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Abstract: Secreted angiopoietin/angiopoietin-like (ANGPT/ANGPTL) proteins are involved in many
biological processes. However, the role of these proteins in human breast cancers (BCs) remains
largely unclear. Here, we conducted integrated omics analyses to evaluate the clinical impact of
ANGPT/ANGPTL proteins and to elucidate their biological functions. In BCs, we identified rare
mutations in ANGPT/ANGPTL genes, frequent gains of ANGPT1, ANGPT4, and ANGPTL1, and
frequent losses of ANGPT2, ANGPTL5, and ANGPTL7, but observed that ANGPTL1, 2, and 4 were
robustly downregulated in multiple datasets. The expression levels of ANGPTL1, 5, and 8 were
positively correlated with overall survival (OS), while the expression levels of ANGPTL4 were
negatively correlated with OS. Additionally, the expression levels of ANGPTL1 and 7 were positively
correlated with distant metastasis-free survival (DMFS), while the expression levels of ANGPT2
and ANGPTL4 were negatively correlated with DMFS. The prognostic impacts of ANGPT/ANGPTL
genes depended on the molecular subtypes and on clinical factors. We discovered that various
ANGPT/ANGPTL genes were co-expressed with various genes involved in different pathways.
Finally, with the exception of ANGPTL3, the remaining genes showed significant correlations with
cancer-associated fibroblasts, endothelial cells, and microenvironment score, whereas only ANGPTL6
was significantly correlated with immune score. Our findings provide strong evidence for the distinct
clinical impact and biological function of ANGPT/ANGPTL proteins, but the question of whether
some of them could be potential therapeutic targets still needs further investigation in BCs.

Keywords: integrated omics; breast cancer; angiopoietin protein; angiopoietin-like protein; prognosis

1. Introduction

Breast cancer (BC) is one of the leading causes of death among women worldwide [1–3].
It is well known that BC is a complex and heterogeneous disease with substantial variation
in its molecular and clinical characteristics [4,5]. Multi-omics technologies have proved
to be invaluable tools for deconvoluting the heterogeneity and complexity of somatic BC
genetics, providing a tremendous amount of information relating to the definition of new
biomarkers for diagnosis, prognosis, and the prediction of therapeutic response and to the
identification of new potential therapeutic targets. Based on these findings, a few genomic
prognostic tests are available for BC, such as Oncotype Dx (Genomic Health Inc., Redwood
City, CA, USA) and MammaPrint (Agendia, Amsterdam, The Netherlands). However,
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while some improvements have been made in the diagnosis and treatment of BC, the
prognosis for, and the survival of, patients with metastatic cancer have not dramatically
changed. The demand for precision cancer medicine has never been higher, and therefore,
it is critical to identify new potential therapeutic targets.

Angiogenesis is one of the hallmarks of human cancers. Tumors require sufficient
vasculature to grow beyond a certain size, invade nearby tissue, or spread throughout
the body [6]. To initiate tumor angiogenesis, tumor cells release molecules that send
signals to surrounding normal host tissue. These signals activate specific genes in the host
tissue to stimulate the growth of new vasculature towards the tumor [7]. Many cellular
and molecular mechanisms involved in tumor angiogenesis have been well documented,
for example, vascular endothelium growth factors and their receptors are key factors in
regulating endothelial cell proliferation and migration to form the basis of any vessel [8].
The effective inhibition of tumor angiogenesis can reduce or slow down the spread and
growth of some types of cancer. Several angiogenesis inhibitors have been approved by
the U.S. Food and Drug Administration (FDA) for treating cancer [9,10].

Secreted angiopoietin/angiopoietin-like (ANGPT/ANGPTL) proteins regulate an-
giogenesis and ensure vascular integrity and permeability [11–13]. There are three an-
giopoietin proteins (ANGPT1, ANGPT2 and ANGPT4) and eight angiopoietin-like proteins
(ANGPTL1-8). Increasing evidence has shown that some of these genes play an important
role in tumor development and progression [14,15]. For example, a few studies have
demonstrated that ANGPTL1 functions as a tumor suppressor gene in breast cancer [16],
hepatocellular carcinoma [17,18], colorectal cancer [19–21], thyroid cancer [22], and lung
cancer [16]. However, the role of these proteins in human BCs remains largely unknown.
In this study, we used multiple bioinformatics tools to evaluate the clinical impact of the
ANGPT/ANGPTL proteins and elucidate their biological functions in BCs. Gaining an
insight into understanding ANGPT/ANGPTL genes is essential for developing a promising
strategy for diagnosing and treating human cancers.

