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Differential landscape of non-
CpG methylation in embryonic 
stem cells and neurons caused by 
DNMT3s
Jong-Hun Lee, Sung-Joon Park    & Kenta Nakai   

Methylated non-CpGs (mCpH; H means A, C, and T) have emerged as key epigenetic marks in 
mammalian embryonic stem cells (ESCs) and neurons, regulating cell type-specific functions. In these 
two cell types, mCpHs show distinct motifs and correlations to transcription that could be a key in 
understanding the cell type-specific regulations. Thus, we attempted to uncover the underlying 
mechanism of the differences in ESCs and neurons by conducting a comprehensive analysis of public 
whole genome bisulfite sequencing data. Remarkably, there were cell type-specific mCpH patterns 
around methylated CpGs (mCpGs), resulted from preferential methylation at different contexts by 
DNA methyltransferase (DNMT) 3a and 3b. These DNMTs are differentially expressed in ESCs and 
brain tissues, resulting in distinct mCpH motifs in these two cell types. Furthermore, in ESCs, DNMT3b 
interacts with histone H3 tri-methylated at lysine 36 (H3K36me3), resulting in hyper-methylation at 
CpHs upon actively transcribed genes, including those involved in embryo development. Based on the 
results, we propose a model to explain the differential establishment of mCpHs in ESCs and neurons, 
providing insights into the mechanism underlying cell type-specific formation and function of mCpHs.

DNA methylation, the addition of a methyl group on the fifth carbon at cytosine, is one of the most important 
epigenetic modifications. It preferentially occurs at CpG (cytosine followed by guanine) sites in mammalian cells, 
regulating cell development and maintenance1, 2. In contrast, the methylation at non-CpG (CpH; H includes A, C, 
and T) sites had been barely detected in mammalian cells. However, recent improvements in sequencing technol-
ogy enabled researchers to determine that significant amounts of methylated CpHs (mCpHs) exist in mammalian 
pluripotent stem cells and non-dividing cells (i.e., neurons). The mCpHs are involved in cell type-specific regu-
lation such as embryonic stem cell differentiation or synaptogenesis3–8. Thus, mCpH, as mCpG, has emerged as a 
key epigenetic factor, especially in pluripotent stem cells and neuron.

In these cells, both mCpGs and mCpHs are induced by DNA methyltransferase3a and 3b (DNMT3a and 
DNMT3b, respectively), with allosteric cooperation of DNMT3l9. Since these methyltransferases show much 
higher affinities at CpGs than CpHs, the mCpHs are spatially dependent on mCpGs3, 6, 10–13. Despite the depend-
ency, mCpHs regulate several cell type-specific functions independently to the methylation at CpGs. In the brain, 
mCpHs gradually increase with age, similar with the progression of synaptogenesis5; whereas mCpGs do not. In 
addition, the methyl-CpG binding protein 2 (MeCP2), the mutation of which causes Rett syndrome, binds to not 
only mCpGs, but also mCpHs14. Considering that postnatal onset of Rett syndrome coincides with the emer-
gence of mCpH in neurons, MeCP2-related neuro-diseases could be governed by mCpHs rather than mCpGs15. 
Additionally, in ESCs, the reduction of mCpHs leads to the decrease of differentiation capacity16. Thus, even 
though mCpHs are spatially correlated to mCpGs, they play important roles on cell type-specific processes inde-
pendently of mCpGs.

One of the underlying mechanisms by which mCpHs govern cell type-specific processes is their differential 
distribution between the cell types. For example, the CpH methylation primarily occurs at CAG motif in ESCs8, 17,  
while at CAC motifs in neurons5, 18, implying that at least two distinct mechanisms for formation (and/or func-
tion) of the mCpHs exist10. In addition, CpHs tend to be hyper-methylated in actively transcribed genes in 
ESCs, while hypo-methylated in neurons5, 8. Since DNA methylation tends to repress gene expression in most 
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cell types19, the positive correlation between CpH methylation and gene expression in ESC has been an enigma 
among researchers8, 10. Thus, mCpH shows different distribution and potential role in gene expression between 
ESCs and neurons. However, what causes the differences remains unknown.

