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A B S T R A C T   

B-cell epitope identification plays a vital role in the development of vaccines, therapies, and diagnostic tools. 
Currently, molecular docking tools in B-cell epitope prediction are heavily influenced by empirical parameters 
and require significant computational resources, rendering a great challenge to meet large-scale prediction de-
mands. When predicting epitopes from antigen-antibody complex, current artificial intelligence algorithms 
cannot accurately implement the prediction due to insufficient protein feature representations, indicating novel 
algorithm is desperately needed for efficient protein information extraction. In this paper, we introduce a 
multimodal model called WUREN (Whole-modal Union Representation for Epitope predictioN), which effectively 
combines sequence, graph, and structural features. It achieved AUC-PR scores of 0.213 and 0.193 on the solved 
structures and AlphaFold-generated structures, respectively, for the independent test proteins selected from 
DiscoTope3 benchmark. Our findings indicate that WUREN is an efficient feature extraction model for protein 
complexes, with the generalizable application potential in the development of protein-based drugs. Moreover, 
the streamlined framework of WUREN could be readily extended to model similar biomolecules, such as nucleic 
acids, carbohydrates, and lipids.   

1. Introduction 

Epitopes are specific amino acid regions on antigens and capable of 
antibody binding, and B-cell epitope predictions play a critical role in 
the development of antibody drugs [1]. Currently, a range of methods 
exist for identifying or predicting B-cell epitopes, both experimentally 
and computationally. For example, the structure of antigen-antibody 
complexes can be directly determined through cryo-electron micro-
scopy, X-ray crystallography, and nuclear magnetic resonance (NMR) 
techniques. Nevertheless, these methods have their inherent limitations. 
Cryo-EM, on average, requires weeks to months time and costs over 
several thousands dollars to obtain a protein complex [2]. X-ray crys-
tallography necessitates protein crystallization as the initial step, which 
sometimes can be experimentally challenging or infeasible [3]. While 
NMR is only suitable for small complexes with molecular weights below 
40 kDa [4]. Of note, these methods often exhibit low success rates in 
resolving complex protein structures [5]. 

As a well-known computational approach, molecular docking tools 
are frequently employed for B-cell epitope prediction. Two commonly 
used molecular docking tools for this purpose are SnugDock and Attract 

[6,7]. However, these methods are susceptible to the influence of 
empirical parameters [8], and there is still room for improvement in 
terms of B-cell epitope prediction accuracy. 

There is a wide range of machine learning tools utilized for B-cell 
epitope prediction, which can be broadly classified into two main cat-
egories: sequence-based and structure-based tools. Sequence-based tools 
predict B-cell epitope using the input antigen sequence. These tools 
utilize amino acid features extracted by tools like Biopython and/or 
representations generated by protein language models like ESM for 
constructing machine learning models [9,10]. Notable examples of such 
tools include BepiPred 3.0, CBTOPE, and SEPIa [11–13]. Among these 
sequence-based approaches, BepiPred 3.0 currently achieves 
state-of-the-art performance [11]. 

On the other hand, structure-based tools using the input antigen 
structure for B-cell epitope prediction. Examples of such tools include 
DiscoTope 3.0, SEMA, Epitope3D, PEPITO, EPCES, EPSVR, ElliPro and 
SEPPA 3.0 [14–20]. To assess the tools’ applicability, some 
structure-based approaches are tested with non-crystal structures, often 
utilizing structures generated by AlphaFold. Among the structure-based 
tools, DiscoTope 3.0 currently achieves state-of-the-art performance 
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[15]. DiscoTope 3.0 employs the ESM-IF1 model to extract amino acid 
features and incorporates solved structures and generated structures in 
the training set to mitigate the impact of structural perturbations [10]. 
Additionally, the model employs a positive-unlabeled strategy to 
address the uncertainty of negative labels. 

In addition to the work mentioned above, there are some other 
important research findings in the field of B-cell epitope prediction. 
CluSMOTE utilizes the Synthetic Minority Over-sampling Technique 
(SMOTE) algorithm to tackle the problem of imbalanced positive and 
negative samples in B-cell epitope prediction [21]. On the other hand, 
Mimotope divides antigen surfaces into overlapping patches and pre-
dicts epitopes by leveraging Amino Acid Pairs (AAPs) derived from 
mimotopes and the corresponding surface patch [22]. This approach 
introduces a fresh perspective on B-cell epitope prediction. 

