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The prevalence of chronic kidney disease (CKD) is increasing worldwide. Al-
though hyperuricemia has been associated with CKD in many studies, it remains 
controversial whether this is the cause or the result of decreased renal function. 
Recent observational studies of healthy populations and patients with CKD have 
reported that uric acid (UA) has an independent role in the development or pro-
gression of CKD. Experimental studies have shown several potential mechanisms 
by which hyperuricemia may cause or promote CKD. However, other reports have 
indicated an association between hypouricemia and CKD. This opposing effect is 
hypothesized to occur because UA is a major antioxidant in human plasma and is 
associated with oxidative stress. In this article, we discuss the potential associa-
tion between UA imbalance and CKD and how they can be treated.
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Renal effects of uric acid: hyperuricemia and  
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INTRODUCTION

Chronic kidney disease (CKD) is a significant public 
health issue globally, with an estimated prevalence of 
7.9% in Korea [1]. The number of patients undergo-
ing dialysis in Korea has continued to increase due to 
worsening kidney function in patients with CKD [2]. 
CKD is not only associated with developing end-stage 
renal disease (ESRD) but also with an increased risk of 
cardiovascular disease (CVD) [3]. Indeed, the hypothe-
sis that uric acid (UA) could mediate CVD or hyperten-
sion was proposed nearly 140 years ago [4]. In 1889, it 
was proposed that UA mediated diseases, such as CKD, 
hypertension, and diabetes [5], and in 1897, hyperurice-

mia and gout were reported to be associated with renal 
dysfunction [6]. According to data collected when no 
drugs were available to reduce serum UA levels, protein-
uria was common (occurring in 25% of cases) in patients 
with gout, renal function frequently decreased (50% of 
cases), and ESRD occurred in 10% to 25% [7,8]. Although 
evidence shows that UA is associated with the develop-
ment of CKD, controversy remains as to whether this is 
the cause or the result of decreased renal function [9,10]. 
Most studies have shown a relationship between CKD 
and hyperuricemia, but some have also shown an asso-
ciation between decreased renal function and hypouri-
cemia [11,12].
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URIC ACID METABOLISM

UA is generated in the liver from the catabolism of ex-
ogenous and endogenous purine mononucleotides into 
hypoxanthine and guanine [13]. Hypoxanthine is further 
oxidized by xanthine dehydrogenase/oxidase to form 
xanthine, which is further oxidized by the same enzyme 
to form UA. This constitutes the end product of purine 
nucleotide metabolism in higher primates [14]. In oth-
er mammals, UA is further degraded by uricase, an en-
zyme that primates lack, to become allantoin [15], which 
is more water-soluble than UA and can be efficiently ex-
creted in urine [16]. Mammals with the uricase enzyme 
usually show lower UA levels (1 to 2 mg/dL), whereas pri-
mates have UA levels that are 3- to 10-times higher [17].

In humans, approximately two-thirds of all UA is 
excreted in the urine, and one-third is excreted in the 
gastrointestinal tract [18]. UA is filtered by the glomer-
uli and reabsorbed by the proximal tubule with a nor-
mal fractional excretion of 10% [13]. Urate transporter 
1 (URAT1; SLC22A12) reabsorbs glomerular-filtrated UA 
and is localized on the luminal side of proximal tubule 
cells [19], while glucose transporter 9 (GLUT9; SLC2A9) 
allows intracellular UA to exit through the basolateral 
side of the cells (Table 1) [18,20]. Otherwise, UA secre-
tion is mediated by ATP-binding cassette transporter 
subfamily G member 2 (ABCG2) and sodium-dependent 
phosphate transporter 1 (NPT1; SLC17A1) and 4 (NPT4; 

SLC17A3) [21-23]. Studies of polymorphisms in these 
transporters suggest that renal overload hyperurice-
mia is a novel pathophysiological mechanism in gout 
[24]. However, in an experimental study of 5/6 nephrec-
tomized rats, the expression levels of URAT1, GLUT9, 
ABCG2, and NPT4 in the proximal tubules decreased, 
which may have been associated with CKD-related tu-
bular injury [25]. This suggests that tubular urate trans-
porters do not cause hyperuricemia directly; instead, 
this results from a decrease in UA filtered by the glom-
eruli [26].