In this study, to uncover the mechanism of the differential CpH methylation, we analysed the whole genome 
bisulfite sequencing (WGBS) data of human ESCs, neurons, and brain tissues. In addition, we included WGBS 
data of DNMT knockout human and mouse ESCs to investigate the role of DNMTs on cell type-specific methyla-
tion5, 12, 20–25. Through a comprehensive analysis, we found that CpH methylation pattern near CpGs (within ± 100 
base pair (bp) from CpGs) is highly distinguishable between ESCs and neurons. Further analyses uncovered that 
DNMT3a and DNMT3b, differentially expressed in those two cell types, preferentially methylate cytosine in 
different contexts, resulting in distinct motifs and patterns of mCpHs in ESCs and neurons. Additionally, in 
ESCs, the DNMT3b preferentially interacts with H3K36me3, resulting in hypermethylation at CAGs on actively 
transcribed gene-body regions. The methylated CAGs were enriched in genes related to embryo development, 
indicating possible role of mCpHs on embryogenesis. Based on these results, we suggest a differential CpH meth-
ylation model that could explain distinct features and functions of mCpHs in ESCs and neurons. Altogether, our 
results provide new insights on cell type-specific formation and function of mCpHs in mammals.

Results
The integrative approach for WGBS read-aligning successfully reproduced known characteris-
tics of mCpH in ESCs and neurons.  To analyse methylation in both CpG and CpH contexts, we aligned 
WGBS reads generated from various experiments (S. Table 1). Three bisulfite read aligners, Bismark26, BSMAP27, 
and BS-seeker228, were used for read aligning, and the outputs were integrated as previously described29. This 
integration method has proven to improve methylation detection accuracy and reduce artifacts from experimen-
tal settings29.

Statistic features of the regenerated data coincided with those obtained in previous studies (Fig. 1a)3, 5–8, 10. In 
human samples, although most of the CpGs were hyper-methylated (75–85%), the average methylation levels 
at CpHs (mCpH level) were distinct across cell types. It was mostly abundant in neurons (>5%), abundant in 
ESCs derived from male (H1) and matured brain tissues (>1%), detectable in ESCs derived from female (H9), 
early-passage ESCs (HUES64), and immature brain tissues (0 to 5 year-old; about 1%), and mostly undetectable 
in other tissues (The heart, spleen, and lung; <0.5%). In addition, we observed an increase of mCpH levels along 
with brain aging5, and lower mCpH level in H9 than in H1, as previously reported8, 17, 30. Remarkably, the WGBS 
samples were clearly clustered based on the tissue of origin (or cell types) by both CpG and CpH methylation pat-
terns, indicating our integrated dataset well represents differential methylation pattern among cell types (Fig. 1b).

Lastly, we confirmed the known difference of mCpHs between ESC and neuron. The motif abundant at 
hyper-methylated CpHs (Mei>0.5, See Method section) was “CAG” in all ESC samples, and “CAC” in all neuron 
and brain samples (S. Figure 1a), as previously reported5, 6, 8, 17, 18. In addition, the mCpH level in gene-body 
regions was positively correlated to FPKMs in ESCs (H1 and HUES64), whereas it was negatively correlated in 
adult brain (S. Figure 1b, Spearman’s rank correlation coefficient (ρ) equals to 0.37, 0.3, and −0.29, respectively).

Figure 1.  Human methylome from integrated WGBS data. (a) Genome-wide average methylation level at CpGs 
(red line) and CpHs (blue bar) extracted from WGBS data. NEUR and Br represent neurons and brain tissues, 
respectively. The numbers followed by Br- means age of samples (d and y mean day and year, respectively). H1, 
H9, and HUES64 are human embryonic stem cell lines. Numbers at the end of the labels represent biological 
replicates. (b) WGBS samples hierarchically clustered by genome-wide CpG (left) and CpH (right) methylation 
levels. The whole genome was divided into 1 k-bp-long blocks and the average methylation levels of blocks were 
used to calculate the Pearson’s correlation coefficient (PCC). Colours in the x-axis represents the same cell (or 
tissue) types (blue: brain and neurons, red: ESCs, and yellow: other tissues).
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Altogether, our integrated methylome successfully reproduced the known characteristics of CpH methylation 
in mammalian cells. Since the mCpH levels in early brains (Br-35d and −2y) and somatic cells are extremely low, 
we excluded these samples from further analysis and focused on methylation in ESCs, neurons, and adult brains. 
In addition, we considered that the characteristic of mCpHs in brain samples represents that in neurons, since 
mCpHs are mostly absent in other cells of brain5.