Recent advances in artificial intelligence and deep learning have 
illuminated alternative approaches for B-cell epitope prediction. 
AlphaFold2 demonstrates the abundance of information that can be 
extracted from protein sequences alone [23]. Subsequent work, such as 
AF2-Multimer and xTrimo-Multimer [24,25], has extended the appli-
cation of protein structure prediction to protein complexes and multi-
mers. PECAN predicts antigen-antibody binding surfaces using graph 
features [26]. ScanNet and PINet are two tools that utilize deep geo-
metric learning algorithms for predicting protein-protein interactions 
[27,28]. Given that antigen-antibody interactions are a specific type of 
protein-protein interaction, ScanNet and PINet can also be utilized for 
B-cell epitope prediction. The PINet paper reports its testing results on 
the B-cell epitope prediction benchmark, EpiPred. These examples 
demonstrate that different features, such as sequence, graph, and 
structure features, can effectively characterize proteins from different 
aspects. But an important question to ask is whether these features 
encode the same information or if their combination can further 
improve model performance. 

Theoretically, protein sequences contain all the information needed 
to determine protein structures, dynamics, and functions. However, 
when only limited training data is available, additional information may 
be helpful in enhancing the learning process and, consequently, 
improving model performance. As demonstrated in previous protein 
structure prediction methods like AlphaFold2, DCA-fold, and RaptorX 
[22,29,30], incorporating evolutionary information through Multiple 
Sequence Alignment (MSA) increases prediction accuracy. In this study, 
we show that graphic/topological (graph) and spatial (structure) in-
formation complement sequential features, and when they are either 
fully or partially merged, model performance achieves significant 
improvement in performing relevant tasks. 

Implementing effective multimodal feature fusion is challenging. In 
most cases, the difficulties lie in assessing the confidence and correlation 
of each modality and realizing multimodal feature alignment and data 
registration. In this paper, we develop a method called WUREN (Whole- 
modal Union Representation for Epitope predictioN), named after a 
famous Chinese dessert made from a mix of various ingredients. This 
model is primarily applied to the characterization of protein complexes, 
such as the antigen-antibody complex (depiction in Fig. 1A). As illus-
trated in Fig. 1B, without loss of generality, Transformer [31], Graph 
Convolution Neural Network (GCN), and PointNet+ + are employed in 
WUREN to extract sequence, graph, and structure information, respec-
tively [32,33]. In practical implementation, these methods can be 
replaced by other functionally similar methods, such as PointNet or 
Graph Attention Network (GAT) [34–37], within the WUREN frame-
work, depending on the requirements of downstream tasks. 

WUREN demonstrates a state-of-the-art (SOTA) AUC-PR (Area Under 
the Precision Recall Curve) result of 0.462 on the B-cell epitope pre-
diction benchmark EpiPred and surpasses multimer methods on the 
recently released SAbDab dataset [38,40]. WUREN achieved AUC-PR 
values of 0.213, 0.217, and 0.193 on the solved structure, the struc-
ture after energy minimization using the Foldx [41], and the structure 
generated by AlphaFold, respectively. Surpassing other tools except for 
DiscoTope 3.0. Ablation experiments confirm that features from each 
dimension in the model play an indispensable role. Our findings 
demonstrate that the multimodal model WUREN proposed in this paper 
is a general and efficient model for protein representation, with poten-
tial applications in protein complex-related research and the develop-
ment of protein-based drugs. Moreover, the general idea or framework 
of WUREN could potentially be applied to model other biomolecules, 
such as DNA and RNA. 

2. Materials and methods 

2.1. Problem statement 

We chose the task of B-cell epitope prediction as an example to 
showcase WUREN’s performance. The objective is to predict the region 
on the antigen surface that binds to the antibody, measured in amino 
acid units. For data processing, we employ various algorithms and tools 
to extract physical, chemical, and structural features of antigens and 
antibodies at the amino acid and point cloud levels, respectively. To 
determine the labels, we first calculate the distance between each point 
cloud of the antigen and the antibody, marking point clouds with a 
distance less than 2 Å as 1, indicating that the point cloud belongs to the 

