin Exp Ophthalmol 46: 738-749.

Received on March 29th, 2021.
Accepted on June 17th, 2021.
Correspondence:
Youngsub Eom, MD, PhD
Department of Ophthalmology
Korea University Ansan Hospital
123, Jeokgeum-ro, Danwon-gu, Ansan-si
Gyeonggi-do 15355
Korea
Tel: +82-31-412-5160
Fax: +82-31-414-8930
Email: hippotate@hanmail.net
None of the authors have any financial or proprietary interests in any material or methods mentioned in this paper. Publication of this article was supported by a TRC Research Grant of the Korea University Medicine and Korea Institute of Science and Technology, by Korea University Ansan Hospital grant, by Korea University grants (K1625491, K1722121, K1811051, K1913161 and K2010921), by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health \& Welfare, the Ministry of Food and Drug Safety) (Project Number: 9991007583, KMDF_PR_20200901_0296), and by Korea Environment Industry \& Technology Institute (KEITI) through Technology Development Project for Safety Management of Household Chemical Products, funded by Korea Ministry of Environment (MOE) (2020002960007, NTIS-1485017544). The funding source had no role in the design or conduct of this research. This work was presented in part at the annual meeting of American Society of Cataract and Refractive Surgery (ASCRS), Virtual Meeting, May 16-17, 2020.