Cell type-specific CpH methylation patterns are observed in mCpG-proximal region 
(±100 bp).  Using the WGBS dataset, we analysed correlation between CpG and CpH methylation. We 
divided human whole genome (hg19) into 1 k-bp blocks and compared average methylation level at CpGs and 
CpHs in each block. The genome-wide CpG and CpH methylation levels were positively correlated as previously 
reported3, 6, 11, 18 (S. Figure 2a; Pearson’s correlation coefficients (PCC) were from 0.27 to 0.44). In further analysis 
with blocks in which CpGs are hemi-methylated (difference of mCpG level between DNA strands > 0.5), mCpH 
levels were significantly higher at the same strand with highly methylated CpGs, compared to those at the oppo-
site strand, indicating that CpG and CpH methylation correlated in a strand-specific manner (S. Figure 2b,c). 
Additionally, the correlation between mCpG and mCpH was significantly higher at exons, promoter regions, 
and putative enhancer regions, implying that the co-regulation of CpG and CpH methylation mainly occurs in 
transcription-regulatory regions (S. Figure 2d).

Next, we attempted to measure distance required so that mCpG and mCpH could be co-regulated. First, we 
measured the probability that mCpHs appear at each distance from methylated or un-methylated CpGs (Fig. 2a). 
The probability showed a clear peak near mCpGs in both ESCs and neurons, indicating the concentration of 
mCpHs near mCpGs. The tendency was confirmed with a subset of CpGs, around which (±500 bp) no other 
CpGs exist (S. Figure 3a). Second, we measured the correlation between mCpGs and surrounding mCpHs. 
The correlation coefficients were also significantly higher near CpGs (S. Figure 3b) supporting that CpG and 
CpH methylation could be co-regulated when these are closely positioned. Thus, we concluded that methyla-
tion at CpHs is highly dependent to that at proximal CpGs, when the distance between CpGs and CpHs is less 
than ± 100 bp, which sufficiently covers the probability and correlation coefficient peaks.

We analysed methylation pattern at CpHs within ± 100 bp from mCpGs (Fig. 2b). In ESCs, a clear CpH meth-
ylation peak was observed at −4 bp from mCpG as previously reported31. On the other hand, in neurons and 
brains, there was an 8–10 bp periodicity among mCpH peaks starting from mCpGs. This has been suggested as 
a mark for CpG methylation by DNMT3a-DNMT3l enzyme complex32, indicating that mCpGs and mCpHs are 
co-regulated by DNMT3a in neurons and brain tissues. Remarkably, the methylation pattern at mCpG-proximal 
CpHs was conserved among same cell types but clearly distinguishable between ESCs and neurons (Fig. 2c), 
implying that different methylation mechanisms exist between the two cell types. Altogether, our data indicated 
that the CpHs are methylated along with CpGs, but show different methylation patterns in ESCs and neurons.

DNMT3a and DNMT3b preferentially methylate CAC and CAG contexts, respectively.  To 
uncover what causes the distinct methylation patterns at mCpG-proximal CpHs, and the known differences of 
mCpHs in ESC and neuron (S. Figure 1a and b), we analysed DNMT knockout human and mouse ESCs.

As a first step, we analysed mouse ESCs (mESCs) in which DNMT1, and both DNMT3a and DNMT3b are 
knocked out (D1-KO and D3-KO mESC, respectively)23. The mCpH level was largely decreased in D3-KO mESC, 
indicating that DNMT3a and DNMT3b are mainly responsible for CpH methylation (S. Figure 4a). Interestingly, 
in D1-KO mESC, the mCpH level was higher near mCpGs, and showed clear peaks with 180 bp interval, close to 
the nucleosome positioning pattern (Fig. 3a). Since both mCpGs and mCpHs are mainly introduced by DNMT3s 
in D1-KO sample, this result indicates that CpHs are methylated along with CpGs, by DNA walking of DNMT3s. 
In addition, the correlation between mCpG and mCpH levels was higher in D1-KO mESC and lower in D3-KO 
mESC, compared to that in wild type mESC (S. Figure 4b; PCC = 0.4, 0.07, and 0.2, respectively). Altogether, 
our data confirmed that DNMT3a and DNMT3b methylate CpHs, in correlated way to the methylation at CpGs.

Next, we analysed the contribution of DNMT3a and DNMT3b to CpH methylation in human ESC (HUES64 
cell line). We divided the CpHs into two groups, asymmetric (CpHpH; CpH followed by A, C, or T), and sym-
metric (CpHpG; CpH followed by G) CpHs6, 33. Remarkably, in the DNMT3a knockout sample, the methylation 
level at CpHpH contexts decreased more than that at CpHpG contexts, whereas the opposite was observed in 
the DNMT3b-knockout sample (Fig. 3b). Similarly, in DNMT3b-knocked out H9 cells20, the methylation level 
at CpHpG contexts decreased more than that at CpHpH contexts (S. Figure 4c). Further analyses indicated that 
the methylation level at CAC tri-nucleotides was largely decreased by DNMT3a-knockout, whereas that at CAGs 
was decreased by DNMT3b-knockout (S. Figure 4d). The methylation level at CAAs was also reduced by the 
DNMT3b-knockout, even though the methylation level in wild type was not as high as that at CACs or CAGs. The 
methylation level in other contexts did not show significant difference.