2. Materials and Methods

The mutational frequency and DNA copy number changes of ANGPT/ANGPTL
genes were obtained with respect to invasive breast carcinomas via cBioPortal (http://
www.cbioportal.org/) from the Cancer Genome Atlas (TCGA-BRCA, PanCancer Atlas)
database on 1 October 2020 [23,24]. The Spearman correlation between the gene DNA
copy number and the expression in the TCGA-BRCA database was calculated using SPSS
(IBM SPSS statistics version 24). The Catalogue of Somatic Mutations in Cancer (COSMIC,
v92) database (https://cancer.sanger.ac.uk/cosmic) was used to verify the mutational
frequencies on 1 October 2020 [25].

Gene transcript data for normal and tumor tissues were downloaded from the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (GSE3744,
GSE10780, GSE21422 and GSE29044). The fold change (FC) and the significance were
calculated for each gene using GEO2R (|log2(FC)| > 1.5 and adjusted p-values < 0.05).
Further comparisons of gene expression data between normal, cancer-adjacent, and cancer
tissues in the Cancer Genome Atlas (TCGA) were performed using Breast Cancer Gene-
Expression Miner v4.6 (bc-GenExMiner v4.6, http://bcgenex.ico.unicancer.fr/BC-GEM/
GEM-Accueil.php?js=1) from 1 October 2020 [26–28].

We performed a meta-analysis of the association between ANGPT/ANGPTL genes
and the overall survival (OS) and distant metastasis-free survival (DMFS), generated
Kaplan–Meier survival curve plots by dividing the gene expressions into tertiles, and
identified the genes co-expressed with ANGPT/ANGPTL genes in RNA-Seq data with
criteria |r| ≥ 0.40 and p < 1.00 × 10−4 using bc-GenExMiner v4.6. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses
were also performed (clusterProfiler package in R, Version 3.16.1).

We searched all possible datasets and only found three datasets (GSE96058, METABRIC,
and TCGA) that contained both the transcriptional data of all ANGPT/ANGPTL genes and
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clinical information. The GSE96058 dataset was downloaded from the Gene Expression
Omnibus (GEO) database, while the METABRIC and TCGA datasets were downloaded
from cBioPortal. Univariate and multivariate Cox regression analyses were executed in
these three datasets using SPSS.

The tumor immune infiltration scores, stroma scores, microenvironment scores, cancer-
associated fibroblasts, and endothelial cells in TCGA were downloaded from TIMER2.0
(http://timer.cistrome.org/) on 1 October 2020 [29], and were enumerated from transcrip-
tomes using the xCell method, a novel gene-signature-based method [30]. The Spearman
correlations between the expression of ANGPT/ANGPTL genes and these biological factors
in the TCGA-BRCA data were calculated using SPSS (IBM SPSS statistics version 24).

3. Results
3.1. Genomic Alterations in ANGPT/ANGPTL Genes in Breast Cancers

To gain insight into understanding the role of ANGPT/ANGPTL genes in human BC
development and progression, we first investigated their genomic alterations in BCs. Upon
mining the TCGA-BRCA data, we observed low mutational frequency without hotspots
in ANGPT/ANGPTL genes. These observations were further verified by the frequencies
reported in the COSMIC database (Table 1), indicating that ANGPT/ANGPTL genes are
rarely mutated in BCs.

Table 1. Mutation frequencies of ANGPT/ANGPTL genes in breast cancers.

