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Abstract

Background: The idea that changes to the host immune system are critical for cancer progression was proposed a
century ago and recently regained experimental support.

Results: Herein, the hypothesis that hepatocellular carcinoma (HCC) leaves a molecular signature in the host peripheral
immune system was tested by profiling DNA methylation in peripheral blood mononuclear cells (PBMC) and T cells from
a discovery cohort (n = 69) of healthy controls, chronic hepatitis, and HCC using Illumina 450K platform and was validated
in two validation sets (n= 80 and n = 48) using pyrosequencing.

Conclusions: The study reveals a broad signature of hepatocellular carcinoma in PBMC and T cells DNA methylation
which discriminates early HCC stage from chronic hepatitis B and C and healthy controls, intensifies with progression
of HCC, and is highly enriched in immune function-related genes such as PD-1, a current cancer immunotherapy
target. These data also support the feasibility of using these profiles for early detection of HCC.
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Backgrounds
The idea that host immuno-surveillance plays an im-
portant role in tumorigenesis by eliminating tumor cells
and suppressing tumor growth has been proposed by
Paul Ehrlich [1, 2] more than a century ago and has
fallen out of favor. However, accumulating data from
both animal and human clinical studies suggest that the
host immune system plays an important role in tumori-
genesis through “immuno-editing” which involves three
stages: elimination, equilibrium, and escape [3–5].
Presence of tumor infiltrating cytotoxic CD8+ T cells was
associated with better prognosis in several clinical studies
of human regressive melanoma [6–11], esophageal [12],
ovarian [13, 14], and colorectal cancer [15–17]. The
immune system is believed to be responsible for the
phenomenon of cancer dormancy when circulating
cancer cells are detectable in the absence of clinical
symptoms [18, 19].

DNA methylation, a covalent modification of DNA,
which is a primary mechanism of epigenetic regulation
of genome function, is ubiquitously altered in tumors
[18, 20–22] including hepatocellular carcinoma (HCC)
[23]. Molecular analysis of cancer including DNA
methylation is mainly focused on tumors and biomate-
rial originating in tumor including tumor DNA in
plasma [24, 25], circulating tumor cells [26], and the
tumor-host microenvironment [27, 28]. The prevailing
and widely accepted hypothesis is that molecular
changes that drive cancer initiation and progression
originate primarily in the tumor itself and that relevant
changes in the host occur primarily in the tumor micro-
environment [27, 29]. The identity of immune cells in
the tumor microenvironment has attracted, therefore,
significant attention [30, 31]. Interestingly, recent DNA
methylation and transcriptome analysis of tumors
revealed tumor stage-specific immune signatures of infil-
trating lymphocytes [29, 32]. However, these signatures
represent targeted immune cells in the tumor micro-
environment, and utilization of such signatures for early
diagnosis requires invasive procedures. The tumor-
infiltrating immune cells represent only a minor fraction
of peripheral blood cells [33–36].
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Global DNA methylation changes were previously
reported in leukocytes, and EWAS (epigenome-wide as-
sociation studies) studies revealed differences in DNA
methylation in leukocytes from bladder, head and neck,
and ovarian cancer, and these differences were inde-
pendent of differences in white blood cell distribution
[37]. Differential methylation of 53 CG sites that did not
show evidence of association with blood cell compos-
ition was found to associate with ovarian cancer risk in
blood DNA [38]. A recent study demonstrated associ-
ation between the state of methylation of multiple CG
site in six genes and colorectal cancer in peripheral
blood leukocytes as well as an interaction with diet [39].
An EWAS on 48 matched case-controlled pairs in a
nested case-control study within a 22-year follow-up
cohort of hepatitis B (HepB) carriers revealed methyla-
tion variable positions that were associated with progres-
sion to HCC and were predictive of the risk of
early-onset HCC well before appearance of clinical
symptoms [40]. These data provide support for the hy-
pothesis that cancer-specific DNA methylation differences
exist in white blood cells; however, it is possible that these
just reflect stochastic alterations in DNA methylation in
somatic tissues that are associated with cancer.
The question of whether the peripheral host immune

