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Abstract
Background: Fowler syndrome is a rare autosomal recessive disorder characte-

rized by hydranencephaly–hydrocephaly and multiple pterygium due to fetal aki-

nesia. To date, around 45 cases from 27 families have been reported, and the

pathogenic bi-allelic mutations in FLVCR2 gene described in 15 families. The

pathogenesis of this condition has not been fully elucidated so far.

Methods: We report on an additional family with two affected fetuses carrying a

novel homozygous mutation in FLVCR2 gene, and describe the impact of known

mutants on the protein structural and functional impairment.

Results: The present report confirms the genetic homogeneity of Fowler syn-

drome and describes a new FLVCR2 mutation affecting the protein function. The

structural analysis of the present and previously published FLVCR2 mutations

supports the hypothesis of a reduced heme import as the underlying disease’s
mechanism due to the stabilization of the occluded conformation or a protein

misfolding.

Conclusion: Our data suggest the hypothesis of heme deficiency as the major

pathogenic mechanism of Fowler syndrome.
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1 | INTRODUCTION

Proliferative vasculopathy and hydranencephaly–hydro-
cephaly syndrome (PVHH, OMIM#225790), also known as
Fowler syndrome, is a rare autosomal recessive disorder
characterized by hydranencephaly–hydrocephaly, multiple
pterygium due to fetal akinesia, a distinctive glomerular
vasculopathy in the central nervous system (CNS) and

retina, and diffuse ischemic lesions of the brain stem, basal
ganglia, and spinal cord with calcifications. This disease
was first described in 1972 in five affected fetuses from a
single family, displaying “bubble-like” cerebral hemi-
spheres associated with the peculiar vasculopathy in CNS
and retina (Fowler, Dow, White, & Greer, 1972). Subse-
quent reports have shown that hydranencephaly–hydro-
cephaly resulted from the destruction of brain tissue due to
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vascular anomalies, while other features were likely se-
condary to CNS injuries. The disorder is almost invariably
prenatally lethal, usually detected by ultrasound between
the 13 and 27 weeks of gestation (Williams et al., 2010).
Only a single brother–sister pair has been reported, who
survived beyond the neonatal period (Kvarnung et al.,
2016).

The clinical diagnosis of PVHH syndrome has been
molecularly confirmed in 15 families showing bi-allelic
mutations in FLVCR2 gene (OMIM*610865). However,
the pathogenesis of this disorder remains uncharacterized.

FLVCR2 is a cell surface protein, related to the heme
exporter/retroviral receptor FLVCR1, functioning as a
receptor for FY981 feline leukemia virus. The role of
FLVCR2 was considered related to calcium metabolism
(Brasier et al., 2004) and heme import (Duffy et al.,
2010). The protein is expressed in a broad range of
human tissues, including liver, placenta, kidney, and
strongly in the brain (Duffy et al., 2010). Heme (iron
and protoporphyrin IX) plays a pivotal role in many cel-
lular processes accounting for a major component of
hemoproteins (e.g., cytochromes, nitric oxide synthase,
hemoglobin, etc.). Heme deficiency impacts on the mito-
chondrial respiratory chain, specifically onto the assembly
of complex IV in human fibroblasts (Atamna, Liu, &
Ames, 2001). Abnormalities of FLVCR2 function could
affect this process with effects on neuronal migration
dependent on oxidative phosphorylation, causing neurode-
generation and developmental abnormalities such as
hydranencephaly–hydrocephaly (Castro-Gago, Eir�ıs-Pu~nal,
& Iglesias-Diz, 1999). To date, it remains unclear
whether the proliferative vasculopathy observed in PVHH
syndrome is primary or secondary to neurodegeneration.

Here, we report on two fetuses affected by Fowler syn-
drome in which the diagnosis was suggested, after the se-
cond pregnancy’s termination, based on pictures taken
before autopsy and corroborated by X-rays features and tar-
geted genetic testing.

2 | MATERIAL AND METHODS

2.1 | Ethical compliance

The research was conducted in accordance with the
Declaration of Helsinki and approved by the local Ethics
Committee.