Mechanisms of hyperuricemia
Hyperuricemia has been defined as ≥ 7.0 mg/dL in men, 
and ≥ 5.7 [27] or ≥ 6 mg/dL [28] in women. Although hy-
peruricemia occurs in patients with CKD, the fact that 
hyperuricemia can precede CKD suggests that other fac-
tors are relevant. Risk factors for CKD include metabolic 
syndrome, which is associated with hyperuricemia [29], 
insulin resistance and hyperinsulinemia, which reduce 
urinary UA excretion [30], and hypertension, which in-
creases renal vascular resistance and UA retention [31]. 
However, recent studies have shown that hyperuricemia, 
i.e., increased serum UA levels, may prevail in these con-
ditions and occur earlier, indicating that other factors 
may be the underlying cause of hyperuricemia [32,33]. 
For example, diets high in meat, seafood, sugar, and 
beer are all associated with an increased risk of hyper-

Table 1. Renal urate transporters and associated conditions

Transporter Gene Location Function
Gene mutation  

result

Urate transporter 1 
(URAT1)

SLC22A12 Luminal membrane of 
proximal renal tubule

Reabsorbs glomerular-filtrated 
UA

Hypouricemia

Glucose transporter 9 
(GLUT9)

SLC2A9 Basolateral membrane of 
proximal renal tubule

Allows intracellular UA to exit 
through the basolateral side of 
the cells

Hypouricemia

ATP-binding cassette 
transporter subfamily G 
member 2 (ABCG2)

ABCG2 Luminal membrane of 
proximal renal tubule

UA excretion Hyperuricemia

Sodium-dependent 
phosphate transporter 1 
(NPT1)

SLC17A1 Luminal membrane of 
proximal renal tubule

UA excretion Hyperuricemia

NPT4 SLC17A3 Lumina l membrane of 
proximal renal tubule

UA excretion Hyperuricemia

UA, uric acid.
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uricemia, whereas diets rich in dairy products are asso-
ciated with a decreased risk [34]. Children with a history 
of low birth weight also show increased serum UA levels, 
endothelial dysfunction, and hypertension [35]. Finally, 
genetic factors are also involved. Familial juvenile hy-
peruricemic nephropathy is a rare autosomal dominant 
disease that results from a mutation in the uromodulin 
gene. It is characterized by abnormal handling of UA 
and hyperuricemia, and it is often complicated by gouty 
arthritis, with renal failure occurring due to tubuloint-
erstitial nephritis [36]. In some studies, plasma volume 
contraction and compensatory higher reabsorption ac-
tivity of the proximal tubule including upregulation of 
Na+-coupled urate transporters was suggested to be the 
cause of the hyperuricemia in cases of the uromodulin 
gene mutation [37,38]. A genome-wide association study 
of gout and its subtypes was performed to identify novel 
gout loci [39]. 

Mechanisms of hypouricemia
Hypouricemia is defined as a serum UA of ≤ 2.0 mg/dL 
[40]. In a Japanese population, it was reported to occur in 
193 of 90,710 men (0.2%) and 540 of 136,935 women (0.4%) 
[11], while in Korea, the prevalence has been report-
ed to be 4.14% (299/7,223) among inpa tients and 0.53% 
(125/23,534) among outpatients, with an overall prevalence 
of 1.39% (424/30,757) [41]. Hypouricemia can be divided 
into conditions that result from decreased UA produc-
tion and those that result from increased renal clearance.

Hereditary xanthinuria is an autosomal recessive dis-
ease caused by a deficiency of the xanthine dehydroge-
nase/oxidase enzyme that results in decreased UA pro-
duction. This disorder is marked by hypouricemia, low 
urinary concentrations of urate, and high urinary con-
centrations of xanthine, which lead to the development 
of urinary xanthine kidney stones [42].

Urate-lowering drugs, such as allopurinol and febux-
ostat, inhibit xanthine oxidase, and cause hypourice-
mia. Pegloticase, a mammalian recombinant pegylated 
uricase enzyme that converts urate into allantoin has 5 
to 10-fold increased solubility. When used as indicated 
to treat severe refractory gout it converts urate into the 
more soluble allantoin that is more readily excreted by 
the kidney. Using pegloticase can cause severe hypouri-
cemia with UA levels falling below 2 mg/dL in some 
patients [43,44]. Several other uricosuric agents also de-

crease serum UA levels [45]. These include probenecid, 
benzbromarone, angiotensin II receptor blockers, feno-
fibrate, trimethoprim-sulfamethoxazole, and high-dose 
salicylate [46-48].