Fig. 1. Schematic diagram of the B-cell epitope prediction process. (A) Schematic representation of the antigen-antibody complex interface, which includes the 
epitope – the region on the antigen specifically bound by the antibody. The example diagram shows a complex (PDB ID: 1ahw) between the extracellular domain of 
human tissue factor (left) and the antibody (right). (B) Schematic representation of the WUREN model framework. WUREN consists of a transformer, GCN, and 
PointNet, effectively fusing sequential, topological, and structural features. 
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binding surface, while other point clouds are marked as 0. Similarly, we 
calculate the distance between each amino acid of the antigen and the 
antibody. Amino acids with a distance less than 4.5 Å are marked as 1, 
indicating that they belong to the epitope region, while the remaining 
amino acids are marked as 0. Finally, we use the point cloud data to train 
the deep learning model, then apply a 2 Å threshold to aggregate the 
obtained point cloud embeddings into amino acid features. We combine 
the prepared amino acid features to train the final model and predict the 
probability that each amino acid belongs to the epitope region, thus 
completing the B-cell epitope prediction. 

2.2. Data collection 

The EpiPred dataset [38], the BM dataset [39], and the SAbDab 
dataset are three commonly used antigen-antibody complex datasets 
[40]. The EpiPred dataset is a widely used benchmark for B-cell epitope 
prediction. In this study, we use the EpiPred dataset as a benchmark and 
conduct a parallel comparison between WUREN and similar methods 
such as Attract, EpiPred, PECAN, and PINet, as well as an ablation 
experiment for the feature module. The EpiPred dataset consists of 148 
antigen-antibody complexes, with 118 used for training and 30 used for 
testing. The sequence similarity of antigens in the training and valida-
tion sets is less than 90 %. It should be noted that in this study, we use 
Blast as a sequence similarity calculation tool and identity as a similarity 
evaluation metric [42]. Supplementary Table.S1 lists the PDB codes for 
the 118 protein complexes used for training and Supplementary Table. 
S3 lists the PDB codes for the 30 protein complexes used for testing. 

Since the EpiPred paper did not use a validation set, we use the BM 
dataset as an independent validation set. This dataset is composed of 44 
antigen-antibody complexes, with sequence similarity of antigens in this 
dataset and the EpiPred test set both less than 25 %. Supplementary 
Table.S2 lists the PDB codes for the 44 protein complexes. 

To provide a more comprehensive assessment of WUREN’s perfor-
mance, we collect 636 newly published antigen-antibody complex data 
from the SAbDab database between 2021 and 2022. To ensure reliable 
test results, we remove 288 data points with antigens being SARS-CoV-2 
proteins (redundant epitopes), and further excluded data with antigen 
sequence similarity greater than 50 % to the training set. Finally, we 
select 77 entries as the test dataset, Supplementary Table.S5 lists the 
PDB codes for the 77 protein complexes, along with the antigen and 
antibody chain identifiers. On this dataset, we compared the B-cell 
epitope prediction performance of WUREN with protein complex 
structure prediction models AF2-Multimer and xTrimo-Multimer. 

To facilitate a comprehensive comparison between WUREN and 
PINet [28], PECAN [26], DiscoTope3 [14], BepiPred3 [11], Epitope3D 
[16], EPCES [18], EPSVR [18], and ElliPro [19], we have gathered the 
DiscoTope3, SEDB, Discotope, Epitome, and SEMA datasets. The Dis-
coTope3 dataset comprises 24 data points originates from the Dis-
coTope3 paper, each categorized into one of three groups: structures 
obtained after energy minimization using Foldx, structures solved 
through experimental methods, or structures generated by AlphaFold. 
We have designated them as DiscoTope3_Foldx, DiscoTope3_Solved, and 
DiscoTope3_Af2, respectively. Supplementary Table.S7 presents the 
PDB codes of the 24 protein complexes in the DiscoTope3 dataset. 
Through a thorough comparison, we have confirmed that none of these 
24 data points were included in the training or validation sets of our 
study. The SEDB dataset originates from the SEDB paper [43]. Initially, 
we selected 272 antigen-antibody complex data points and subsequently 
compared them with the training and validation sets of the aforemen-
tioned tools. We have excluded any data points that appeared in the 
training or validation sets of these tools, resulting in a final SEDB dataset 
consisting of 89 data points. Supplementary Table.S8 presents the PDB 
codes of the 89 protein complexes in the SEDB dataset. The Discotope 
dataset, sourced from the Discotope Supplementary Materials [44], 
encompasses 75 antigen-antibody complexes from 25 different protein 
families. Similar to the previous datasets, we compared them with the 