We confirmed similar tendency in mouse ESC samples, generated by Dr. Tuncay Baubec’s group24. They 
knocked out DNMT1, DNMT3a, and DNMT3b from mouse ESCs and then reintroduced DNMT3a and 
DNMT3b, respectively, to measure de novo methylation by each methyltransferase. With this sample set, we 
confirmed preferential de novo methylation at mCpG-proximal CpHs by the DNMTs (Fig. 3c). Remarkably, the 
cytosines at CACs are more methylated by DNMT3a than by DNMT3b, whereas those in CAGs are mostly meth-
ylated by DNMT3b. The methylation at CAAs increased as DNMT3b re-induced in lower level compared to that 
at CAGs, as shown in human ESC samples. Thus, we concluded that both DNMT3a and DNMT3b are responsible 
for the methylation at CpHs, especially near mCpGs, but they methylate cytosines in different contexts; DNMT3a 
primarily methylate CAC tri-nucleotides, while DNMT3b methylates CAG tri-nucleotides.
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Figure 2.  Cell type-specific CpH methylation around CpGs. (a) Probability that mCpHs exist around 
methylated CpGs (metylation level >0.8, red), and un-methylated CpGs (methylation level <0.2, black). The 
identification of (un)methylated CpHs is described in the Method section. To calculate the probabilities, the 
surrounding (±500 bp) of every CpG divided into 10-bp-long blocks, and blocks containing more than one 
mCpH were counted, given the condition of CpGs (methylated or un-methylated). H1 represent H1 sample 
replicate 1 (H1.1), and NEUR represents neuron sample replicate 1 (NEUR.1). (b) The accumulated CpH 
methylation levels at each distance from methylated CpGs (red bars), and un-methylated CpGs (black bars). 
Blue arrows highlight mCpH level peak at -4 bp from mCpG in ESC, and 8 bp-periodicity of the peaks in 
neuron. (c) Heatmap showing the Pearson’s correlation coefficients (PCC) across mCpG-proximal (±100 bp) 
mCpH levels of the samples. H9 represents H9 replicate 1 (H9.1), HUES64 represents HUES64 replicate 1 
(HUES64.1).
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The differential activities of DNMT3a and DNMT3b cause distinct features of mCpHs in ESCs 
and neurons.  To understand how the differential activities of DNMT3a and DNMT3b affect cell type-specific 
features of mCpH, we analysed WGBS, RNA-seq, and ChIP-seq data of human ESCs, neurons, and brain tissues.

First, by combining expression data from 143 human adult brains and 33 human ESCs (S. Table 2), we con-
firmed that DNMT3b is highly expressed in ESCs, whereas DNMT3a is in adult brains (Fig. 4a). This result is 
coincided with previous result34, reporting that DNMT3b is actively transcribed in early ESCs, but decreased 
as cell differentiated. Remarkably, the abundant motif at mCpHs in DNMT3b-knockout human ESC was not 
CAG, but CAC (S. Figure 1a), indicating that the hyperactivity of DNMT3b causes the preferential methylation 
at CAGs in ESC. In addition, the methylation pattern at mCpG-proximal CpHs in DNMT3b-knockout ESC was 
more similar to that in the brains and neurons, than that in wild type ESCs (Fig. 4b). Thus, our data revealed that 
the differentially enriched mCpH motifs in ESCs and neurons, as well as the distinct mCpG-proximal mCpH 
patterns in the two cell types, are caused by the differential activities of DNMT3a and DNMT3b.

Next, we attempt to understand whether the activity of DNMT3s affects the correlation between CpH meth-
ylation and gene expression. In contrast with neurons and brains, the highly transcribed genes in ESC showed 
higher mCpH level in their gene-body regions (Fig. 4c). This tendency remained in DNMT3a-knockout ESC, 
however, almost disappeared in DNMT3b-knockout ESC. In addition, the hyper-methylation in highly expressed 
gene-body regions was greatly focused on CpHpG contexts, at which methylation mainly occurs by DNMT3b. 
Thus, we concluded that DNMT3b causes the positive correlation between mCpH level and gene expression level 
in ESCs.