Gene mutations can also cause renal hypouricemia, 
such as those of SLC22A12, encoding URAT1 [49-53], and 
SLC2A9, encoding GLUT9 [54,55]. Most patients are as-
ymptomatic, but some may be predisposed to urinary 
tract stones or exercise-induced acute renal failure [56]. 
In the latter case, patients will show a high fractional 
excretion of UA (> 10%).

Hypouricemia has also been reported in patients with 
diabetes [57,58], where it is known to occur due to in-
creased renal excretion and only in patients with normal 
renal function [59,60]. Low levels of serum UA may also 
develop secondary to expansion of extracellular volume, 
which reduces proximal reabsorption of sodium and 
UA [61]. This is common when patients receive large 
volumes of intravenous fluid or when patients have 
psychogenic polydipsia or syndrome of inappropriate 
antidiuretic hormone. Several hepatic diseases, such as 
cholangiocarcinoma, viral hepatitis, and primary bili-
ary cirrhosis, have been associated with hypouricemia 
due to abnormal UA reabsorption [62-64]. Patients with 
Hodgkin’s disease may also develop marked hypourice-
mia because of an isolated defect in urate reabsorption 
[65], though successful treatment of the underlying dis-
ease appears to correct this abnormal renal handling of 
urate.

PATHOPHYSIOLOGY OF URIC ACID-RELATED 
KIDNEY DISEASE

Hyperuricemia and kidney
Kidney damage due to hyperuricemia has traditionally 
been thought to result from the effect of UA crystals [66]. 
Hyperuricemia associated with hyperuricosuria (urinary 
UA excretion > 800 mg/day in men and > 750 mg/day 
in women) has been postulated to cause acute kidney 
damage by depositing crystals intraluminally in the col-
lecting ducts. In turn, this causes tubular obstruction, 
the development of an inflammatory response, and pro-
gressive tubulointerstitial damage over time that lowers 
the estimated glomerular filtration rate (eGFR). Multi-
ple crystal-independent mechanisms have been sug-
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gested in basic research, including renal vasoconstric-
tion mediated by endothelial dysfunction, activation of 
the renin-angiotensin system, afferent arteriolopathy, 
and the epithelial-to-mesenchymal transition in renal 
tubular cells [67-72].

It is assumed that UA acts as a powerful antioxidant 
in the extracellular environment, but that it is a proo-
xidant inside the cell, where it stimulates nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase [72]. 
UA has been reported to induce endothelial dysfunc-
tion by increasing oxidative stress and decreasing the 
bioavailability of endothelial nitric oxide [73]. Some re-
search suggests that lowering UA with allopurinol may 
improve endothelial dysfunction in humans [74,75].

In animal models, hyperuricemia increases cycloox-
ygenase-2 expression and leads to the proliferation of 
vascular smooth muscle cells in preglomerular arteri-
oles [70]. Hyperuricemia in rats induces hypertension, 
renal injury, and fibrosis, in part by activating the re-
nin-angiotensin system [67]. Preglomerular vasculopa-
thy caused by hyperuricemia deranges the autoregulato-
ry response of afferent arterioles and triggers glomerular 
hypertension [69,76]. In addition, lumen obliteration in-
duced by vascular wall thickening results in severe vaso-
constriction that decreases renal blood flow, the eGFR, 
and perfusion to peritubular capillaries, causing tubu-
lointerstitial inflammation, tubulointerstitial fibrosis, 
and arterial hypertension [71]. UA induces tubulointer-
stitial fibrosis via the epithelial-to-mesenchymal transi-
tion in renal tubular cells [77].

Hypouricemia and kidney
UA is an important antioxidant in human plasma and, 
as such, hypouricemia has been proposed to increase 
the risk of a decline in kidney function by reducing an-
tioxidant capacity [78-80]. Consistent with this, hypouri-
cemia has been associated with several inflammatory 
and degenerative diseases, including acute graft-versus-
host disease, Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, and multiple sclerosis [81,82]. These 
associations have been attributed to reduced antioxida-
tive capacity [81,82].

