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Abstract: Pulmonary hypertension should be preoperatively evaluated for optimal surgical planning
to reduce surgical risk in lung cancer patients. Preoperative measurement of vascular diameter in
computed tomography (CT) images is a noninvasive prediction method for pulmonary hypertension.
However, the current estimation method, 2D manual arterial diameter measurement, may yield
inaccurate results owing to low tissue contrast in non-contrast-enhanced CT (NECT). Furthermore, it
provides an incomplete evaluation by measuring only the diameter of the arteries rather than the
volume. To provide a more complete and accurate estimation, this study proposed a novel two-stage
deep learning (DL) model for 3D aortic and pulmonary artery segmentation in NECT. In the first stage,
a DL model was constructed to enhance the contrast of NECT; in the second stage, two DL models
then applied the enhanced images for aorta and pulmonary artery segmentation. Overall, 179 patients
were divided into contrast enhancement model (n = 59), segmentation model (n = 120), and testing
(n = 20) groups. The performance of the proposed model was evaluated using Dice similarity
coefficient (DSC). The proposed model could achieve 0.97 ± 0.66 and 0.93 ± 0.16 DSC for aortic
and pulmonary artery segmentation, respectively. The proposed model may provide 3D diameter
information of the arteries before surgery, facilitating the estimation of pulmonary hypertension and
supporting preoperative surgical method selection based on the predicted surgical risks.

Keywords: aorta; computed tomography; deep learning; lung cancer; pulmonary artery; pulmonary
hypertension

1. Introduction

Low-dose computed tomography (CT) screening has recently increased the detection
rate of early-stage lung cancer [1–3]. Thoracic surgical resection is the major treatment
approach for patients with early-stage lung cancer [4–7]. Surgical planning may vary from
patient to patient owing to different surgical risks across patients. Extensive resection
(lobectomy) is the treatment of choice for patients with a low surgical risk and high tumor
invasiveness. However, limited resection (wedge resection or segmentectomy) is indicated
for patients with high surgical risks and low tumor invasiveness [8–11]. Preoperative
pulmonary hypertension associated with postoperative heart failure has been indicated to
be exacerbated by surgery, leading to an increase in mortality risk (four to five times higher
than that in patients without pulmonary hypertension) [12,13]. Furthermore, Wei et al.

Diagnostics 2022, 12, 967. https://doi.org/10.3390/diagnostics12040967 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12040967
https://doi.org/10.3390/diagnostics12040967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5977-3874
https://orcid.org/0000-0002-3618-0256
https://orcid.org/0000-0003-1380-3737
https://orcid.org/0000-0002-0023-5817
https://orcid.org/0000-0003-1268-3729
https://doi.org/10.3390/diagnostics12040967
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12040967?type=check_update&version=2


Diagnostics 2022, 12, 967 2 of 16

showed that the failure rate of the right ventricle was significantly higher in patients
with pulmonary hypertension before surgery (10.5%) than in patients without pulmonary
hypertension (2.2%) [14]. Therefore, pulmonary hypertension is a surgical risk factor
that may result in malignant behaviors; thus, it is important to preoperatively evaluate
the presence of pulmonary hypertension, supporting surgical management. The gold
standard approach for the diagnosis of pulmonary hypertension is the direct measurement
of pulmonary artery pressure by cardiac catheterization [12,14]. However, this invasive
measurement method may not be commonly used for the preoperative evaluation of
patients with lung cancer. Cardiac ultrasound examination before lung cancer surgery
would be an alternative approach to confirm the presence of pulmonary hypertension
before surgery [12,14]. However, these results are unreliable and lack accuracy.