Gene Name TCGA (%) COSMIC (%)

ANGPT1 0.9 4.42
ANGPT2 0.3 1.59
ANGPT4 1.0 2.29

ANGPTL1 0.6 1.05
ANGPTL2 0.0 0.93
ANGPTL3 0.5 0.35
ANGPTL4 0.2 0.70
ANGPTL5 0.4 1.16
ANGPTL6 0.1 0.81
ANGPTL7 0.1 0.39
ANGPTL8 0.1 0.27

Next, we investigated the changes in the transcriptional levels of ANGPT/ANGPTL
genes by comparing their expression profiles in normal breast and BC tissues using GEO2R.
We observed that ANGPTL1, 2, and 4 were robustly and significantly downregulated in inva-
sive ductal carcinoma (IDC) across all microarray datasets in the GEO database (Figure 1A,
Table S1). However, we discovered that the transcriptional levels of all ANGPT/ANGPTL
genes were significantly lower in BCs than in normal breast tissues in the TCGA dataset
(Figure 1B–L). Moreover, the significant downregulation of ANGPT2, ANGPT2, ANGPTL1,
ANGPTL4, and ANGPTL6 was found in tumor-adjacent tissues (Figure 1B–L). Interestingly,
the downregulation of ANGPT1 and ANGPTL1, 2, and 4 was found in ductal carcinoma in
situ (DCIS) in one dataset (Figure 1A, Table S1). To search for the possible mechanism by
which the transcriptional levels of the ANGPT/ANGPTL genes were altered in BCs, we
examined the DNA copy number changes of the ANGPT/ANGPTL genes in the TCGA-
BRCA database and found a frequent increase in ANGPT1, ANGPT4, and ANGPTL1 and
a frequent decrease in ANGPT2, ANGPTL5, and ANGPTL7 in BCs (Figure 2, left panel).
Surprisingly, we discovered that the transcriptional expression levels were not significantly
associated with their copy numbers, except in the case of ANGPTL3 (Figure 2, right panel).
These findings indicate that DNA copy number changes do not contribute to the downreg-
ulation of ANGPT/ANGPTL genes, suggesting that their expression is mainly controlled
by other mechanisms such as methylation and the regulation of transcriptional factors.

http://timer.cistrome.org/
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Figure 1. ANGPTL1, 2, and 4 are consistently downregulated in breast cancers (BCs). (A) Comparison of transcriptional
expression of ANGPT/ANGPTL genes between normal breast and BC tissues in multiple microarray datasets. Significantly
decreased gene expression (1.5-fold; adjusted p < 0.05) is shown in green with an arrow. (B–L) Box plot of transcriptional
expression of the ANGPT/ANGPTL genes in normal, tumor-adjacent, and tumor tissues by RNA-seq analysis in TCGA
dataset. Boxes represent the median and interquartile ranges between the first and third quartiles. Number of normal breast
tissues = 92; number of breast-tumor-adjacent tissues = 104; number of breast tumor tissues = 1034.
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Figure 2. Correlation between DNA copy number of ANGPT/ANGPTL genes and their transcriptional expression in
TCGA-BRCA. Left panel: frequency of DNA copy number alteration (CNA) in ANGPT/ANGPTL genes. Right panel:
box plot of the relationship between DNA copy number and gene expression for ANGPT/ANGPTL genes in BCs. Stars
indicate extreme outliers while circles indicate mild outliers. The p-values were obtained from Spearman correlation analysis
between gene DNA copy number and expression.

3.2. Prognostic Impact of ANGPT/ANGPTL Genes in Breast Cancer Patients

To investigate whether transcriptional levels of individual ANGPT/ANGPTL genes
were associated with OS, we conducted a meta-analysis using bc-GenExMiner v4.6. A
meta-analysis of microarray data revealed that the expression levels of ANGPTL1, 5, and
8 positively correlated with the OS, while the expression levels of ANGPT2 and ANGPTL4
negatively correlated with the OS in BC patients (p < 0.05, Figures 3 and S1). Using
RNA-seq data, we found that the expression levels of ANGPT4 and ANGPTL1, 5, 7, and
8 positively correlated with the OS, while the expression levels of ANGPTL4 negatively
correlated with the OS in BC patients (p < 0.05, Figures 3 and S1). These findings indicated
that only ANGPTL1, 4, 5, and 8 are consistently associated with OS in both the microarray
and RNA-seq data.
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Figure 3. Association between ANGPT/ANGPTL genes and overall survival (OS) in breast cancer
patients. Transcriptional levels of ANGPTL1, 4, 5, and 8 are significantly associated with OS in
BC patients in both microarray (A–D) and RNA-seq (E–H) data. (A,E) ANGPTL1. (B,F) ANGPTL4.
(C,G) ANGPTL5. (D,H) ANGPTL8.
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Some studies report that some of the ANGPT/ANGPTL genes play a critical role in
tumor progression [12,15]. Next, we assessed the association between ANGPT/ANGPTL
genes and DMFS using bc-GenExMiner, where some microarray studies contain the DMFS
information. A meta-analysis showed that ANGPTL1 and 7 were positively correlated
with the DMFS, while the expression levels of ANGPT2 and ANGPTL4 were negatively
correlated with the DMFS (Figures 4 and S2). All these findings support the evidence that
some ANGPT/ANGPTL genes have a prognostic impact in BCs.
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Figure 4. Association between ANGPT/ANGPTL genes and DMFS in breast cancers. Transcriptional
levels of ANGPT2 (A), ANGPTL1 (B), ANGPTL4 (C), and ANGPTL7 (D) are significantly associated
with distant metastasis-free survival (DMFS) in BC patients.