Hypouricemia has also been associated with urolithi-
asis and exercise-induced acute kidney injury (EIAKI), 
particularly in patients with hereditary hypouricemia 
[83,84]. Because UA acts as an antioxidant that pro-

tects endothelial function, hypouricemia causes EIA-
KI through renal artery spasm, with a clinical picture 
that is characterized by nausea, vomiting, and loin, and 
abdominal pain. In a Japanese study, all patients with 
EIAKI later recovered their kidney function, but 24% 
experienced recurrent acute kidney injury (AKI) [85]. Pa-
thology revealed chronic lesions, such as thickening of 
the tubular basement membrane and interstitial fibro-
sis, despite a normal creatinine clearance rate in some 
patients who experienced recurrent AKI. Although the 
loss to follow-up meant that the researchers did not 
report if these patients developed CKD, it is certainly 
plausible that recurrent AKI can lead to CKD [86]. In 
addition, excessive urinary excretion of UA can result 
in the formation of UA crystals, causing urolithiasis in 
patients with hypouricemia [87]. Urolithiasis and EIA-
KI have a prevalence of 8.5% and 6.5%, respectively, in 
patients with hereditary renal hypouricemia based on 
genetic testing [51].

RELATIONSHIP BETWEEN URIC ACID AND CKD 
PROGRESSION: OBSERVATIONAL STUDIES

Hyperuricemia and CKD
Many large observational studies have examined the 
association between serum UA and the development 
or progression of CKD in both the general population 
and in patients with existing CKD (Table 2) [88-99]. Most 
observational studies have shown positive results, with 
hyperuricemia being an independent risk factor for the 
development and progression of kidney disease in di-
abetic or non-diabetic patients [88-95,99,100]. In a me-
ta-analysis involving 13 observational trials of 190,718 
patients with normal renal function, hyperuricemia was 
an independent risk factor for developing CKD [100]. 
The summary odds ratio (OR) for the association be-
tween hyperuricemia and developing new-onset CKD 
increased with increasing follow-up, indicating that hy-
peruricemia may play a role in the long-term progres-
sion of renal function. A subgroup analysis revealed a 
stronger association between hyperuricemia and CKD 
development in Western than in Asian populations. 
This difference may result from racial, geographic, or 
dietary differences because the Western diet possibly 
contains more purine-rich foods.
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Serum UA in the high-normal range (≤ 4.0 mg/dL vs. > 
4.0 mg/dL) is associated with impaired renal function in 
patients with type 1 diabetes [88]. In people with type 2 
diabetes and preserved kidney function, hyperuricemia 
(≥ 7.0 mg/dL in men and ≥ 6.5 mg/dL in women or those 
on allopurinol therapy) is an independent risk factor for 
incident cases of CKD [89]. In a Japanese screened co-
hort study, hyperuricemia (serum UA > 6.0 mg/dL) was 
an independent predictor of ESRD in women [99], but 

there was no significant association in men. A previous 
study in which ESRD was followed up for 25 years re-
ported hyperuricemia as an independent risk factor for 
ESRD [93], and in a prospective follow-up study of 21,475 
healthy participants, hyperuricemia independently in-
creased the risk for new-onset kidney disease [92].

Understanding the role of UA in predicting the pro-
gression of kidney disease in patients with CKD is more 
controversial due to the unavoidable causal relationship. 

Table 2. Observational studies of hyperuricemia and CKD

Country Population Design (follow-up yr) Finding Study

Japan 6,403 Adults, healthy Prospective cohort (6.75) SUA >6.0 mg/dL was an independent 
predictor of ESRD in women (HR, 
5.77)

Iseki et al. (2004) [99]

Thailand 3,499 Adults, healthy Prospective cohort (12) SUA >6.3 mg/dL associated with risk 
of development of decreased kidney 
function (OR, 1.82)

Domrongkitchaiporn et 
al. (2005) [90]

USA 5,808 Adults, healthy Prospective cohort (6.9) SUA was strongly associated 
with prevalence but weakly with 
progression of CKD (OR, 1.49)

Chonchol et al. (2007) [91]

Austria 21,457 Adults, healthy Prospective cohort (7) SUA >7 mg/dL increased CKD risk 
(OR, 1.74), >9.0 mg/dL (OR, 3.12)

Obermayr et al. (2008) 
[92]

USA 675 Type 1 DM Cross-sectional SUA in the high-normal range is 
associated with impaired renal 
function

Rosolowsky et al. (2008) 
[88]

USA 177,570 Adults, healthy Prospective cohort (25.7) Higher quartile of SUA conferred 
2.14-fold increased risk of ESRD

Hsu et al. (2009) [93]

Italy 900 Adults, healthy Prospective cohort (5) Each 1 mg/dL increase in SUA 
increased risk of reduced eGFR  
(HR, 1.28)

Bellomo et al. (2010) [94]

Japan 7,078 Adults, healthy Prospective cohort (5) SUA level is an independent 
predictor of CKD onset (OR, 1.15)

Sonoda et al. (2011) [95]

Italy 1,449 Type 2 DM Prospective cohort (5) 1-SD increment in SUA was 
associated with a 21% increased risk 
of CKD.