Several previous studies have indicated that the diameter of the pulmonary artery, or
the ratio of the pulmonary artery to the aorta, is an effective tool for assessing pulmonary
hypertension [4]. Chung et al. published imaging studies that measured these two pa-
rameters found that the diameter of the pulmonary artery increased significantly after
lobectomy (23.9–25.6 mm, p < 0.0001) [15]. However, the method used in that study was a
2D measurement of contrast-enhanced chest CT images. As the majority of patients with
lung cancer are diagnosed during low-dose CT (LDCT) screening, these patients may not
have undergone contrast-enhanced CT before surgery. In addition, post-surgery tracking is
usually by non-contrast-enhanced CT, and the technology of image measurement based on
non-contrast-enhanced CT still needs to be developed.

The present study aimed to develop an automatic 3D segmentation method for the
aorta and pulmonary artery on non-contrast-enhanced CT images to accurately calculate
the 3D diameter information of the two arteries before surgery, facilitate the estimation of
pulmonary hypertension, and support preoperative surgical management.

2. Materials and Methods
2.1. Data Information

Preoperative chest CT images of 179 patients with lung cancer were collected from the
National Taiwan University Hospital between January 2011 and December 2019, and all
patients had a set of CT images without a contrast agent and with a contrast agent. The
inclusion criteria of the study were as follows: (1) pathologically confirmed lung cancer, and
(2) available thin-cut chest CT image data. The Research Ethics Committee of the National
Taiwan University Hospital approved this study (project approval number 201712087RIND)
and waived the need for informed consent because of the retrospective study design.

The overall flowchart of the pulmonary hypertension assessment method is shown
in Figure 1. In this study, two types of models, namely, the contrast-enhanced and seg-
mentation models, were developed to achieve segmentation of the aorta and pulmonary
artery in two stages. CT images obtained with a contrast agent and without a contrast agent
were used in the contrast-enhanced model. The training data were allocated to 49 patients,
and the validation data were allocated to 10 patients, with a total of 59 patients. On the
contrary, because the clinical application of this model presupposes that patients are not
evaluated with a contrast agent, the data used for the segmentation model were taken
from non-contrast-enhanced CT images. In the segmentation model, 120 non-contrast-
enhanced CT images from the dataset were used, divided into 80 patients (training data),
20 patients (validation data), and 20 patients (testing data), and this configuration was used
for segmentation model training.
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Figure 1. Flowchart of the pulmonary hypertension assessment method.

2.2. CT Image Acquisition

Chest CT scans used in this study were acquired from the following manufacturers
using a multidetector (16-, 32-, or 64-detector row) CT scanner: GE (LightSpeed VCT,
LightSpeed 16, and HiSpeed CT/I, Chicago, IL, USA), Siemens (Definition AS+, Emotion 16,
and Sensation 64, Erlangen, Germany), and Philips (iCT 256 and Ingenuity CT, Amsterdam,
Netherlands) Healthcare systems. The CT image parameters were as follows: detector
collimation, 0.6–1.25 mm; field of view, 20–38 cm; beam pitch, 0.800–1.396; beam width,
10–40 mm; gantry speed, 0.5 or 0.8 s per rotation; 100–130 kVp; 47–351 mA; reconstruction
interval, 0.39–6 mm; matrix, 512 × 512 mm2.

2.3. Pre-Processing of CT Images

The original image was a set of chest CT Dicom images, and each data were resampled
to 0.1 mm in data preprocessing, and the value was between −160 and 240 HU. To ensure
that the deep learning (DL) model learns the location of blood vessels accurately, the aorta
and pulmonary artery are considered as the center to cut out two sizes of volume of interest
(VOI) (96 × 96 × 32 and 128 × 128 × 64). The aorta requires a larger VOI because of its
anatomical shape that covers more slices. As there is currently no commercial software that
can accurately annotate the aorta and pulmonary artery for CT images without contrast
agents, this study invited two professional thoracologists to assist in the annotation of the
ground truth (GT) of the two targets in this study. The preprocessing flow of the data is
shown in Figure 2.