3.3. Molecular-Subtype-Dependent Prognostic Impact of ANGPT/ANGPTL Genes in
Breast Cancers

The molecular subtype is an important prognostic factor in BCs. Therefore, we ex-
amined whether stratifying tumors according to their molecular subtype could reveal
additional information about the association between ANGPT/ANGPTL genes and BCs.
First, each patient was assigned to a molecular subtype based on PAM50 [31]. The frequen-
cies of the copy number changes in ANGPT/ANGPTL genes were found to be significantly
different in different molecular subtypes (Figure S3). We then performed an impact analysis
of ANGPT/ANGPTL genes on the OS and DMFS of patients in each molecular subtype
and found that the association between ANGPT/ANGPTL genes and the OS and DMFS
strongly depended on the molecular subtype (Figure 5). For example, significant associa-
tion between transcriptional levels of ANGPTL1 and the OS and DMFS was only found in
the basal type (Figure 5).
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* Indicates p < 0.05. HR, 95% CI, with p-values obtained from univariate Cox regression analysis.

To assess the prognostic impact of ANGPT/ANGPTL genes independently of clinical
factors and molecular subtypes, we checked all available datasets and only found three
datasets that contained both the transcriptional data of all ANGPT/ANGPTL genes and
data on clinical factors. Consistently with the findings of the meta-analysis described above,
some ANGPT/ANGPTL genes showed significant association with the OS according to
univariate Cox regression (Figure 6). However, multivariate Cox regression analyses
(including age, pathological stage, ER status, PR status, tumor size, and molecular subtype)
were only significant in one dataset after adjusting for clinical factors and molecular
subtypes (Figure 6).

Taken together, our findings suggest that the prognostic impacts of ANGPT/ANGPTL
genes are remarkably dependent on clinical factors and molecular subtypes.
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3.4. Biological Functions of ANGPT/ANGPTL Genes in Breast Cancers Elucidated via Gene
Co-Expression Network

Although many studies have revealed various functions of ANGPT/ANGPTL genes
[14,15], to obtain further insight into their differences with respect to the underlying mech-
anisms of tumor development and progression a co-expression analysis of individual
ANGPT/ANGPTL genes was performed for the RNA-seq data using bc-GenExMiner. A
number of genes that are significantly co-expressed with ANGPT/ANGPTL genes are
shown in Table 2 (|r| ≥ 0.40; p < 1.00 × 10−4). Distinct sets of the genes were co-expressed
with ANGPT/ANGPTL genes (Figure 7, Table S2). Gene Ontology (GO) functional en-
richment analysis of these co-expressed genes showed significant enrichment for the
distinct biological processes involved for individual ANGPT/ANGPTL genes (adjusted
p-value < 0.05, Figures 8A and S4, Table S3). Not surprisingly, it was found that the genes
that were positively correlated with ANGPT1, 2, and 4 and ANGPTL1 and 5 were signif-
icantly enriched for the biological processes involved in angiogenesis (Figure 8A). This
analysis also revealed that ANGPT1, 2, and 4 and ANGPTL1 and 2 are possibly involved in
regulating the extracellular matrix (ECM), ANGPTL6 possibly has a function in the regu-
lation of immunity, and ANGPTL4 and 8 possibly regulate lipid metabolism (Figure 8A).
Additionally, those genes negatively correlated with ANGPT4 and ANGPTL1 were signifi-
cantly enriched for biological processes involved in the cell cycle (Figure S3). Moreover,
KEGG analysis indicated that the co-expressed genes were significantly enriched for the
distinct pathways involved by ANGPT/ANGPTL genes (Figures 8B and S5, Table S4). These
findings indicate distinct molecular mechanisms associated with ANGPT/ANGPTL genes
in breast tumor development and progression.
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Table 2. The number of genes significantly co-expressed with ANGPT/ANGPTL genes in breast
cancers.