training and validation sets of the aforementioned tools and eliminated 
any overlapping data points. As a result, the final Discotope dataset 
comprises 56 data points. Supplementary Table.S9 presents the PDB 
codes of the 56 protein complexes in the Discotope dataset. The Epitome 
dataset, obtained from the Epitome paper [45], includes 140 
antigen-antibody complexes from 35 different protein families. By 
comparing them with the training and validation sets of the aforemen-
tioned tools, we have excluded any data points that appeared in those 
sets. Consequently, the final Epitome dataset consists of 78 data points. 
Supplementary Table.S10 presents the PDB codes of the 78 protein 
complexes in the Epitome dataset. The SEMA dataset, derived from the 
SEMA paper [15], encompasses 103 antigen-antibody complex data 
points. Importantly, none of these data points were present in the 
training or validation sets of the aforementioned tools. Supplementary 
Table.S11 presents the PDB codes of the 103 protein complexes in the 
SEMA dataset. 

2.3. Features 

We extract point cloud and amino acid features of antigens and 
antibodies. 

2.3.1. Point cloud features 
First, we process the PDB file using PDB2PQR [46,47], removing 

solvent molecules and filling in missing atoms. Then, we extract the 
surface meshes of antigens and antibodies to obtain point cloud data. We 
process the point cloud data using the Adaptive Poisson-Boltzmann 
Solver (APBS) to obtain Poisson–Boltzmann electrostatics for each 
point cloud [48,49]. In this part, we obtain the point cloud features of 
antigens and antibodies separately. Each point cloud contains 3-dimen-
sional spatial coordinate Gi information (x(i), y(i), z(i)) and 11-dimen-
sional charge Ei information. 

2.3.2. Amino acid features 
We use various algorithms and tools to extract antigen and antibody 

amino acid features. (1) One-hot encoding: we perform one-hot encod-
ing for all amino acids, classifying all uncommon amino acids into one 
class, and ultimately obtaining a feature of length 21 for each amino 
acid. (2) Neighbor composition: we calculate the frequency of 20 com-
mon amino acids within an 8 Å distance for each amino acid, providing a 
feature of length 20. (3) Absolute and relative solvent accessible surface 
area: we use PyRosetta [50], which is encapsulated by the powerful 
Rosetta platform [51], to calculate the absolute and relative solvent 
accessible surface area of each amino acid, forming a feature of length 2. 
(4) Position-Specific Scoring Matrix (PSSM): we use PSI-BLAST to 
calculate the PSSM of each amino acid, obtaining a feature of length 20 
[52]. (5) Peptides: we use the R Package Peptides to extract amino acid 
features and obtain physicochemical features such as Cruciani Proper-
ties [53,54], forming a feature of length 66. (6) Others: we calculate 
residue depth, residue adjacency degree, average B-factor, isoelectric 
point, and molecular weight, forming a feature of length 6. Finally, we 
compute a feature of length 136 for each amino acid of the antigen and 
antibody. 

2.4. Model framework of WUREN 

We construct a deep learning model as shown in Fig. 2A, which 
consists of four modules: Cross Attention PointNet+ + (CAP), Cross 
Attention GCN (CAG), Cross Attention Transformer (CAT), and Multi-
layer Perceptron (MLP). First, the point cloud features of antigens and 
antibodies are input into the Cross Attention PointNet+ + (CAP) mod-
ule, obtaining the corresponding point cloud embeddings. Next, the 
antigen and antibody point cloud embeddings pass through a Pooling 
layer, which aggregates the embeddings of each point cloud to the 
nearest amino acid, resulting in amino acid-level embeddings that carry 
spatial structural information. These embeddings are then concatenated 
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Fig. 2. WUREN. (A) Overall framework of the WUREN model. (B) Diagram of Cross Attention PointNet+ + (CAP) block. (C) Diagram of Cross Attention GCN (CAG) 
block. (D) Diagram of Cross Attention Transformer (CAT) block. 
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with the pre-extracted physicochemical features at the amino acid level, 
yielding the antigen combined feature and antibody combined feature. 
Subsequently, the antigen combined feature and antibody combined 
feature are input into the Cross Attention GCN (CAG) module, obtaining 
spatial features and context features. The antigen combined feature and 
antibody combined feature are fed into the Cross Attention Transformer 
(CAT) module, acquiring local features and global features. Finally, the 
spatial, context, local, and global features are concatenated to obtain the 
combined feature, which is processed through a final Multilayer Per-
ceptron (MLP) to predict the B-cell epitope probability. 