Zoppini et al. (2012) [89]

Japan 803 Adults, CKD stage 
3–4

Retrospective cohort (4)
Propensity score 
analysis

UA >6.5 mg/dL increased ESRD risk 
(HR, 2.39)

Uchida et al. (2015) [96]

USA 627 Children, CKD 
(median GFR 
58.1 mL/min/1.73 m2)

Prospective cohort (5) SUA >7.5 mg/dL is an independent 
risk factor for faster progression of 
CKD in children and adolescents

Rodenbach et al. (2015) 
[97]

Korea 2,042 Adults, CKD 
stage 1–5

Prospective cohort 
(2.12)

Each 1 mg/dL increase in SUA in-
creased the risk of progression to 
renal failure (HR, 1.277) 

Oh et al. (2019) [98]

CKD, chronic kidney disease; SUA, serum uric acid; ESRD, end-stage renal disease; HR, hazard ratio; OR, odds ratio; DM, di-
abetes mellitus; eGFR, estimated glomerular filtration rate; SD, standard deviation; UA, uric acid; GFR, glomerular filtration 
rate.
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Uchida et al. [96] used a propensity score analysis to clar-
ify the independent effect of UA on the subsequent risk 
of ESRD. They showed that higher serum UA accelerat-
ed the progression to subsequent ESRD in a retrospec-
tive CKD cohort. In another study of children and ado-
lescents with a median age of 12.3 years, hyperuricemia 
was an independent risk factor for faster CKD progres-
sion [97]. In a Korean cohort study of patients with CKD 
and a mean eGFR of 52.80 ± 12.3 mL/min/1.73 m2, the risk 
of progression to renal failure increased by 28% (hazard 
ratio [HR], 1.277; 95% confidence interval [CI], 1.212 to 
1.345) for each 1 mg/dL increase in the baseline UA level 
[98]. Multivariate analysis found an association between 
the upper UA quartile and an increased risk of com-
posite renal outcome (HR, 3.590; 95% CI, 2.546 to 5.063). 
Hyperuricemia was associated with the development of 
CKD in a risk score model [101,102]. Hyperuricemia is 
associated with sarcopenia, and sarcopenia is associated 
with CKD progression, death, and CVD in CKD patients 
[103,104]. Fat accumulation in and around the kidneys is 
associated with hyperuricemia and the development of 
CKD [105,106]. 

Other observational studies have failed to show a sig-
nificant relationship between hyperuricemia and the 
progression of CKD [107,108]. In a study of patients 
with mild-to-moderate CKD and no diabetes, increas-
ing serum UA levels predicted disease progression only 
when the analysis was not adjusted for baseline kidney 
function parameters. After adjusting for baseline eGFR 
and proteinuria, the association completely vanished 
[107]. Similarly, a  analysis of the Modification of Diet 
in Renal Disease study, which enrolled 838 patients with 
stage 3 to 4 CKD, showed that hyperuricemia was an in-
dependent risk factor for all-cause and CVD mortality, 
but not kidney failure [108]. Serum UA levels of 3,885 
patients with stage 2 to 4 CKD in the Chronic Renal In-
sufficiency Cohort were examined, and serum UA levels 
were reported to be an independent risk factor for pro-
gression to dialysis or transplantation when the initial 
eGFR was > 45 mL/min/1.73 m2 but not when it was < 30 
mL/min/1.73 m2 [109]. The authors postulated that high-
er UA levels at preserved eGFRs have more relevance for 
kidney failure than at lower GFRs. When GFR is pre-
served, the deleterious effects of UA may therefore be 
more pathogenic and easier to discern than when kid-
ney function is worse, at which point factors that govern 

the increase in UA levels and increased morbidity may 
be more important. 

Hypouricemia and CKD
A U-shaped association has been reported between se-
rum UA level and CVD mortality, suggesting that both 
hyperuricemia and hypouricemia are risk factors for 
CVD mortality [110,111]. However, there are few reports 
of this association between serum UA and the loss of 
kidney function.