2.2 | Case report

The healthy parents were 28 years old at time of first
conception. In the first pregnancy, prenatal ultrasound at
17 weeks of gestation disclosed a single fetus with hypo-
telorism, hydranencephaly, absent visualization of Willis

polygon, and defective cerebral cortical development.
Bilateral hydrothorax and generalized edema were also
present. Kidneys were small and dysplastic with a
depleted bladder. Based on these defects, the informed
parents opted for pregnancy’s termination. The macro-
scopic post-mortem evaluation revealed multiple pterygia,
arthrogryposis/camptodactyly, and abnormalities of the
craniofacial appearance related to the CNS anomalies
(Figure 1a–c). No microscopic or radiological investiga-
tion was performed and no biological specimen was col-
lected. Genetic counseling was not offered to parents. In
the second pregnancy, 6 months later, prenatal ultra-
sounds at 13 and 16 weeks were unremarkable. An addi-
tional ultrasound scan at 20 weeks disclosed
hydranencephaly with visualization of the cerebral falx
and vascular structure of the Willis polygon, and without
visualization of cerebral cortical and posterior fossa struc-
tures. Fetal akinesia deformation sequence was suspected.
Post-mortem evaluation disclosed a clinical spectrum of
defects overlapping those of the first fetus (Figure 1d–f).
X-ray imaging showed scoliosis and sacrum agenesis
(Figure 1g–h). The microscopic evaluation disclosed
atrophic cortical mantle and glomeruloid vascular struc-
tures disseminated in the spinal cord, cerebral system,
and cerebellum. Large necrotic areas and calcifications
were also detected.

Following the second termination, parents requested
genetic counseling. Based on recurrence in two subsequent
pregnancies of fetal akinesia deformation sequence with
hydranencephaly and a distinct CNS vasculopathy, a diag-
nosis of Fowler syndrome was suggested and targeted
genetic testing performed on tissues sampled from the sec-
ond fetus and on parental blood.

2.3 | Molecular analysis

The clinical diagnosis was molecularly confirmed by San-
ger sequencing of FLVCR2 gene on a DNA sample
extracted by the brain of the second fetus that disclosed a
homozygous missense mutation NM_017791.2:c.608C>A
(p.Ser203Tyr). Segregation analysis confirmed that parents
were heterozygous carriers (Figure 1i; primer sequence and
PCR conditions were available upon request). The identi-
fied variant has not been reported in the literature or public
databases suggesting a possible consanguinity of the pa-
rents supported by a high rate of shared rare and very rare
variants spanning the entire genome (data not shown).

2.4 | Structural analysis

Structural analysis was carried out to evaluate the impact
of the present and published FLVCR2 gene mutations
found in PVHH affected subjects on the protein function.
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Structurally characterized homologues of the human Feline
leukemia virus subgroup C receptor-related protein 2
(FLVCR2) were found with RaptorX (K€allberg et al.,
2012) and FLVCR2 homology models were built on the
top scoring five targets. Prediction of membrane protein
topology was made with TOPCONS (Tsirigos, Peters, Shu,
K€all, & Elofsson, 2015). Molecular graphics were rendered
with PyMOL (http://www.pymol.org/).

3 | RESULTS AND DISCUSSION

To date about 45 fetuses affected by Fowler syndrome
from 27 families have been reported. In 2010, next-genera-
tion sequencing technologies led to the identification of the
molecular defect underlying this disorder (Lalonde et al.,
2010); (Meyer et al., 2010); (Thomas et al., 2010). The
present report confirms the genetic homogeneity of Fowler

FIGURE 1 (a–c) First fetus: (a) clinical features; (b) macrocephaly and craniofacial abnormalities; (c) pterigium of the elbow. (d–h) Second
fetus: (d) clinical features; (e) pterigium of the elbow; (f) edema of feet; (g–h) scoliosis and sacrum agenesis. (i) Family’s pedigree and
electropherograms of FLVCR2 mutation (NM_017791.2)
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FIGURE 2 (a) Multiple sequence alignment of FLVCR2 protein (and the FLVCR1 paralogue) among species around the sites of the
p.Ser203Tyr mutation (invariant residues are grayed). (b) Scheme of predicted membrane protein topology of FLVCR2. In red, the amino acid
change identified in the present family. In blue, the amino acid change identified to date in Fowler syndrome. (c) Homology models of FLVCR2
(residues 86–491) based on structurally characterized MFS transporters. In the upper row of structures (viewed from the membrane side), the
extracellular and cytoplasmic membrane layers (black planes) are positioned according to the predicted TM topology. The lower row represents
the above structures rotated by 90 degree and viewed from the cytosol (TM regions 1–12 are labeled). Ser203 (site of the p.Ser203Tyr mutation)
is shown as colored spheres and it is marked by red arrows. Substrates are transported across the membrane through the central part of the
protein along the direction perpendicular to the figure plane of the cytosol view
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syndrome and describes a new FLVCR2 mutation affecting
the protein function.