Gene Name Positive Correlation Negative Correlation

ANGPT1 483 14
ANGPT2 209 0
ANGPT4 722 92

ANGPTL1 1255 185
ANGPTL2 1245 30
ANGPTL3 0 0
ANGPTL4 104 0
ANGPTL5 169 0
ANGPTL6 263 0
ANGPTL7 506 0
ANGPTL8 113 0
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3.5. Correlation of ANGPT/ANGPTL Genes with Biological Factors in the Tumor
Microenvironment of Breast Cancers

The tumor microenvironment, which contains infiltrating host cells, secreted factors,
and extracellular matrix proteins, profoundly influences tumor progression and therapeutic
responses [32]. Therefore, finally, we assessed the correlations between ANGPT/ANGPTL
genes and biological factors in the tumor microenvironment of breast cancers using TCGA
data (Table S5). Consistently with the biological function enrichment analysis of the co-
expressed genes, ANGPTL6 was strongly and significantly correlated with the immune
score (Table 3). Except for ANGPTL3, the remaining ANGPT/ANGPTL genes were sig-
nificantly correlated with the stroma and microenvironment scores, cancer-associated
fibroblasts, and endothelial cells (Table 3). These findings suggest that the contribution of
ANGPT/ANGPTL genes to BC development and progression may be through the regula-
tion of microenvironments.
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Figure 8. Elucidation of biological functions for ANGPT/ANGPTL genes using gene co-expression networks. (A) Heatmap
presentation of top ten biological processes identified by GO functional enrichment analysis of the genes positively co-
expressed with ANGPT/ANGPTL genes. (B) Heatmap presentation of top ten pathways identified by KEGG analysis of the
genes positively co-expressed with ANGPT/ANGPTL genes. The cutoff for significance is adjusted p < 0.05. Black squares
indicate no significance.
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Table 3. Correlation between the expression level of ANGPT/ANGPTL genes and biological factors in the tumor microenvi-
ronment of breast cancers.

Gene
Name

Immune Score Stroma Score Microenvironment Score Cancer Associated
Fibroblast Endothelial Cell

Rho p-Value Rho p-Value Rho p-Value Rho p-Value Rho p-Value

ANGPT1 0.174 3.423 × 10−8 0.406 1.123 × 10−40 0.443 5.859 × 10−49 0.319 6.515 × 10−25 0.344 6.856 × 10−29

ANGPT2 −0.024 0.447 0.271 4.090 × 10−18 0.113 3.749 × 10−4 0.170 6.527 × 10−8 0.430 4.873 × 10−46

ANGPT4 −0.007 0.830 0.538 1.529 × 10−75 0.354 1.201 × 10−30 0.449 1.595 × 10−50 0.486 7.086 × 10−60

ANGPTL1 0.093 0.003 0.713 3.875 × 10−155 0.536 6.213 × 10−75 0.627 1.192 × 10−109 0.579 4.948 × 10−90

ANGPTL2 0.073 0.022 0.646 1.691 × 10−118 0.430 4.654 × 10−46 0.637 2.645 × 10−114 0.475 4.841 × 10−57

ANGPTL3 −0.024 0.458 0.015 0.635 0.006 0.856 0.018 0.566 0.020 0.524
ANGPTL4 0.002 0.945 0.373 4.689 × 10−34 0.258 1.649 × 10−16 0.262 5.285 × 10−17 0.277 5.923 × 10−19