To explore further, we focused on previous reports that the DNMT3b interacts with tri-methylated histone 3 
lysine 36 (H3K36me3), enriched in highly expressed genes24, 35, assuming that the preferential interaction between 

Figure 3.  Methylation at cytosines in different contexts by DNMT3a and DNMT3b in mouse (a,c) and 
human (b) ESCs. (a) The window-slided (window size = 10 bp) average CpH methylation levels around mCpG 
(methylation level >0.8) in WT, DNMT1-KO, and DNMT3-KO mouse ESC. (b) Bar graphs showing the 
average methylation levels at CpHpH (blue) and CpHpG (red) contexts in wild type (WT), DNMT3a-knock out 
(D3a-KO), DNMT3b-knock out (D3b-KO), and DNMT3a/b-knock out (D3-DKO) HUES64 cell line. WT ESC 
is HUES64.2. (c) Average methylation level at CAC, CAT, CAA, and CAG contexts in mouse ESCs, in which 
DNMT1, DNMT3a, and DNMT3b were knocked out (TKO), and DNMT3a and DNMT3b were reintroduced 
(TKO+3a and TKO+3b), respectively24. Red and grey bars respresent average mCpH level in mCpG-proximal 
regions (mCpG level>0.5) and whole genome, respectively.
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DNMT3b and H3K36me3 causes the hyper-methylation at CpHs in highly expressed gene-body regions. To 
confirm this, we analysed the methylation at CACs and CAGs upon 7 histone modifications, known as markers 
of transcription regulatory regions such as enhancer, promoter, or gene-body (S. Table 3)36. Among the histone 
marks, the H3K36me3 was highly positively correlated with methylation at CAGs, compared to the methyla-
tion at CACs (S. Figure 5a; PCC equals to 0.34 and 0.15, respectively). The positive correlation became weak as 
DNMT3b knocked out (PCC equals to 0.21). In addition, we confirmed that CpH methylation is more positively 
correlated with the H3K36me3 overlapping rate (Method section), than with gene expression level (S. Figure 5b; 
Spearman’s rank correlation coefficient (ρ) equals to 0.73 and 0.33, respectively). Altogether, we concluded that 

Figure 4.  Cell-type specific features of mCpHs induced by differential activity of DNMT3s. (a) Boxplot 
representing the FPKM and RPKM of DNMT3a and DNMT3b in 36 ESCs (H1 and H9) and 143 adult brain 
tissues (from 13 to 40 year-old) of human. The boxes include values from 25% to 75% in order. The P-value was 
calculated from Wilcox-rank t-test. Specifics for the data are described in S. Table 2. (b) Hierarchical clustering 
results by mCpG-proximal CpH methylation pattern. Shown in bottom represents abundant DNA motif near 
mCpHs (−1 bp to 4 bp) in mCpG-proximal region. (c) Methylation levels around highly expressed (red, higher 
20%), lowly expressed (blue, lower 20%), and total (yellow) genes. The gene bodies and surround (±20% of 
those) were normalized into 1k-bins and extracted the average methylation levels at each bin, and processed by 
sliding window (window size = 30 bp). The transcription star site (TSS) and transcription terminate site (TTS) 
are in 142’th and 857’th bins, respectively, described as black dotted lines. (d) H3K36me3 peaks and mCpH 
levels around gene-body region of ubiquitin specific peptidase 22 (USP22), an epigenetic modifier that regulates 
embryonic stem cell differentiation60. This is printed by IGV61.
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the interaction between DNMT3b and H3K36me3 leads to the positive correlation between CpH methylation 
and gene expression in ESC.

We confirmed this with mouse ESCs, by analysing the mCpH level and expression level of genes in sam-
ples that DNMTs and SET domain containing 2 (SETD2), a catalyser of H3K36me37, were knocked out24 (S. 
Figure 5c). The mCpH level tended to be high at actively expressed gene bodies in wild type ESCs (ρ = 0.12), 
whereas the tendency disappeared as DNMT1, 3a, and 3b are knocked out (Corr. = −0.04). Remarkably, the 
positive correlation was recovered by reintroducing DNMT3b (Corr. = 0.02), whereas it was not by reintroducing 
DNMT3a (Corr. = −0.06). The positive correlation in DNMT3b-reintroduced sample disappeared as removing 
H3K36me3 marks by SETD2-knockout (Corr. = −0.15). Altogether, the results indicated that the positive corre-
lation between CpH methylation and gene expression in ESC is caused by the activity of DNMT3b, preferentially 
methylates CAGs upon H3K36me3 marks that enriched in actively transcribed gene-body regions.