Figure 2. Preprocessing flow of data. VOI, volume of interest; GT, ground truth.
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2.4. Architecture

To evaluate the complications, measurements of the diameter of the aorta and pul-
monary artery and calculation of the ratio are required. This study proposes a two-stage
DL architecture for the 3D segmentation of blood vessels. Because this study used non-
contrast-enhanced CT images, a contrast enhancement model was used in the first stage
to enhance the non-contrast images of the aorta and pulmonary artery; thus, the contrast
between the blood vessels and the surrounding tissues in the non-contrast-enhanced CT
images was improved. This model increases the sharpness of the blood vessel edge to
facilitate the effective learning of the backward segmentation model. In the second stage,
two 3D vessel segmentation models were developed for the aorta and pulmonary artery,
as shown in the flowchart (Figure 3). After successfully segmenting the two vessels, the
vessel sections were extracted to obtain the average diameter of the 3D vessel. The overall
architecture is shown in Figure 3.

Figure 3. A two-stage deep learning architecture for 3D segmentation. NECT, non-contrast-enhanced
Chest CT.

2.5. 3D U-Net

The contrast enhancement model and segmentation model proposed in this study are
improved models based on U-Net [16,17]. U-Net is a convolution-based model that can
be modeled by point-by-point convolution and superimposed on each convolution layer.
It is a type of fully convolutional network (FCN) model [18] and is composed of a down-
sampling (contraction) path to aggregate high-level information using context modules
and an upsampling (expansion) pathway to combine feature and spatial information for
localization. In the downsampling path, each layer consists of two 3 × 3 convolutional
layers, and then downsampling with a stride of 2 is used to extract information and capture
the contour features of the input image with missing spatial information. This gradually
restores the image size through upsampling with a step size of 2, extracting information
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on important features from the original image information and integrating contextual
information. Therefore, this model can perform feature extraction and multi-information
transmission through two paths to achieve semantic segmentation. The network used in
this study, called 3D U-Net, was changed from its original 2D architecture to a 3D architec-
ture by using 3D volumes as input and processing them with corresponding 3D operations,
such as 3D convolutions and 3D max pooling, as shown in Figure 4 [19].

Figure 4. Structure of 3D U-Net.

2.6. Contrast Enhancement Model

In non-contrast-enhanced images, because the image contrast is not significant and
the blood vessel boundaries are relatively blurred, it is not easy to segment the blood
vessels directly. Therefore, this study proposes a contrast-enhancement model that uses
the corresponding non-contrast- and contrast-enhanced images as the input and GT of the
model, respectively, as shown in Figure 5. This model learns how to generate contrast-
enhanced images from non-contrast-enhanced images so that the second-stage model in
the architecture can more easily achieve segmentation. In this model, a combination of
mean absolute error (MAE) and structural dissimilarity (DSSIM) loss functions is used
as the loss function [20,21]. The MAE is the sum of the absolute values of the difference
between the target value and the predicted value. It measures only the average error of the
predicted value, regardless of the direction, and ranges from 0 to positive infinity; therefore,
it can be used to judge the overall contrast enhancement performance of this model. DSSIM
was derived from a formula based on the structural similarity index (SSIM) [21,22]. SSIM
combines luminance, contrast, and structure to reflect the structural information heavily
relied on by anthropology. In the chest CT images used in this study, there is a strong
correlation between adjacent pixels in the same anatomical structure; therefore, it is suitable
for use as the loss function of this model [22]. Therefore, this study adopts the advantages
of the two loss functions and sets the trade-off parameter α to the optimal value of 0.7
after many experiments in this study, as shown in Formula (1), where I_gt and I_op are
the GT and model output, respectively. In this study, this loss function is used in a U-
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Net model with the ability to integrate contextual information for contrast enhancement
model training.

Loss(I_op, I_gt) = αMAE(I_op, I_gt) + (1 − α)DSSIM(I_op, I_gt) (1)

Figure 5. Contrast enhancement model.