In a Japanese prospective cohort study among healthy 
people, both decreased and increased serum UA levels 
were associated with a loss of kidney function [112]. The 
study population comprised 104,796 asymptomatic peo-
ple. Of the 9,847 without CKD, 4,188 were followed up 
for at least 3 years, 3,102 for 6 years, and 1,052 for 9 years. 
Overall, the mean serum UA level was 5.8 ± 1.2 mg/dL 
in men and 4.1 ± 0.9 mg/dL in women. Many men had 
incident CKD and a > 25% decrease in eGFR in groups 
4 (serum UA ≥ 6.5 mg/dL) and 1 (serum UA ≤ 5.0 mg/
dL), respectively. In subjects with low serum UA levels 
(men, < 5 mg/dL; women, < 3.6 mg/dL), multivariate lin-
ear mixed models showed a time-dependent associa-
tion with declining eGFR. Logistic additive models also 
showed that both high and low serum UA levels affected 
the likelihood of the outcome events more than inter-
mediate levels among men, but not among women.

In a population-based cross-sectional study, hypouri-
cemia (serum UA ≤ 2 mg/dL) was associated with reduced 
kidney function in men (OR, 1.83; 95% CI, 1.23 to 2.74), 
but not in women (OR, 0.61; 95% CI, 0.43 to 0.86), when 
compared against a reference category (serum UA levels 
of 4.1 to 5.0 mg/dL) and after adjusting for age, drinking, 
smoking, diabetes, hypertension, hypercholesterolemia, 
obesity, and history of renal failure [11]. In another Japa-
nese cross-sectional study in the general population, the 
rates of previous urinary stones and kidney diseases (in-
cluding nephritis/nephrosis) were 1.2% (3.3% men, 0.7% 
women) and 2.3% (10% men, 0.7% women), respectively. 
Men with hypouricemia had a 9-fold higher rate of pre-
vious kidney diseases compared with those who had no 
hypouricemia [113].

Finally, a Korean prospective cohort study in a rural 
population revealed that both high and low serum UA 
levels were risk factors for the development of CKD in 
men, but that only high levels were a risk factor in wom-
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en [114]. Among the 5,577 participants, 9.4% of men and 
11.0% of women developed CKD. The HR for CKD was 
higher in the fourth quintile of serum UA levels than 
in the third quintile in men (adjusted HR, 1.60; 95% CI, 
1.02 to 2.51) and women (adjusted HR, 1.56; 95% CI, 1.14 
to 2.15). The development of CKD was also more com-
mon in the lowest quintile of serum UA levels than in 
the third quintile in men (adjusted HR, 1.83; 95% CI, 1.15 
to 2.90). Patients with ESRD and low serum UA levels 
were also reported to have a higher mortality risk than 
those with high serum UA levels [115].

EFFECTS OF URIC ACID-LOWERING THERAPY 
ON CKD 

In a meta-analysis of 12 studies, Liu et al. [116] report-
ed that UA-lowering therapy is associated with slowed 
CKD progression. The pooled estimate for eGFR fa-
vored UA-lowering therapy with a mean difference of 
3.88 mL/min/1.73 m2 (95% CI, 1.26 to 6.49). The risk of 

worsened kidney function, ESRD, or death decreased 
significantly in the treatment group compared with the 
control group (relative risk, 0.39; 95% CI, 0.28 to 0.52) 
[116]. Clinical trials of UA-lowering therapy published to 
date are listed in Table 3 [117-124]. In these studies, UA 
levels during treatment remained at 5 to 6 mg/dL.

Allopurinol
Allopurinol is metabolized by xanthine oxidase to oxy-
purinol, which in turn, noncompetitively inhibits xan-
thine oxidase [13]. Allopurinol is usually started at 100 
mg daily in patients with normal renal function and ti-
trated every 2 to 4 weeks to the minimum dose required 
to achieve and maintain the goal range of serum UA. The 
half-lives of allopurinol and its active metabolite, oxypu-
rinol, are prolonged in patients with renal dysfunction 
[125]. A daily starting dose of allopurinol of < 1.5 mg/mL/
min of eGFR is advised in such patients, with dose in-
crements of no more than 50 mg daily every 4 weeks to 
the minimum daily dose necessary to achieve the goal 
[126,127]. Among relatively mild adverse reactions occur-