system exhibits a distinct DNA methylation response to
the cancer state that intensifies in advanced stages of
cancer has not been addressed. Addressing this question
is essential for understanding the potential importance
of epigenetic reprogramming of the immune system in
cancer. Does epigenetic reprogramming occur in the im-
mune system during cancer progression and does it play
a causal role in HCC progression? If indeed progression
of cancer involves epigenetic reprogramming of the host
immune system, this has important implications for both
therapeutics and diagnostics.
HCC is the fifth most common cancer worldwide [41].

It is particularly prevalent in Asia, and its occurrence is
highest in areas where hepatitis B is prevalent, indicating
a possible causal relationship [42]. Here, we hypothesize
that HCC progression is associated with distinct DNA
methylation profiles in the host peripheral immune cells.
Since HCC originates in patients with an ongoing
inflammatory chronic viral infection, the critical chal-
lenge is to delineate DNA methylation markers that dif-
ferentiate between cancer and the underlying chronic
inflammatory liver disease. We hypothesize here that
HCC exhibits a DNA methylation profile that is distinct
from chronic hepatitis and that there is a clear boundary
in the evolution of the DNA methylation profile of white
blood cells between the earliest stages of HCC and
chronic hepatitis
Our study demonstrates for the first time broad DNA

methylation profiles for HCC in peripheral blood

mononuclear cells (PBMC) and T cells that are different
from controls as well as hepatitis B and C; the differ-
ences are intensified during cancer progression. There is
a significant overlap between DNA methylation profiles
delineated in white blood cells and T cells. Four genes
that were differentially methylated in T cells from HCC
patients in the discovery cohort were validated by pyro-
sequencing of T cells DNA in a separate cohort of
patients (n = 79) and one gene STAP1 was validated
in a third cohort (n = 48). HCC DNA methylation
profiles are highly enriched in immune functions
including genes such as Programmed cell Death 1
(PD-1), a negative regulator of T cell immune
response that is an important target in current cancer
immunotherapy [43] and show no significant overlap
with the DNA methylation profiles of previously de-
scribed HCC tumors [23]. These data provide proof
of principle that there are molecular changes in the
host immune cells DNA in HCC. This has important
implications for our understanding of the mechanisms
of the disease and its treatment as well as for nonin-
vasive diagnostics of cancer in white blood cells
DNA.

Results
Correlation between quantitative distribution of site-
specific DNA methylation levels and progression of HCC
Sixty-nine people from the Beijing area of China were
included in a discovery set (10 controls and 10 patients
for each of the following groups: hepatitis B and C,
stages 1–3, and nine patients for stage 4) of HCC staged
using the EASL–EORTC Clinical Practice Guidelines for
HCC (Table 1 and “Methods” section). To address the
question of whether quantitative differences in DNA
methylation states in PBMCs correlate with progression
of HCC (see “Methods” section for staging criteria) and
whether this DNA methylation signature differentiates
between chronic hepatitis B and C and HCC, we
performed a genome-wide measurement of DNA methy-
lation states in ~ 480,000 CpGs using the Illumina Infi-
nium Human Methylation 450K BeadChip Array
platform as described in the “Methods” section. Follow-
ing normalization and batch correction, we performed a
Pearson correlation analysis with Bonferroni correction
for multiple testing (< 1 × 10−7) between the quantitative
distribution of DNA methylation in the batch-
normalized CGs across the array and progression of
HCC. The analysis revealed a broad signature of DNA
methylation that correlates with progression of HCC. A
genome-wide view of the intensifying change in DNA
methylation of 3924 robust differentially methylated sites
(r > 0.8; r < − 0.8; delta beta > 0.2, > − 0.2, p < 10−7;
Additional file 1: Table S1) during HCC progression is
shown in Fig. 1a, b; notably, hypomethylation increases
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with progression of HCC (Fig 1b). The heat map in Fig. 1c
shows the increasing differences in DNA methylation as
HCC progresses and the clustering of all individual HCC
patients away from healthy controls and hepatitis B and C
individuals (except CAN1-5 who is clustered at the
boundary between HepC and HCC (Fig. 1c). Importantly,
PBMC DNA methylation profiles differentiate individual
HCC patients at the earliest stage from hepatitis B and C,
a critical challenge in early diagnosis of HCC.