2.7. Segmentation Model

In the second stage of the architecture, this study developed relative 3D vessel seg-
mentation models for two vessels, namely the aorta and pulmonary artery. The ratio of
the diameter of the aorta to that of the pulmonary artery is an important indicator of the
presence or absence of pulmonary hypertension. To obtain the diameters of the two blood
vessels, this study developed a 3D segmentation model to overcome the disadvantage
of non-contrast-enhanced CT images to segment the anatomical structures of the two
blood vessels and then extract the blood vessel sections to calculate the average blood
vessel diameter.

2.7.1. Aorta Segmentation Model

The training process of the contrast enhancement model also learns the difference
between the voxels of the blood vessels and those of other thoracic anatomical structures,
which is similar to the purpose of finding the position of the blood vessel boundary in
the segmentation model. Therefore, the training weights obtained in the first stage of
the architecture are suitable for transfer learning to improve the learning efficiency of the
segmentation model [23]. The location and method of the weights used in the transfer
learning are shown in Figure 6. The aorta is relatively simple in the thoracic structure;
therefore, this study directly uses unenhanced CT images for training and combines the
loss function of the Dice loss function commonly used in segmentation models to achieve
the training and development of the aorta segmentation model, in which both Pi and Gi are
a single voxel of GT and model output, respectively, and N is the total number of voxels of
the data, as shown in Formula (2).

DSC =
2 ∑N

i Pigi

∑N
i p2

i + ∑N
i g2

i
(2)
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Figure 6. Aorta segmentation model.

2.7.2. Pulmonary Artery Segmentation Model

The pathological structure of the pulmonary artery is relatively variable in the direction
and shape of the blood vessels. From the cross-section of the CT image, it can be observed
that the shape of each slice is very different (Figure 7). To enable the model to learn the target
more accurately, this study designed this model as a two-channel model. In addition to the
original non-contrast-enhanced CT image as the input, the contrast-enhanced image learned
by the contrast enhancement model is used as the second channel to input the pulmonary
artery segmentation model. In addition, consistent with the aorta segmentation model,
this model also uses transfer learning for the augmentation training of the model. The
difference is that for the model to learn more accurate pulmonary artery voxel information,
the model will pre-train the segmentation model and then concatenate the weights obtained
in this pre-training with the training weights in the contrast enhancement model. Based
on this, transfer learning was performed on the pulmonary artery segmentation model, as
shown in Figure 8, to achieve a more complete pulmonary artery segmentation result.

Figure 7. Pathological shape images of pulmonary aorta in different slice of the computed tomogra-
phy images.

In this segmentation model, the combination of the weights obtained by segmentation
pre-training and the training weights in the contrast enhancement model is shown in
Figure 8. In this study, each layer of downsampling was combined individually to ensure
that, during the feature extraction stage, both channels maintained the training impact. The
model hyperparameters used in this study are presented in Table 1.
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Figure 8. Pulmonary artery segmentation model.

Table 1. Hyperparameters of the two types of models used in the proposed architecture.

AA and PA Learning
Rate Decay Epochs Loss

Function

Spatial
Dropout

3D

Convolution
Kernel Size

Activation
Function

Output
Layer

Activation
Function

Contrast
enhancement

model 10−2 10−6 500

Combination
of MAE and

DSSIM 0.25 3 × 3 × 3 ReLU Sigmoid

Segmentation
model

Dice loss
function

2.8. Vessel Diameter Measurement

After obtaining the aorta and pulmonary artery from the two-stage segmentation
architecture, this study developed a mean diameter measurement method for both vessels
for the vessel diameter measurement segment required for assessing pulmonary hyper-
tension. To measure the vessel diameter, this study determined the centerline from the
segmented 3D vessel images. Find the corresponding blood vessel section by the point
on the centerline and calculate its diameter. After summation and averaging, the average
diameters of the two blood vessels were obtained. However, the vascular shape of the
pulmonary artery is more tortuous than that of the aorta; therefore, two different methods
were used in the anterior segment of the measurement process (Figure 9).