Table 3. Clinical trials of UA-lowering therapy on CKD

Country Population (follow-up yr) Drug, dosing per day Finding Study

China 54 CKD; serum creatinine 
1.35–4.5 mg/dL (1)

Allopurinol, 100-300 mg Allopurinol helps preserve kidney 
function during 12 months of therapy 
compared with controls

Siu et al. 
(2006) [117]

Spain 113 CKD 3 (2) Allopurinol, 100 mg Slows down the progression of renal 
disease

Goicoechea et al. 
(2010) [118]

Iran 40 type 2 DM; serum 
creatinine <3.0 mg/dL  
(4 months)

Allopurinol, 100 mg Reduced proteinuria, no difference in 
serum creatinine 

Momeni et al. 
 (2010) [119]

China 40 IgA nephropathy; serum 
creatinine <3 mg/dL (0.5)

Allopurinol, 100–300 mg No difference was found in eGFR Shi et al. 
 (2012) [120]

India 93 CKD 3, 4 (0.5) Febuxostat, 40 mg Slowed the decline in eGFR compared 
to placebo

Sircar et al. 
 (2015) [121]

Japan 467 CKD 3 (2) Febuxostat, 20–40 mg No significant difference in mean 
eGFR slope 

Kimura et al.  
(2018) [122]

Korea 141 CKD 3 (5) Febuxostat, 20–80 mg, Febuxostat reduced the risk of renal 
disease progression compared to 
control

Lee et al.  
(2019) [123]

China 152 CKD 2-3 (0.5) Febuxostat, 20–40 mg
Allopurinol, 100–200 mg

Febuxostat, superior in delaying renal 
impairment progression compared to 
allopurinol

Zhang et al.  
(2019) [124]

UA, uric acid; CKD, chronic kidney disease; DM, diabetes mellitus; IgA, immunoglobulin A; eGFR, estimated glomerular fil-
tration rate.
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ring in 3% to 5% of patients treated with allopurinol are 
rash, leukopenia or thrombocytopenia, and diarrhea. 
Severe reactions, such as severe cutaneous adverse re-
actions, may occur very rarely, but still occur in subjects 
with the human leukocyte antigen (HLA) B*58:01 allele, 
CKD, and use of a thiazide/loop diuretic [128,129]. 

Several studies have investigated the effect of allopu-
rinol therapy on kidney outcomes [117,118,120,130]. Siu 
et al. [117] reported that it slowed renal disease progres-
sion in hyperuricemic subjects with mild-to-moderate 
CKD (1.35 < serum creatinine ≤ 4.50 mg/dL) after 1 year. 
In a prospective controlled study, Goicoechea et al. [118] 
further reported that allopurinol preserved renal func-
tion. They randomly assigned patients with CKD either 
to receive allopurinol 100 mg/day or to continue with 
their usual therapy. A decrease of the serum UA level 
from 7.8 ± 2.1 to 6.0 ± 1.2 mg/dL was not associated with 
a significant change in the eGFR (40.8 ± 11.2 to 42.2 ± 
13.2 mL/min/1.73 m2), whereas the eGFR fell in the con-
trol group (39.5 ± 12.4 to 35.9 ± 12.3 mL/min/1.73 m2). Al-
lopurinol treatment was also associated with fewer CVD 
events (seven in the allopurinol group and 15 in the con-
trol group). Momeni et al. [119] reported that allopurinol 
therapy reduces proteinuria in patients with diabetic 
nephropathy, but with no effect on creatinine.

It is certainly possible that the favorable results asso-
ciated with allopurinol are due to effects other than its 
UA-lowering effects. For example, allopurinol blocks 
the production of reactive oxygen species, key signaling 
molecules in inflammatory diseases [131], which are gen-
erated during the conversion of xanthine to UA [9]. Other 
potential mechanisms include adenosine accumulation, 
which is anti-inflammatory and inhibits tumor necro-
sis factor-α, nuclear factor kappa-light-chain-enhancer 
of activated B cells, and the NLRP3 inflammasome (i.e., 
NACHT, LRR, and PYD domain-containing protein 
3) [132]. Furthermore, allopurinol treatment improves 
peripheral and cerebrovascular endothelial function 
[74,133-136]. These mechanisms may each be associated 
with kidney protective effects either alone or in combi-
nation.