Lastly, we attempted to explore whether the methylation by interaction between H3K36me3 and DNMT3b is 
involved in ES-specific functions. We screened 418 genes of which CAGs in gene-body regions are 
hyper-methylated (Mei> 0.05, top 3% of all genes), and more than half of the gene-body regions are covered by 
H3K36me3 marks (   histone overlapping rate > 0.5, S. Figure 6a). The enriched gene ontology terms (GO terms, S. 
Table 4) of the genes were clustered into several representative biological processes such as mRNA metabolism, 
chromosome organization, and cellular response to DNA damage stimulus (S. Figure 6b, S. Table 5). These have 
been identified as being regulated by H3K36me3 marks in previous studies38–40, indicating that our data repre-
sents the properties of H3K36me3-enriched genes. Remarkably, our gene set included 13 genes related to embryo 
development (GO:0009790, P-value < 7.54 × 10−4, S. Table 6). The gene-body regions of the genes were clearly 
marked by both H3K36me3 marks and mCpHs in ESC, whereas these were not marked by mCpHs in brain tissue 
(Fig. 4d, S. Figure 7). The mCpHs disappeared in DNMT3b-knocked out ESC, indicating that these are intro-
duced by DNMT3b. Thus, our data implied that the mCAGs, outcome of the preferential interaction between 
H3K36me3 and DNMT3b, marks genes involved in embryo development.

Discussion
Through comprehensive analysis of WGBS data, we uncovered the differential mechanism of CpH methylation in 
the two representative mCpH-containing mammalian cell types, ESC and neuron10.

WGBS has been considered as the only method to extract reliable information about mCpH, since other 
experiments such as microarray data41 or reduced representation bisulfite sequencing (RRBS)42 are mainly tar-
geting CpG dinucleotides43. However, this method is financially and timely consuming, so that researchers had 
to deduce results from insufficient number of samples. The integrative read aligning strategy solved this problem 
by facilitating the use of public data with improved accuracy and reduced experimental artifacts. Through this 
integrative approach, we employed 21 human WGBSs and 8 mouse WGBSs including neurons, brains, ESCs, 
DNMT-knockout ESCs, and other somatic cells. The quality of the resulting dataset was verified by reproducing 
the known characteristics of mCpH in each cell type, and by clustering the samples into their originated cell types 
by genome-wide methylation pattern. The enlarged sample set by integrating public data, with improved detec-
tion quality, contributed to the statistical robustness of the following results.

Through analysing genome-wide methylation pattern, we confirmed that mCpHs are spatially correlated 
with mCpGs. Especially, these were co-regulated by DNMT3 when the distance between CpG and CpH is 
under ± 100 bp. This tendency was observed in both ESCs and neurons. Remarkably, however, there were distinct 
methylation patterns at CpHs in CpG-proximal regions ( ±100 bp from CpGs) between ESCs and neurons. Along 
with previously reported difference of the mCpHs in ESCs and neurons10, 31, 32, this distinct methylation pattern 
could be a marker for distinguishing the two cell types, and be a measure for the process of ESC differentiation 
to neuron.

We further explored that the differential distribution of mCpHs is caused by differential activities of DNMT3a 
and DNMT3b. By comparing genome-wide mCpH level in wild type and DNMT knockout ESCs, we found that 
DNMT3a preferentially methylates CAC contexts, whereas DNMT3b methylates CAG contexts. The differential 
targeting of DNMT3a and 3b, combined with their differential expression in ESCs and the brains, is suggested as 
the main reason of the distinct mCpH distribution in the two cell types. In ESCs, the hyperactivity of DNMT3b 
results in preferential methylation at CAGs, whereas in neurons, the DNMT3a is highly expressed, resulting in 
hypermethylation at CACs. Decisively, in DNMT3b-knockout ESCs, mCpH was enriched in CAC context than 
CAG, indicating that the enriched mCpH motif, CAG, is caused by DNMT3b. Additionally, the mCpG-proximal 
CpH methylation pattern in DNMT3b-knockout ESC was more similar to that in brain tissues and neurons, than 
to that in wild type ESCs, implying that the mCpG-proximal mCpH pattern in ESC is induced by the hyperactiv-
ity of DNMT3b. On the other hand, in neuron, the hyperactivity of DNMT3a results in preferential methylation 
at CAC motifs. Considering that MeCP2, a DNA-binding protein that broadly related to neuro-diseases, prefer-
entially binds methylated CACs44, the CpH methylation by DNMT3a could be a key regulator of neuron-specific 
cellular processes. Altogether, we concluded that the differential activity of DNMT3a and DNMT3b induces the 
distinct distribution of mCpHs in ESCs and neurons. The molecular-level mechanism of the differential targeting 
by the enzymes remains as further study subject.