Unique and overlapping differentially methylated sites
associate with different HCC stages and differentiate HCC
from hepatitis B and C; cross validation across HCC
samples
We delineated differentially methylated CGs between
healthy controls and each of the HCC stages independ-
ently using the Bioconductor package Limma [44], [45]
as implemented in ChAMP [46]. The number of differ-
entially methylated CG sites (p < 1 × 10−7) between each
stage of HCC and healthy controls increases with
advance in stage; 14,375 for stage 1; 22,018 for stage 2;
30,709 for stage 3; and 54,580 for stage 4 (Additional file 2:
Table S2, Additional file 3: Table S3, Additional file 4:
Table S4 and Additional file 5: Table S5) with a notable in-
crease in the fraction of hypomethylated sites (26% in
stage 1 to 57% in stage 4) (Fig. 2a) as observed in the Pear-
son correlation analysis (Fig. 1b). We derived for each
HCC stage a set of highly robust CG methylation markers
(p < 1 × 10−7, delta beta > ± 0.3; < − 0.3 for HCC stage 1
and p < 10−10 delta beta of ± 0.3; for stage 2–4, we used a

more stringent threshold for later stages to reduce
the number of sites) (74 for stage 1, 14 for stage 2,
58 for stage 3, and 298 for stage 4). By combining
the lists of markers derived independently for each
stage and removing redundant CG sites between
stages, we derived a combined non-redundant list of
350 CGs (Additional file 6: Table S6).
We used two methods of “cross-validation.” In the first

method, all samples from one stage were used for “train-
ing” comparing the HCC samples to healthy controls.
Subsequently, we tested the ability of the obtained signa-
ture to classify other stages and differentiate them from
chronic hepatitis B and C, which were not “trained” for
the said “CGs.” In the second method, samples of each
group were randomized to two subsets, a “training set”
and a “validation set,” and the signature of 369 signifi-
cant CG sites obtained for the training set was tested on
the “validation” set (Additional file 7: Figure S2).
Using the first method, the differentially methylated

sites for each of the stages were derived by comparing
ten healthy control and ten stage-specific HCCs. HCC of
other stages and hepatitis B and C samples were not
“trained” for these differentially methylated CGs and
could serve as “cross-validation sets” to determine
whether markers “trained” on one stage of HCC cluster
correctly other HCC samples and whether they also dif-
ferentiate HCC from other hepatitis B and hepatitis C.
As seen in Fig. 2b, c (stage 1 and 4) and Additional file

7: Figure S1 (stage 2 and 3), each of the independently
derived set of markers for specific stages of HCC was

Table 1 Clinical characteristics of the training set

Variable Control (n = 10) HepB (n = 10) HepC (n = 10) HCC1 (n = 10) HCC2 (n = 10) HCC3 (n = 10) HCC4 (n = 9) p value

Age (mean ± SD) 34.4 ± 8.5 36.9 ± 9.04 37.7 ± 12.08 52.9 ± 5.97 52.2 ± 12.2 56.1 ± 5.5 48 ± 15.06 5 × 10−6

Sex 0.034

Male 3 (30%) 8 (80%) 7 (70%) 9 (90%) 8 (80%) 9 (90%) 7 (70%)

Female 7 2 3 1 2 1 2

Alcohol N.S.