According to the characteristics of the aorta blood vessel itself, the blood vessel
was measured from 0.5 cm after exiting the heart to the position of 2.5 cm, as the range
for calculating the average diameter of the entire aorta. The blood vessel diameter was
measured (Figure 10). The original three-dimensional blood vessel is eroded to obtain a
region as a limiting range to find the center line; second, the direction vector between points
and the blood vessel surface are used. The normal vector is used as the inner product, and
the minimum inner product value between each candidate point is compared to select the
next point and so on until the entire blood vessel is searched; finally, the diameter of the
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blood vessel section perpendicular to the centerline of each segment is used to calculate the
average diameter.

Figure 9. Flowchart of diameter measurement.

Figure 10. Aorta diameter measurement method.

To obtain the average diameter of the pulmonary artery, this study first used skele-
tonization [24] to determine the rough centerline (Figure 11) and started to measure along
the main vessel of the pulmonary artery 0.5–1.5 cm from the position of the branch points.
Furthermore, the points on the centerline were discretized by interpolation. This step
smoothens the centerline. Finally, the diameter of the blood vessel section perpendicular
to each segment of the centerline was calculated at every 0.04-cm interval to obtain the
average diameter of the pulmonary artery.

Figure 11. Pulmonary artery diameter measurement method.

3. Results
3.1. Patient Clinicopathological Features and Perioperative Results

This study cohort comprised 179 patients diagnosed with lung cancer who under-
went lobectomies between 2011 and 2019. The mean age of all the 258 patients was
78.6 ± 3.3 years (range: 75−90). The majority of patients were females (64.2%) and non-
smokers (78.8%). The mean postoperative intensive care unit stay and hospital stay were
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0.3 and 5.3 days, respectively. There was no 30-day mortality in the study cohort. Patient
clinicopathological features and perioperative results are presented in Supplementary
Table S1.

3.2. Contrast Enhancement Model

In the first stage of the architecture, there was only a slight difference between the
contrast enhancement generated by the non-contrast agent CT image and the real contrast
agent CT image. The method developed in this study can significantly enhance the vascular
contrast of the non-contrast agent CT image, as shown in Figure 12.

Figure 12. (a) Non-contrast-enhanced chest CT, (b) enhanced image, and (c) contrast CT image.

3.3. Segmentation Model

The training curves of the segmentation model of the aorta and pulmonary artery in
this study are shown in Figures 13 and 14. It can be seen that regardless of whether it is the
segmentation of the aorta or the segmentation model of the dual-channel pulmonary artery,
in the later stage of model training, reliable and stable results can be achieved for both the
training dataset and the validation dataset.

Figure 13. Aorta segmentation model training curve: Loss, Dice curve.
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Figure 14. Pulmonary artery segmentation model training curve: Loss, Dice curve.

In the second stage of the architecture, the weights of the first stage are utilized by
transfer learning, which can improve the learning performance of the model. Therefore,
the segmentation results of the aorta and pulmonary artery by the method proposed in
this study can achieve Dice coefficients of 0.97 ± 0.66 and 0.93 ± 0.16, respectively, after
fivefold cross-validation.

In addition, this study compared the results of the proposed model with the unim-
proved 3D U-Net mentioned in Section 2.5, as shown in Table 2.

Table 2. Segmentation performance of the two-stage segmentation architecture.

Aorta Pulmonary Artery
Model DSC Model DSC

1-AA 0.97 ± 0.66 1-PA 0.91 ± 0.16
2-PA 0.93 ± 0.16

3D U-Net 0.87 ± 2.46 3D U-Net 0.87 ± 0.04
1-AA, aorta segmentation model; 1-PA, one-channel pulmonary artery segmentation model by inputting non-
contrast-enhanced image; 2-PA, two-channel model by inputting non-contrast-enhanced image and enhanced
image; DSC, Dice similarity coefficient stage.