The structure of the CAP module is shown in Fig. 2B. Firstly, the 
point cloud features of antigens and antibodies are downsampled 
through four Set Abstraction (SA) blocks, each of which consists of a 
Sample & Group block and a Pointnet block. Secondly, the antigen and 
antibody features are upsampled through three Feature Propagation 
(FP) blocks, with each FP block comprising an Interpolate block and a 
Unit Pointnet block. Subsequently, the antigen and antibody features 
undergo self-attention feature extraction via a Multi-Head Attention 
layer. Then, the self-attention features of antigens and antibodies are 
processed through a Cross Multi-Head Attention layer to extract inter-
active attention features. Finally, the antigen and antibody features are 
upsampled through the last FP block, outputting the point cloud em-
beddings of antigens and antibodies. The Sample & Group, Pointnet, 
Interpolate, and Unit Pointnet blocks are consistent with the de-
scriptions provided in the PointNet+ + [33]. 

The structure of the CAG module is shown in Fig. 2C. In this module, 
the antigen combined feature and antibody combined feature are 
extracted by two GCN layers, respectively. The graph feature of the 
antigen itself is spatial, and context information is obtained after 
calculating the cross-attention of the antigen and antibody. 

The structure of the CAT module is shown in Fig. 2D. First, the an-
tigen combined feature and antibody combined feature each pass 
through four Transformer blocks, with each Transformer block con-
sisting of a Multi-Head Attention layer and an Add & Norm layer. Sub-
sequently, the antigen and antibody features together go through four 
Co-Transformer blocks, each of which is composed of a Cross Multi- 
Head Attention layer and an Add & Norm layer [55]. In the Trans-
former block, in addition to using the absolute position information of 
each amino acid, we also incorporate the Text-to-Text Transfer Trans-
former (T5) relative position information, representing the distance 
between every two amino acids [56]. In the Co-Transformer block, the 
features of the antigen are used as Query, while the features of the 
antibody are used as Key and Value. The attention weight between each 
pair of amino acids in the. 

antigen and antibody is calculated. After processing by this block, we 
obtain the local information of each amino acid and the global infor-
mation after averaging all amino acid features. 

With the model framework described above, to synergistically fuse 
spatial, topological, and sequential information, we perform the 
following training steps: 

First, we train the CAP model using the features of the antigen and 
antibody point clouds. Second, with the CAP model parameters fixed, we 
obtain the point cloud embeddings of antigens and antibodies through 
the model and aggregate the point cloud embeddings into amino acid 
level embeddings. Third, we concatenate the embeddings obtained by 
the point cloud model with other amino acid level features and train the 
CAG and CAT models. As a result, we obtain spatial, context, local, and 
global information for each amino acid. Finally, we concatenate the 
spatial, context, local, and global features and train the MLP prediction 
model to obtain the prediction probability of whether each amino acid is 
in the epitope set. 

Following the above process, the spatial information extracted by the 
point cloud CAP module, the topological information extracted by the 
graph CAG module, and the sequence information extracted by the 
sequence CAT module are effectively fused to achieve an efficient amino 
acid representation. 

2.5. Implementation details 

We train the model using a single A100 GPU with 15 G memory. 

2.5.1. Point cloud CAP model training 
We use the Adam optimizer with a learning rate of 0.0001 and 

weight decay of 0.001 [57]. The Cross Entropy loss function is employed 
[58], with the weight set to 0.075 to mitigate the impact of the imbal-
ance between positive and negative samples on model training. The 
batch size is set to 5, meaning that 5 complete antigen and antibody 
point cloud pairs are processed each time. The dropout rate is set to 0.6, 
and the training epoch is 300. 