No 8 (80%) 6 (60%) 8 (80%) 4 (40%) 5 (50%) 4 (40%) 5 (50%)

Infrequent 2 1 2 2 1 0 2

Heavy 0 3 0 4 4 6 2

Smoking N.S.

No 8 (80%) 5 (50%) 7 (70%) 6 (60%) 5 (50%) 4 (40%) 6 (60%)

Quit 0 0 0 0 3 2 1

Low 0 0 0 0 1 0 0

Heavy 2 5 3 4 1 4 2

Cirrhosis 0 0 0 0 0 0 0

Hepatitis B 0 10 0 10 9 10 8 2 × 10−16

Hepatitis C 0 0 10 2 1 0 3 × 10−16

AFP (> 500u/ng) 0 1 (10%) 0 0 1 (10%) 3 (30%) 5 (50%) 0.043

AFP alpha feto protein, HBV Hepatitis B virus, HCV Hepatitis C virus
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“cross-validated” by its ability to cluster with a sharp
boundary, all other HCC stages separately from controls,
and hepatitis B and C samples that were not “trained”
for these CGs. Interestingly, these markers also cluster
hepatitis C and B samples separately from each other.
The overlap between independently derived CG

markers that differentiate each of the HCC stages from
healthy controls (Fig. 2d) is highly significant for all pos-
sible overlaps between the stages (hypergeometric test,
p < 1.921718e-319) allowing for using of these differen-
tially methylated CGs as peripheral markers of HCC.
We tested whether we could use the 350 CG list (de-

scribed above) (Additional file 6: Table S6) to differenti-
ate HCC stages from each other. Hierarchical clustering
by one minus Pearson correlation of all samples using
these 350 CGs correctly clustered the HCC samples by
stage, and hepatitis B and C were clustered with healthy

controls even though they were not “trained” by these
CGs (Fig. 3a).
Since the 350 CG signature that was used to classify

HCC stages was obtained by combining the signatures
obtained for each stage, the signature has already been
“trained” with the data used for testing. We therefore
used a second method to “train” and “validate” a DNA
methylation profile that classifies HCC stages. First, we
randomly split each group (CTRL, HepB and C, and the
different HCC stages) to two sets, a “training set” and a
“validation set.” We then performed a correlation
analysis between progression of HCC and levels of CG
methylation. We selected the top 369 CGs (delta beta
Can4-Can1 > 0.4, > − 0.4, adjusted p value < 0.05)
(Additional file 7: Figure S2a left panel; Additional file 6:
Table S6). Hierarchical clustering by one minus Pearson
correlation of the “validation set” using these 369 CGs

Fig. 1 Correlation between quantitative distribution of site-specific DNA methylation levels and progression of HCC. a A genome wide view (IGV
genome browser) of the escalating differences in DNA methylation from healthy controls (delta beta) in 3924 CG sites whose quantitative levels
of methylation correlate with HCC progression (r > 0.8, r < − 0.8; delta beta > 0.2, < − 0.2; p < 10−7) in PBMC from HCC and hepatitis B and C
patients. HepB-Hepatitis B; HepC-Hepatitis C; CAN1-stage 1 HCC; CAN2- Stage 2 HCC: CAN3- Stage 3 HCC; CAN4-Stage 4 HCC. b Box plot of DNA
methylation delta beta values of the 3924 CG sites whose levels of methylation correlate significantly (p < 10−7) with HCC progression. Sites that
are hypomethylated relative to healthy control during progression of HCC (upper panel) and sites that are hypermethylated relative to healthy
controls (bottom panel) are shown separately. c Heat map of hierarchical clustering using one minus Pearson correlation of 69 people by DNA
methylation beta values of the 3924 CG sites
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(trained in the “training set”) correctly clustered these
other untrained HCC samples by stage while hepatitis B
and C were clustered with healthy controls (Additional
file 7: Figure S2a right panel). A randomized set of 369
CGs was unable to reveal the progressive alteration of
the DNA methylation profile with advance of HCC
stages (Additional file 7: Figure S2b).
To test whether we could delineate within the 350