ANGPTL5 0.049 0.124 0.394 2.990 × 10−38 0.303 1.452 × 10−22 0.326 5.901 × 10−26 0.324 1.146 × 10−25

ANGPTL6 0.355 7.858 × 10−31 0.168 9.353 × 10−8 0.390 1.809 × 10−37 0.185 4.235 × 10−9 0.121 1.268 × 10−4

ANGPTL7 −0.043 0.180 0.488 1.916 × 10−60 0.313 5.412 × 10−24 0.435 3.310 × 10−47 0.387 6.403 × 10−37

ANGPTL8 −0.100 0.002 0.440 3.182 × 10−48 0.224 9.426 × 10−13 0.316 1.822 × 10−24 0.372 5.360 × 10−34

4. Discussion

It is well known that tumor metastasis is the real culprit and underlying cause of most
BC-related deaths [1]. It is urgently necessary to design and develop effective therapeutics
to block metastases. In this study, we used multiple bioinformatics tools to delineate the
potential roles of 11 ANGPT/ANGPTL genes in BC since few of them have been well studied.
However, ANGPT2 has been shown to play an important role in BC in many studies [33–37].
The ANGPT/ANGPTL proteins play a critical role in the regulation of cancer angiogenesis,
which is an essential process for tumor metastasis [6,8,9]. Summarizing our findings, we
conclude that ANGTPL1 and 4 are the most promising potential targets with respect to BC,
although further investigations are still needed, as we discuss in detail below.

We robustly observed that ANGTPL1 and 4 were significantly downregulated in BCs,
and their expression levels were significantly associated with the OS and DMFS of patients.
In contrast, for the others, significance was only found in a subset of the data. One study
showed that ANGPTL1 inhibits BC cell migration and invasion in vitro [16]. It is worth
noting that transcriptome profiling of metastatic canine mammary carcinomas shows the
significant downregulation of ANGPT2 and ANGPTL1-4 compared to normal mammary
glands [38]. Consistently with these results, our study shows that high expression levels of
ANGPTL1 significantly prolong the DMFS of BC patients. The co-expression network and
function enrichment analysis revealed that in addition to the regulation of angiogenesis
as a key essential anti-angiogenic protein [13], ANGPTL1 affects ECM regulation and
suppresses cell cycles. These results suggest that ANPTL1 plays a tumor-suppressive
role in BC. Studies of other cancer types support these results. It has been reported
that the ANGPTL1 transcript is downregulated in lung, prostate, kidney, thyroid, and
urinary bladder cancer [39], and that ANGPTL1 suppresses metastasis in hepatocellular
carcinoma [17,18], colorectal cancer [19–21], and lung cancer [16]. Therefore, ANGPTL1
acts as a general tumor suppressor gene in human cancers.

In addition to angiogenesis, ANGPTL4 has been reported to be involved in the regula-
tion of lipoprotein metabolism [40]. We demonstrated that ANGPTL4 is co-expressed with
well-known genes involved in lipid metabolism. Moreover, many studies have reported
the involvement of ANGPTL4 in BCs. ANGPTL4 is transcriptionally regulated by TGFβ
and serves as an important mediator for TGFβ1 to prime BCs for lung metastasis [41] and
TGFβ2-induced BC brain metastasis [42]. The depletion of ANGPTL4 inhibits obesity-
induced angiogenesis and tumor growth [43]. Consistently with these reports, we found
that a high level of ANGPTL4 significantly shortens the DMFS of BC patients. One study
showed that ANPTL4 is an independent poor prognostic factor for the OS and disease-
free survival (DFS) of BC patients [44]. We also observed that high levels of ANGPTL4
significantly shorten the OS of BC patients. It is worth noting that there are contradictory
data in the literature about its expression alteration and its functions in human cancers.
For example, a recent study demonstrated that ANGPTL4 inhibits cell migration and that
high levels of ANGPTL4 prolong the OS and DFS of patients with triple-negative BC [45].
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However, many studies of other types of cancer suggest that ANGPTL4 functions as an
oncogene [46–48]. It is possible that these discrepancies are due to alternative splicing
of ANGPTL4. In addition, these contradictory findings suggest a multifaceted role for
ANGPTL4 in human cancers. Therefore, further investigation is required into ANGPTL4
regulatory circuits and the definition of specific molecular events that mediate its various
biological functions in different cancer stages.

A limitation of this study is that all conclusions were based on bioinformatics analyses,
which require to be verified by experimental and clinical studies. Nevertheless, our study
uncovered the importance of ANGPT/ANGPTL genes in BC development and progression
and can guide future research.

5. Conclusions

Our findings provide strong evidence for the distinct clinical impacts and biological
functions of ANGPT/ANGPTL proteins in BC development and progression, suggesting
that some of them, such as ANGPTL1 and 4, could be potential therapeutic targets for BCs.
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