2.5.2. Splicing point cloud embeddings and amino acid features 
We fix the parameters of the point cloud CAP model and extract the 

antigen and antibody point cloud embeddings with a length of 128 
through the CAP model. We associate the coordinates of the point cloud 
with the coordinates of the amino acids in the PDB file, extract all point 
clouds with a distance less than 2 Å for each amino acid, and average the 
embeddings of these point clouds to obtain a 128-length embedding for 
each amino acid. As a result, the point cloud embedding is converted 
into amino acid embedding. We splice the 128-length amino acid 
embedding containing spatial structure information obtained by the 
CAP module and the 136-length amino acid feature obtained in the data 
preparation stage, resulting in a 264-length feature for each amino acid. 

2.5.3. CAG and CAT model training 
We use Adam as the optimizer with a learning rate of 0.0001 and 

weight decay of 0.001. We employ Cross Entropy as the loss function, 
with the weight set to 0.04 to mitigate the impact of the imbalance 
between positive and negative samples on model training. The batch size 
is set to 32, meaning that 32 amino acids of the antigen are processed 
each time. The dropout rate is set to 0.6, and the training epoch is 100. 

3. Result 

3.1. B-cell epitope prediction performance on EpiPred 

We use 118 training data and 30 test data consistent with the EpiPred 
paper [38]. To avoid model overfitting, we use the 44 complexes from 
the BM dataset as the validation that are not included in the training set 
[39]. To ensure that the point cloud data of antigens and antibodies meet 
the model’s input requirements, we sample the antigen and antibody 
point clouds using the Farthest Point Sampling (FPS) method, acquiring 
8192 antigen point clouds and 8192 antibody point clouds, respectively. 
This process improves the training efficiency of the point cloud model 
without sacrificing its performance. To make the point cloud model 
more robust, we perform data augmentation on the point cloud data, 
subjecting each data point to random translation and rotation trans-
formations. Finally, we normalize both the point cloud and amino acid 
features to avoid the deterioration of the model performance due to the 
singular values of some features. 

On the EpiPred dataset, we compare the performance of WUREN 
with tools Attract, EpiPred, PECAN, and PINet [26,28,38]. During the 
testing process of Attract, a rigid docking mode is utilized. For each 
structure, 100 conformations are generated, and the top 1 conformation 
with the lowest free energy is selected as the result. Area under the 
precision recall curve (AUC-PR), area under the receiver operating 
characteristics curve (AUC-ROC), precision, and recall are used as test 
metrics, and the corresponding functions in the scikit-learn (sklearn) 
metric module are used for calculating these metrics [59]. As shown in  
Fig. 3A, on the 30 test data of EpiPred, WUREN achieves significant 
improvements in AUC-PR (0.462), AUC-ROC (0.877), and F1 (0.462) 
compared to Attract, EpiPred, PECAN, and PINet, obtaining 
state-of-the-art results. Supplementary Table S4 provides the specific 
evaluation metrics. To achieve a more intuitive comprehension of the 
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model’s prediction outcomes, the 3D visualizations of the predictions for 
the 30 test samples are available in Supplementary Fig. S1, Supple-
mentary Fig. 2, and Supplementary Fig. S3. 

In the testing above, we have demonstrated that WUREN achieved 
state-of-the-art performance on the EpiPred benchmark. To further 
validate that WUREN has learned information about antigen-antibody 
interactions rather than any other biases, we calculated the correla-
tion between the attention weights and the predicted probabilities on 30 
test samples. The pearson correlation coefficient between the two was 
found to be 0.688, providing evidence that the model accurately predicts 
B-cell epitopes based on learned antigen-antibody interaction informa-
tion. The detail result can be found at Supplementary Fig. S4. 

3.2. B-cell epitope prediction performance on SAbDab 

We conduct a more extensive test on a newly released dataset of 77 
antigen-antibody complexes from SAbDab [40]. Besides comparing 
WUREN with Attract, PINet and PECAN, we also included comparisons 
with protein complex generation models such as AF2-Multimer and 
xTrimo-Multimer. F1 score, precision, and recall are used as test metrics. 

In the practical implementation, two setups of AF2-Multimer and 
xTrimo-Multimer are used for comparison. One setup uses a single 

model to predict a single structure, while the other employs 5 models, 
each predicting 5 structures. In the latter configuration, the predicted 
structure is chosen as the best of the 25 structures after relaxation, based 
on prediction confidence. After obtaining the predicted complex struc-
ture, we calculate the pairwise amino acid distance between the antigen 
and the antibody to obtain the predicted epitope with a threshold of 
4.5 Å. 