CGs a shortlist of CG sites that differentiate early (stages
1 and 2) from late stages of HCC (stages 3 and 4), we
performed a penalized regression on the “training set”
that included randomized samples (five per group) from
all HCC stages and all controls on the 350 CG list
(Additional file 6: Table S6) using the R package “penal-
ized” [47] which performs likelihood cross-validation and
makes predictions on each left-out subject. The fitted

model identified seven CGs (Additional file 8: Table S7)
whose combined coefficients predicted with 100% accur-
acy the likelihood of stage HCC 3 and 4 cases and 100%
specificity in calling HCC stage 1 and 2 as well as all con-
trols (healthy and hepatitis B and C) as false. The penal-
ized model was then used on the “validation set” of
samples of HCC cases and controls to predict likelihood
of each case being late stage HCC (Fig. 3b). We included
in the test in addition to the new PBMC samples ten sam-
ples of T cells from healthy controls and ten T cell samples
from different stages of HCC (Fig. 3c). Importantly,
neither the 350 CG sites “classifier” nor the “penalized”
model was previously “trained” with the T cell data. The
penalized model predicted all the late stage samples in-
cluding three late-stage HCCs in the T cells samples with
100% sensitivity and 100% specificity.

Fig. 2 Differentially methylated CG sites at different stages of HCC and “cross-validation.” a Number of CG sites that are differentially methylated
between different stages of HCC and healthy controls (p < 10−7) green: hypomethylated, red: hypermethylated. b Heat map presentation of
hierarchical clustering of 69 people by 74 differentially methylated CGs between HCC stage 1 and control. c Heat map of hierarchical clustering
of 69 people by 298 differentially methylated CGs between HCC stage 4 and control. d Ven diagram of the overlap between differentially
methylated CG sites at different HCC stages (1–4). Significance was determined using Fisher exact test for all overlaps and all overlaps were
highly significant (p < 1.7 × 10−321)
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However, since the 350 CG signature that was used to
classify HCC stages was obtained by combining the sig-
natures obtained for each stage and has already been
“trained” with the data used for testing, we also used the
list of 369 CGs obtained from a “training set” that
included representative samples from all cases and
controls. We then performed a penalized regression on
this set to identify CG sites that differentiate early
(stages 1, 2) from late HCC (stages 3, 4). The fitted
model identified a different set of 15 CGs (Additional
file 8: Table S7) whose combined coefficients predicted
with 100% accuracy the likelihood of stage HCC 3 and 4
cases and 100% specificity in calling HCC stage 1 and 2
as well as all controls (healthy and hepatitis B and C) as
false. The penalized model was then used on the “valid-
ation set” of other samples of HCC cases and controls
that were not used in training of either the selection of
the 369 sites or the penalized model, to predict

likelihood of each case being late stage HCC (Additional
file 7: Figure S3). The penalized model predicted all the
late stage samples with 100% sensitivity and 100% speci-
ficity. In summary, these data suggest that DNA methy-
lation measurements could predict and differentiate
HCC from controls and chronic hepatitis as well as early
stage HCC.

The DNA methylation signature of HCC remains
significant after correction for potential confounders: sex,
age, alcohol, smoking, and cell count
HCC patients in our study and in clinical setting are a
heterogeneous group with respect to alcohol, smoking
[48–51], sex [52], and age [53], and each of these factors
are known to affect DNA methylation. In addition, white
blood cells are a heterogeneous mixture of cells and
alterations in white cell distribution between individuals
might affect DNA methylation as well. We first