Febuxostat
Febuxostat is a relatively new xanthine oxidase inhib-
itor that is safe for patients with kidney dysfunction 
[137,138]. Febuxostat is used to treat hyperuricemia in 

gout patients at daily doses of 40 and 80 mg [139]. Several 
types of adverse effects have been associated with the use 
of febuxostat, some of which include cardiovascular and 
hepatic abnormalities that may be more common with 
febuxostat than with allopurinol [140].

In a randomized controlled trial of 93 patients with 
stage 3 and 4 CKD, febuxostat slowed a decline in eGFR 
compared to placebo [121]. The mean eGFR in the febux-
ostat group increased nonsignificantly from a baseline 
of 31.5 ± 13.6 to 34.7 ± 18.1 mL/min/1.73 m2 at 6 months; 
with placebo, the mean eGFR decreased from 32.6 ± 11.6 
to 28.2 ± 11.5 mL/min/1.73 m2. In total, 17 of the 45 (38%) 
participants in the febuxostat group showed a 10% de-
cline in eGFR compared with 26 of 48 (54%) in the place-
bo group. However, a larger randomized controlled trial 
failed to show a beneficial effect [122], with no significant 
difference in mean eGFR slopes between the febuxostat 
(0.23 ± 5.26 mL/min/1.73 m2 per year) and placebo (−0.47 
± 4.48 mL/min/1.73 m2 per year) groups (difference, 0.70; 
95% CI, −0.21 to 1.62; p = 0.10).

Several other recent studies have compared febuxostat 
to placebo or allopurinol, and febuxostat retarded the 
decline in renal function more effectively than allopuri-
nol [116,123,124]. In a Korean retrospective study, a febux-
ostat group had significantly lower mean serum UA lev-
els (5.7 ± 1.0 mg/dL) than either an allopurinol group (7.1 
± 1.2 mg/dL) or a control group, (8.0 ± 0.8 mg/dL) (p < 
0.001) and maintained significantly higher mean eGFR 
values for 4 years. The febuxostat group also had signifi-
cantly longer survival times free from renal disease pro-
gression (87.7 months; 95% CI, 71.2 to 104.2) compared 
with either the allopurinol group (77.6 months; 95% CI, 
60.2 to 94.9) or the control group (48.7 months; 95% CI, 
39.3 to 58.1) (p < 0.001) [123]. In a Chinese prospective co-
hort study of patients with stage 3 to 5 CKD, the serum 
UA target of < 6.0 mg/dL was achieved by 96.4% of pa-
tients in the febuxostat group and by 37.5% in the allo-
purinol group at 6 months. The eGFR in the febuxostat 
group increased from 28.45 to 30.65 mL/min/1.73 m2 at 
6 months, while it decreased from 28.06 to 24.39 mL/
min/1.73 m2 in the allopurinol group [116]. In another 
Chinese prospective cohort study of patients with stage 
2 to 3 CKD, the proportion of patients showing a ≥ 10% 
decline in eGFR from baseline decreased by 17.9% in 
the febuxostat group and 34.1% in the allopurinol group  
(p = 0.025) [124].
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CONCLUSIONS

A 100-year history of basic and clinical studies supports 
UA being a direct risk factor for CKD. Nevertheless, 
controversy exists over the causal role of UA in the de-
velopment or exacerbation of CKD, with conflicting re-
sults being produced in various studies. Although many 
nephrologists currently treat asymptomatic patients 
with hyperuricemia [141], there is no consensus on the 
appropriateness of such a treatment approach [142]. Fur-
thermore, hypouricemia has been shown to increase the 
risk for deterioration of renal function, making it more 
difficult to set a target range for the optimal serum UA 
level. In the CARES trial, all-cause and cardiovascular 
mortality were higher in the febuxostat group than in 
the allopurinol group, even though patients receiving 
febuxostat had lower serum UA levels [140]. The higher 
mortality associated with this more intense UA-lower-
ing therapy is consistent with the U-shaped association 
between UA and mortality proposed in some observa-
tional studies [110,111]. Because UA is the most abundant 
antioxidant in plasma, strategies to increase UA are on-
going in clinical trials of patients with neurological dis-
eases [143,144]. Further research is needed to assess the 
safety of lowering serum UA to specific thresholds to 
produce safe guidelines [145]. Optimal serum UA levels 
should be defined at both upper and lower limits, for 
men and women, and in patients with and without CVD 
or CKD.
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