As shown in Fig. 3B, WUREN generally achieves the best results on 
SAbDab dataset. Supplementary Table S6 provides the specific evalua-
tion metrics. Additionally, in the process of testing the Multimer 
method, we find that the results derived from multiple models predict-
ing multiple structures surpassed those from a single model predicting a 
single structure. Outcomes from relaxing the structure exceeded those 
where no relaxation was applied. In cases with the same model, struc-
ture prediction, and relaxation settings, AF2-Multimer yielded superior 
results compared to xTrimo_multimer. 

3.3. B-cell epitope prediction performance on other external test set 

To comprehensively evaluate the performance of WUREN, we 
compare it with eight other tools on nine antibody-antigen complex 
datasets using AUC-PR as the evaluation metric. The datasets included 

Fig. 3. Results of WUREN performance on EpiPred and SAbDab benchmarks. (A) WUREN achieved AUC-PR, AUC-ROC, F1, Precision, and Recall scores of 0.462, 
0.877, 0.462, 0.359, and 0.647 respectively on the EpiPred Benchmark, outperforming the other models in comparison in terms of AUC-PR, AUC-ROC, and F1. (B) On 
the newly released data from SAbDab, WUREN reached AUC-PR, AUC-ROC, F1, Precision, and Recall scores of 0.224, 0.685, 0.331, 0.268, and 0.577 respectively, 
surpassing the other comparison models in terms of AUC-PR, AUC-ROC, F1 and Recall. 
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EpiPred, SAbDab, DiscoTope3_Foldx, DiscoTope3_Solved, Dis-
coTope3_Af2, SEDB, DiscoTope, Epitome, and SEMA. The eight tools 
consisted of PINet, PECAN, DiscoTope 3.0, BepiPred 3.0, Epitope3D, 
EPCES, EPSVR, and ElliPro. We obtain the test results for each tool on 
the test dataset by utilizing the respective webservers. The webserver 
links for DiscoTope 3.0, BepiPred 3.0, Epitope3D, EPCES, EPSVR, and 
ElliPro can be found in their articles. 

From Fig. 4, it can be observed that WUREN achieved the best per-
formance on the EpiPred, SEDB, DiscoTope, and SEMA datasets. Addi-
tionally, WUREN performed second best on the SAbDab, 
DiscoTope3_Solved, DiscoTope3_Af2, and Epitome datasets, slightly 
behind DiscoTope 3.0. Supplementary Table S12 provides specific 
evaluation metrics. These results demonstrate that WUREN exhibits 
state-of-the-art B-cell epitope prediction performance. 

It is worth noting that WUREN achieved AUC-PR values of 0.217, 
0.213, and 0.193 on the DiscoTope3_Foldx, DiscoTope3_Solved, and 
DiscoTope3_Af2 datasets, respectively. WUREN exhibited enhanced 
performance on the Foldx energy-optimized structure in comparison to 
the solved structure, implying that structural accuracy influences 
WUREN’s performance. Despite a decline in performance on the 
AlphaFold-generated structure, WUREN still surpassed other compara-
tive tools, with the exception of DiscoTope 3.0. Since WUREN is a 
framework that integrates sequence, graph, and structural features, 
which differs from the DiscoTope 3.0 framework, the differentiation 
within WUREN framework may be explored for further improvement. 

3.4. Model ablation experiment results 

An ablation test was conducted to assess the individual contributions 
of the three modules responsible for extracting sequential, topological, 
and spatial information. As depicted in Fig. 5A, Fig. 5B, and Fig. 5C, 
ablation experiments were performed on the WUREN model using Epi-
Pred’s 30 test data samples. Supplementary Table S13 provides the 
specific evaluation metrics. In general, the model’s performance 
improved as its complexity increased with the fusion of more 
representations. 

4. Discussion 

The structure of antigen-antibody complexes reveal the interactions 
between antigens and antibodies at atomic level. These structures are 
primarily determined by the unique sequences of each protein and the 
interactions among amino acids. Computational approaches offer an 
efficient means to understand protein functions based on their sequence 
compositions. While we can extract substantial information from amino 
acid sequences or structures alone, a practical model should take full 
advantage of the available data by utilizing suitable features from 
different representations. In this work, we introduce a multimodal deep 
learning model, WUREN, designed to efficiently merge sequence, graph, 
and structural features. Using WUREN, we significantly improve the B- 
cell epitope prediction in comparison with the SOTA methods. 