Finally, the positive correlation between CpH methylation and gene expression in ESCs was explained by 
the activity of DNMT3b. In a recent study24, DNMT3b showed preferential interaction with H3K36me3 mark 
in highly expressed gene bodies in ESCs. In our analysis, the methylated CAGs (mCAGs) showed spatial cor-
relation with H3K36me3, and significantly accumulated in highly expressed gene-body region in human ESC. 
Decisively, the positive correlation between mCpH level and expression level disappeared when either DNMT3b 
or SETD2, catalysing H3K36me3 marks, was knocked out, indicating that the preferential interaction between 
DNMT3b and H3K36me3 marks causes the positive correlation between CpH methylation level and gene expres-
sion. Additionally, we confirmed that the methylation at CAGs, mediated by the interaction between DNMT3b 
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and H3K36me3, marks genes involved in embryo development. This implies that the DNMT3b- H3K36me3 
interaction, and/or the outcome of the interaction could be involved in ES-specific cellular processes. For exam-
ple, recent study found that mCpGs, mediated by the interaction between DNMT3b and H3K36me3, prevent 
spurious transcription initiation in mouse ESC35. The mCAGs could be involved in fine-tuning of the process by 
the clearly marking actively transcribed gene-body regions, even though further study is necessary for proving 
it. On the other hand, in neuron and brain, the methylation at CpHs in gene-body regions could be hindered by 
other transcription factors (TFs) in same way with that at CpGs45, since DNMT3a, actively transcribed in neuron, 
showed little preference at gene-body regions or H3K36me3 marks24.

Based on these results, we suggest a differential CpH methylation mechanism by DNMT3a and DNMT3b 
in ESCs and neurons, which instructs further research directions (Fig. 5). Altogether, this study uncovered the 
mechanism underlying the differential distribution and functions of mCpH in ESCs and neurons, and provides 
insightful information regarding the cell type-specific CpH methylation mechanism.

Methods
WGBS data analysis.  WGBS data were downloaded from NCBI Gene Expression Omnibus (GEO). We 
performed quality control by fastqx-toolkit46 with two steps. First, we trimmed tails of the reads of which quality 
score is under 20. Then, we removed reads of which length became less than half after the trimming or the aver-
age read quality is still under 20. Then, we mapped the high-quality bisulfite sequenced reads into the reference 
genomes (hg19 for human samples and mm10 for mouse samples) by three bisulfite-read aligners, Bismark26, 
BSMAP27, and BS-seeker228. Then, we removed duplicated reads by using Picard (http://broadinstitute.github.
io/picard) (for the output of Bismark and BS-seeker2) and Samtools47 (for the output of BSMAP), following the 
suggestion from the manual of each bisulfite-read aligner. Then, we extracted cytosine positions covered by more 
than 5 reads, aligned by more than two aligners.

Methylation detection.  Methylation levels at the cytosines were calculated as read-depth weighted average 
of those from individual aligner29. Then, the non-conversion rate was subtracted from the methylation levels at 
each cytosine, based on the previous statistical model5.

Me
M

t
non conversion rate

(1)
i

j ij

j ij
=

∑

∑
−

Where Mei is methylation level at cytosine i, tij is aligned read number at cytosine i by bisulfite-read aligner j, and 
Mij is unconverted read number at cytosine i by bisulfite-read aligner j. In case the Mei is under 0, we set Mei = 0.

Identification of methylated cytosines.  Since the distribution of the methylation levels at CpGs and 
CpHs are different, we used different strategy for defining methylated or unmethylated status of the two contexts. 
The mCpG was defined as  .Me 0 8i . The mCpH, used for calculating the probability that mCpH exists around 

Figure 5.  Proposed differential methylation mechanism between ESCs and neurons. The illustration describes 
two main discovery about differential CpH methylation in ESCs and neurons. First, the DNMT3b is actively 
transcribed in ESCs, primarily methylating CAG contexts, whereas the DNMT3a is more transcribed in 
neuron, methylating CAC contexts. The methylated CACs are recognized by proteins related to brain diseases, 
such as MeCP244. Second, the DNMT3b preferentially interacts with H3K36me3 marks, abundant in actively 
transcribed gene-body regions, whereas DNMT3a showed little preference. The filled and unfilled circles 
represents methylated and unmethylated statuses, respectively.
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CpGs (Result 2), was identified by a previously introduced method6. We used binomial distribution to detect the 
methylated cytosine loci. At every detected cytosine loci (i), we calculated the probability that methylated reads 
(ki) occur out of total read number (ni) based on binomial distribution with the success probability (p) as bisulfite 
non-conversion rate. If the p-value was under a certain threshold, we determined the cytosine loci as truly 
methylated.

f k n p Pr X k
n
k p p( ; , ) ( ) (1 )

(2)i i i i
i

i

k n ki i i= = =






 − −

In addition, we calculated false discovery rate (FDR) to eliminate false positive. We created an artificial methy-
lome for every WGBS sample, in which read depth at each cytosine was equal to real data. Here, methylated read 
depth was generated following binomial distribution, using the bisulfite non-conversion rate as success probabil-
ity. We calculated FDR by identifying methylated cytosines in artificial data, and finally set the p-value as 10−5, by 
which the FDR was under 0.01 within all WGBS samples.