From the results, the two-stage DL segmentation model proposed in this study can
efficiently complete the three-dimensional segmentation of the two major blood vessels, and
for the difficult pulmonary artery, additional input imaging enhanced images can effectively
improve segmentation performance. Among them, the pulmonary artery segmentation
model adds contrast-enhanced images as the second channel, and it can be seen from the
segmentation results that its performance is better than that of the single-channel input
of only non-contrast-enhanced CT images. As shown in Table 2, the method proposed
in this study is far superior to the 3D U-Net in either aortic segmentation or pulmonary
artery segmentation.

4. Discussion

This study used fivefold cross-validation and DSC as the evaluation metrics, and the
results are shown in Table 2. For aorta segmentation, the performance of this segmentation
model was 0.97 ± 0.66, and it was only required to input non-contrast-enhanced CT images,
which was in line with clinical use. Pulmonary artery segmentation is more difficult than
aorta segmentation because of its complex vessel orientation. As shown in Table 2, the
result of this model is 0.91 ± 0.16 when inputting only non-contrast-enhanced CT images,
which is relatively poor. Therefore, this study adds the contrast-enhanced images obtained
in the first stage of the architecture to improve segmentation performance. The result of this
two-channel pulmonary artery segmentation model is 0.93 ± 0.16, which is approximately
0.02 higher than the input of only non-contrast-enhanced CT images.
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To verify the effectiveness of the two-stage method in this study, we compared the
segmentation performance of several previous studies, as shown in Table 3 [25–39]. In
terms of aorta segmentation, the method proposed in this study achieved the highest
segmentation performance, whereas in terms of pulmonary artery segmentation, it was
only slightly inferior to the method developed by Gamechi et al. The method used in this
study still has a high-precision segmentation performance.

Table 3. Comparison of segmentation performance between the method in this research method and
those in previous research.

Method DSC

Aorta 2016 Jang et al. [25] 0.95 ± 0.02
2009 Išgum et al. [26] 0.87 ± 0.03

2012 Kurugol et al. [27] 0.93 ± 0.01
2013 Avila-Montes et al. [28] 0.88 ± 0.05

2017 Dasgupta et al. [29] 0.88 ± 0.06
2014 Xie et al. [30] 0.93 ± 0.01

2015 Kurugol et al. [31]. 0.92 ± 0.01
2019 Gamechi et al. [32] 0.95 ± 0.01
2018 Noothout et al. [33] 0.91 ± 0.04
2021 Lartaud et al. [34] 0.92 ± 0.02

2020 Haq et al. [35] 0.75 ≤ DSC ≤ 0.94
2020 Morris et al. [36] 0.85 ± 0.03

2021 Sedghi Gamechi et al. [37] 0.96 ± 0.01
Proposed method 0.97 ± 0.66

Pulmonary artery 2015 Xie et al. [38] 0.88
2018 López-Linares et al. [39] 0.89 ± 0.07

2020 Haq et al. [35] 0.80 ≤ DSC ≤ 0.91
2020 Morris et al. [36] 0.85 ± 0.03

2021 Sedghi Gamechi et al. [37] 0.94 ± 0.02
Proposed method 0.93 ± 0.16

In the past, research on segmentation of the aorta and pulmonary artery on CT images
has been conducted for many years. Therefore, this study also compared the performance
of a previous study with that of the method used in this study. Previous studies on aorta
segmentation mostly used images taken with a contrast agent for algorithm development.
Compared with images taken with a non-contrast agent, those taken with a contrast agent
has better vascular contrast and the vascular lumen presents a more obvious grayscale
contrast with the surrounding tissue. Therefore, blood vessel segmentation is easier to
perform. Jang et al. used CT images of contrast agents and proposed a method of automatic
segmentation of the ascending aorta using geodesic distance transformation combined
with Hough circles, which was applied to the diagnosis of cardiovascular diseases [25]. The
proposed method outperforms this method in terms of segmentation performance based
on non-contrast images; therefore, it is more competitive.