The training, validation, and testing of WUREN involved the use of 
complex structure data. However, generated structures can be utilized 
for B-cell epitope prediction in application scenarios. Recognizing the 
impact of structural accuracy on WUREN’s performance, we conducted 
tests on the external test data from DiscoTope 3.0. The results demon-
strated that WUREN achieved higher AUC-PR on AlphaFold-generated 
structures compared to other tools, excluding DiscoTope 3.0, indi-
cating its practical usability. 

Beyond the improvements introduced by WUREN, our study finds 
that selecting and incorporating more features associated with the 
physicochemical properties of amino acid significantly enhance the 
model performance. When only the CAG module is utilized for 
modeling, increasing the dimension of amino acid representation from 
63 (as in PECAN) to 136 (as in this study) raises the AUC-PR from 0.226 
to 0.338. The 136 features, which contribute more to the B-cell epitope 

prediction task than others, are selected from 183 commonly used amino 
acid features (such as amino acid type, absolute solvent accessible sur-
face area, etc.) using the random forest algorithm. We think the same 
procedure can be applied to improve model performances for other 
similar tasks. 

Moreover, we discover that post-processing of the initial results also 
enhances the accuracy of epitope predictions. By clustering the pre-
dicted epitopes, selecting the cluster central points, and performing 
nearest neighbor sampling based on these central points, the F1 score on 
the test set can be improved by approximately 10 %. 

It is worth mentioning that the quantity of training and test data 
utilized in this study is considered small within the realm of deep 
learning research. Increasing the volume of training/test data is ex-
pected to enhance the performance of the models and enable a more 
rigorous evaluation. 

There is still room to further improve the WUREN’s performance. 
Firstly, to mitigate the impact of precision in protein structures, we are 
considering incorporating AlphaFold-generated structures into the 
model training and testing process. Secondly, inspired by DiscoTope 3.0, 
integrating the positive-unlabeled (PU) learning strategy into the 
training process has the potential to enhance WUREN’s performance. 
Lastly, since the process of aggregating point cloud embeddings into 
amino acid embeddings is non-differentiable, WUREN requires two- 
stage training currently, which increases training complexities and 
potentially also reduce the model’s performance. If we can design the 
embedding aggregation process as a differentiable process, it would 
enable us to construct an end-to-end model to further improve the 
performance. 

5. Conclusion 

In this paper, we propose a multimodal framework called WUREN, 
which fully integrates one-dimensional sequence features, two- 
dimensional graph features, and three-dimensional structural features 
for improved B-cell epitope prediction. To demonstrate WUREN’s ad-
vantages, we implemented the model with three specific modules—CAT, 
CAG, and CAP—to extract sequence features, graph features, and 
structural features, respectively. In the B-cell epitope prediction task, 
our model achieves SOTA results in AUC-PR, AUC-ROC, and precision 
on the EpiPred dataset, as well as improves model performance on 77 
newly released SAbDab data samples compared to the advanced multi-
mer methods. On the DiscoTope 3.0 external test data, WUREN obtained 
an AUC-PR of 0.193 on AlphaFold-generated structure, surpassing other 
tools except for DiscoTope 3.0. Ablation experiments reveal that 
sequence features, graph features, and structural features all play crucial 
roles. 

Taken together, we present a new multimodal deep learning model, 
WUREN, for efficient B-cell epitope prediction from antigen-antibody 
complex, in which the model demonstrates surpassed SOTA perfor-
mance. Importantly, we believe that our model design and imple-
mentation can be adapted to protein drug design or other biologic 
studies given the sequence, graph and structure information are avail-
able. We envisage that further investigation of this model will help us to 
better understand the relative importance of sequence, graph and 
structure and eventually aid the design of new therapeutics. 
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Fig. 4. Results of WUREN performance on nine external test data. WUREN exhibited state-of-the-art performance with AUC-PR values of 0.462, 0.418, 0.473, and 
0.243 on the EpiPred, SEDB, Discotope, and SEMA datasets, respectively. It achieved the second-best performance on the SAbDab, DiscoTope3_Solved, Dis-
coTope3_Af2, and Epitome datasets, with AUC-PR values of 0.224, 0.213, 0.193, and 0.399, respectively. 
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