FLVCR2 belongs to the major facilitator superfamily
(MFS), and represents the largest group of secondary active
membrane transporters, whose members are specialized in
the permeation of a variety of molecules. FLVCR2 has 12
predicted transmembrane helices, and works as a heme
importer (Duffy et al., 2010) and likely as a calcium trans-
porter (Brasier et al., 2004). MFS proteins are thought to
transport substrates using a rocker-switch mechanism
(Huang, Lemieux, Song, Auer, & Wang, 2003) involving
two major conformations, inward and outward, achievable
by mutual rotation of ca. 40 degree of the two homologous
halves of the protein (TM 1-6 and 7-12 for MFS proteins
with 12 TMs) forming the transmembrane core.

We have examined how the protein functioning might
be affected by the p.Ser203Tyr amino acid change and
whether it may be responsible for the observed phenotype.
As shown in Figure 2a, the affected serine residue is
invariant in the protein sequences of vertebrates for both
FLVCR2 and the FLVCR1 paralogue, and predicted to be
in the helical portion extending from the fourth transmem-
brane (TM) region into the cytosol (Figure 2a,b). Congruen-
tly with this prediction, mapping the site of the mutation
on models obtained from structurally characterized MFS
proteins allows to locate Ser203 in the helix protruding
from the TM4 region into the cytosol (Figure 2c). Interestin-
gly, this helix packs with the cytosolic helical extensions
of TM10 and TM11 in addition to the covalently linked
helix of TM5 in two FLVCR2 conformers: the model
arranged in outward-facing conformation (based on the
E. coli YajR structure), and the model with inward-facing
and occluded conformation (constructed on the S. indica
PiPT structure). These interhelix interactions occur at the
level of Ser203. Thus, the p.Ser203Tyr amino acid change,
which implies the replacement of a tiny serine with the
much larger and aromatic tyrosine, introduces additional
and undue interactions with surrounding residues, and
causes an important impact on the stability of conforma-
tions, critical for the substrate binding and membrane tran-
sport ability of the FLVCR2 protein. These observations
were inferred from the homology modeling of FLVCR2
with other MSF members with known 3D structure. As a
matter of fact, by belonging to the Major Facilitator Super-
family, FLVCR2 should transport substrates through the
same rocker-switch mechanism proposed for this superfa-
mily and undergo the same key conformational changes as
captured in crystal structures of homologous MFS proteins
(Figure 2c). Our data suggest the hypothesis of heme defi-
ciency as the major pathogenic mechanism for this disor-
der. In fact, the protein affected by the p.Ser203Tyr amino
acid change seems to maintain the occluded conformation
with a reduced heme import. Interestingly, the FLVCR2
missense mutations related with Fowler syndrome usually
affect transmembrane domains with possible impact onto
the channel proper function or folding, while additional
null mutations seem to cause lack of protein, supporting
the hypothesis of an impaired heme import as the principal
pathogenic mechanism. The structural analysis of previous-
ly published FLVCR2 mutations supports this hypothesis
(Figure 3) due to the stabilization of the occluded confor-
mation or a protein misfolding. In vitro and in vivo func-
tional validation are needed to support this hypothesis.
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FIGURE 3 Homology models of FLVCR2 (residues 86–491)
based on GlpT di E. coli, PDB 1PW4 model (first on the left in
Figure 2c). Known mutants are shown as colored spheres and marked
by blue arrows. Substrates are transported across the membrane
through the central part of the protein along the direction
perpendicular to the figure plane of the cytosol view
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