CT screening for early detection of thoracic cavity disease was performed without
contrast agents. In addition, contrast injections should not be used in patients with allergy
to these contrast media. Therefore, in recent years, most studies have been conducted on CT
images without the use of contrast agents. In studies on aorta segmentation on non-contrast
images, the following methods have been proposed based on prior knowledge of the vessel
shape [26,28–30,32]. Isgum et al. proposed a multiple atlas-based segmentation method
that registers multiple manually segmented atlas to the target image and uses decision
fusion to obtain segmentation results [26]. Avila-Montes et al. proposed the extraction of
the aorta centerline by Hough transform and dynamic programming and used the entropy-
based cost function for boundary detection [28]. Dasgupta et al. used the circular Hough
transform method to locate the vessel region to obtain aorta segmentation results [29].
Xie et al. proposed an algorithm that uses anatomy label maps and cylinder tracking to
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segment the aorta [30]. Gamechi et al. combined multi-atlas registration to obtain seed
points, aorta centerline extraction, and optimal surface segmentation to extract the aorta in
non-contrast-enhanced CT images [32]. However, the extraction of the aorta centerline or
boundary based on such shape priors is prone to errors in the locations where some vessels
are narrowed, dilated, or where plaques appear.

In a study based on the active contour [40] method to segment the aorta, Kurugol
et al. used the Frenet framework and 3D level set method to develop a fully automated
and unsupervised segmentation of the aorta. The Dice coefficient was 0.93 ± 0.01. The
aorta segmentation results can be used to quantify the degree of aorta calcification [27].
Kurugol et al. exploited the cross-sectional circularity of the aorta in axial slices and the
aortic arch in reformatted oblique slices to detect initial aorta boundaries and used the
3D level-set method to modify the final results. The efficacy yields a Dice coefficient of
0.92 ± 0.01 28 [31]. Shown in Table 3, such active contour-based methods have a slightly
higher average performance than those of studies that rely on shape priors.

In a study applying DL to aorta segmentation, Noothout et al. used a dilated convo-
lutional neural network for segmentation. To obtain the final segmentation results, the
probabilities obtained from the three planes were averaged per class. The Dice coefficients
were 0.83 ± 0.07, 0.86 ± 0.06, and 0.88 ± 0.05 for the aorta arch and descending aorta,
respectively, and 0.91 ± 0.04 for the aorta [33]. Lartaud et al. segmented multiple cardiac
anatomical structures on spectral dual-energy CT images by using a multi-label U-Net,
where a Dice coefficient of 0.92 ± 0.02 was obtained for the aorta [34]. However, the DL
method relies on effective feature learning of the model or huge training data. Therefore,
the aforementioned method has no obvious advantage over the traditional algorithm in
terms of performance results. Based on a DL network, this research uses transfer learning
through the first stage of the architecture. Thus, the effective learning of the model can be
enhanced, and better segmentation performance can be obtained.

Related studies on pulmonary artery segmentation include the following: Moses et al.
obtained a high correlation with the manually determined parameters for both mid-cross-
sectional area (R = 0.96) and length (R = 0.93) [41]. Xie et al. used the shape before using
the cylindrical registration method to segment the pulmonary artery and obtained the
mean diameter according to the triangular mesh model and the anatomy label map [38].
Román et al. proposed a 3D convolutional neural network architecture, using realistic
deformations to augment data, and obtained a Dice coefficient performance of 0.89 ± 0.07
for pulmonary artery segmentation in CT angiography images [39]. This shows that
segmentation of the pulmonary artery remains a challenge even with contrast imaging.