Correlation analysis.  We divided whole-genome into 1 k-bp blocks to compare the methylation pattern 
at CpG and CpH. Then, the correlation between CpG and CpH methylation levels was calculated across blocks 
that contain more than 10 CpGs and CpHs. In addition, to compare the mCpHs in Cis/Trans-strand to mCpG, 
we extracted blocks where the difference of mCpG level is over 0.5. Additionally, we measured the correlation 
between mCpG and mCpH levels in genic regions, using blocks of which more than 500 bp was covered by the 
genic regions. Genic regions were defined as follows: promoter defined as transcription start site ± 5000 bp, intra-
genic as all the regions of transcription start site (TSS) to transcription termination site (TTS), and intergenic 
as complementary of intragenic. The position information of TSS, TTS, and exon regions were obtained from 
RefSeq annotation. Lastly, to analyse the correlation based on the distance between CpGs and CpHs, we measured 
average mCpH level of every 10 bp from CpGs, to ±500 bp.

Gene expression.  RNA-seq data were downloaded from NCBI GEO, and pre-processed along the same 
line with the WGBS data. The pre-processed reads were aligned by Tophat248, and the fragments per kilo-base 
of transcript per million mapped reads (FPKM) was extracted by Cufflink49. In addition, we collected reads per 
kilobase of transcript per million mapped reads (RPKMs), and FPKMs of DNMT3a and DNMT3b in brains50 and 
ESCs51–53, respectively, for statistical analysis (S. Table 2).

Histone marks.  Histone ChIP-seq data were downloaded and mapped into the reference genome by 
Bowtie54. Then, MACS255 was used for peak calling with default parameters (P < 0.00001, mfold > 10). In addi-
tion, H3K27ac and H3K4me1 peaks were combined for defining putative enhancer regions. The rate of gene-body 
region overlapped by each histone mark was calculated as follow.

=histone overlapping rate length of genebody region overlapped by histone peaks
total length of genebody region (3)

Gene ontology analysis.  We analysed enriched gene ontology terms (GO terms) to explore approximate 
function of genes marked by both H3K36me3 and mCAGs. First, we selected 418 genes whose gene-body regions 
are highly methylated (mCAG level > 0.05, top <3% out of 25919 unduplicated genes), and are enriched with 
H3K36me3 marks (   histone overlapping rate > 0.5). Then, GOrilla56 was used for identifying enriched GO terms 
with P-value <10−3. The genes and enriched GO terms in HUES64 are described in S. Tables 4 and 5, respectively. 
Then, we used REVIGO57 for clustering GO terms, with similarity >0.5. The specifics for the clustered GO terms 
are described in S. Table 6. In all steps, we considered genes that length >1000 bp. In addition, gene symbols that 
start with “LOC” and “Rik” were not included in analysis since those are not recognized by GOrilla.

Statistics.  The Wilcoxon signed rank test were used for determining significance, with P < 0.05. In addition, 
the Pearson’s correlation coefficient (PCC) was used for measuring correlation. All the boxes in boxplot boxes 
include values from 25% to 75% in order. The number of data points for drawing Figures and Extended Data 
Figures are described in S. Tables 4 and 5, respectively.

Data availability.  The data that support the findings of this study are available in Gene Expression Omnibus 
(GEO). The identifiers for WGBS data are GSE1625625, GSE1731225, GSE479665, GSE4671021, GSE4664422, 
GSE6327812, GSE3226820, GSE6145723, GSE3020658, and GSE5741324, and those for RNA-seq data are 
GSE1625625, GSE479665, GSE3028058, GSE3056759, GSE2439952, and GSE7574853, and those for ChIP-seq data is 
GSE1625625. Statistics of the data are described in S. Tables 1 and S3. In addition, the genome-wide CpG and CpH 
methylome processed by three bisulfite-read aligners are browsable at Openlooper (https://openlooper.hgc.jp/), 
with identifiers described in S. Table 1.
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