In the aforementioned studies, only one of the segmentation targets required in this
study was discussed, which could not meet the needs of this study to be applied to the study
of pulmonary hypertension. The following studies have discussed the segmentation of both
the aorta and pulmonary artery. Haq et al. established and validated a multi-label DL seg-
mentation model for 2D segmentation for automatic segmentation of 12 cardiopulmonary
substructures, including the aorta and pulmonary artery, with segmentation efficiencies
of 0.80 ≤ DSC ≤ 0.91 and 0.75, respectively, 0.75 ≤ DSC ≤ 0.94 [35]. Morris et al. used
a 3D U-Net to segment multiple structures of the heart and post-processed them using
3D-CRF. The result of the segmentation Dice coefficient of the aorta and pulmonary aorta,
collectively called Great Vessels was 0.85 ± 0.03. However, this study requires simultaneous
input of CT and magnetic resonance imaging images, which are difficult to obtain simulta-
neously under normal conditions [36]. Sedghi Gamechi et al. proposed to cut the centerline
based on the optimal surface map, and the Dice coefficient of the segmentation result can
be obtained as 0.94 ± 0.02 for the pulmonary artery and 0.96 ± 0.01 for the aorta [37].
However, this study is still based on shape priors; therefore, it is easy to encounter the
aforementioned problems.

In Table 3, the performance comparison results also show that the segmentation
models proposed in this study are superior to other methods in aortic segmentation and
only slightly inferior to those of the segmentation algorithms developed based on traditional
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methods in pulmonary artery segmentation. The method proposed in this study is a DL
model; therefore, it is more generalized and robust than traditional methods with good
architectural design and training. In the comparison of previous related studies that also
used DL models, it can also be seen from Table 3 that the method proposed in this study
achieved the best segmentation performance of the aorta and pulmonary artery among the
related DL methods.

Several studies have shown a correlation between preoperative pulmonary hyperten-
sion and postoperative complications [12,14]. The gold standard approach for the diagnosis
of pulmonary hypertension is the direct measurement of pulmonary artery pressure by
cardiac catheterization [12,14]. However, this invasive measurement method may not be
commonly used for preoperative evaluation of patients with lung cancer. Consequently,
owing to the relationship between elevated pulmonary artery pressure and vessel diameter,
recent studies have shown the correlation of enlarged pulmonary artery to postoperative
complications [42]. However, the method used in the previous studies was 2D measurement
of single-cut axial view contrast-enhanced computed tomography image. Automatic 3D
segmentation method for both the aorta and pulmonary artery on CT images to accurately
calculate the mean 3D diameter has not been reported before. Our proposed model may
automatically provide 3D diameter information of the aorta and pulmonary artery before
surgery, facilitating the estimation of pulmonary hypertension and supporting preoperative
surgical method selection based on the predicted surgical risks.

This study has the following limitations. In the pulmonary artery segmentation
model, the contrast enhancement model developed in the first stage of this architecture still
needs to be used to provide contrast-enhanced images as inputs for clinical applications.
Therefore, this model is more time-consuming and energy consuming than the aorta
segmentation model, and the input and model construction methods of this model can
be further improved in the future. Second, the types and quantities of data used in this
study need to be expanded and increased so that the model in this study can achieve more
effective generalization capabilities and improve the applicability of this study model on
various non-contrast-enhanced CT images, such as low-dose CT. Third, there are still many
artificial parameter settings in the calculation of the diameters of the two blood vessels,
which can be further improved into a more automated extraction method.

5. Conclusions

To overcome the difficulty of segmenting non-imaging CT images of the aorta and
pulmonary artery, this study proposes a two-stage DL segmentation architecture consisting
of a contrast enhancement model and segmentation model. This method uses transfer
learning to enhance the performance of the segmentation model. The DL method proposed
in this study can efficiently complete the segmentation of the aorta and pulmonary artery.
Compared with previous research methods for aorta and pulmonary artery segmentation,
this study can achieve a high level of segmentation performance. In conclusion, the
proposed model may provide the 3D diameter information of two arteries before surgery,
facilitating the estimation of pulmonary hypertension and supporting the preoperative
surgical method selection based on the predicted surgical risks.
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