Fig. 3 Staging of HCC using differentially methylated CGs. a Heat map presentation of hierarchical clustering of 69 people by 350 non-redundant
CGs that are differentially methylated between different HCC stages and healthy controls. b Prediction of late stage HCC in 69 patients using a
penalized model trained on a randomized half of the HCC patients and controls (“training set”) and tested on the other half (“validation set”). The
plot shows all samples (the training and validation sets combined). The y axis indicates the predicted probability of late stage HCC for each
person (from 0 to 1). c Prediction of late stages of HCC using the penalized model in T cell samples
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determined the cell count distribution for each case
using the Houseman algorithm [54]. Two-way ANOVA
followed by pairwise comparisons and correction for
multiple testing found no significant difference in cell
count between the groups. We then performed a multi-
variate linear regression on the normalized beta values
of the 350 CG sites that differentiate HCC from all other
groups using group (HCC versus non HCC), sex, alco-
hol, smoking, age, and cell-count as covariates. All CG
sites remained highly significant for group covariate even
after including the other covariates in the model. Follow-
ing Bonferroni corrections for 350 measurements, 342
CG sites remained highly significant for the group (HCC
versus non HCC) (Additional file 9: Table S8). We per-
formed a multifactorial ANOVA analysis on the beta
values of the 350 sites as dependent variables and group
(HCC versus non-HCC), sex, and age as independent
variables to determine whether there are possible inter-
actions between either sex and group age and group and
between sex + age and group on DNA methylation.
While the group remained significant for all 350
CGs, no significant interactions with sex or age were
found after Bonferroni corrections (Additional file 10:
Table S9).

Differences in DNA methylation between HCC and
healthy controls in T cells DNA overlap with differences in
methylation in PBMC
Our multivariate analysis suggests that differences in
PBMC DNA methylation between HCC and other
groups (control and chronic Hepatitis) remain even
when differences in cell count are taken into account.
Furthermore, to determine whether differences in DNA
methylation between cancer and control would
disappear once the complexity of cell composition is
reduced (although heterogeneity in cell subtypes re-
mains), we analyzed the differences in DNA methylation
profiles between T cells isolated from 10 of the 39 HCC
patients included in the study (marked in Table 1) and
all healthy controls (n = 10); the analysis revealed 24,863
differentially methylated sites at a threshold of p < 1 × 10−7

(Additional file 11: Table S10). Three hundred seventy
robust sites (p < 1 × 10−7 and delta beta > 0.3, < − 0.3) cor-
rectly cluster all individual samples into two groups: HCC
and controls (Fig. 4a) as well as cluster correctly all PBMC
samples (n = 69) (Fig. 4b). The clustering analysis
presented in Fig. 4b shows that CG sites that are differen-
tially methylated in T cell DNA cluster individual HCC,
hepatitis, and healthy control DNA samples from white
blood cells with 100% accuracy. Thus, the differentially
methylated CGs discovered using T cell DNA were cross-
validated on different samples (29 different patients with
HCC and 20 with chronic hepatitis) of PBMC DNA that
were not used in training these CGs. Conversely, the 350

CGs that were derived by analysis of PBMC DNA from
cancer stages and controls clustered the T cell healthy
controls and HCC samples correctly (Fig 4c). There is a
highly significant (hypergeometric test p = 0) overlap be-
tween the significant CGs (p < 1 × 10−7) that differentiate
healthy controls from HCC using T cell DNA and CGs
that differentiate the different HCC stages and controls
using PBMC DNA (Fig. 4d). These data support the hy-
pothesis that the differences in DNA methylation between
HCC and other samples remain even when the complexity
of cell types is reduced by isolation of particular cell types
and provides further “cross-validation” for the association
of these CGs with HCC.

Differentially methylated genes in PBMC in HCC are
enriched in immune-related canonical pathways
Progression of HCC has a broad footprint in the methy-
lome (Fig. 1a). To gain insight into the functional
footprint of the differentially methylated genes in PBMC
and T cells from HCC patients, the gene lists generated
from the differential methylation analyses were subjected
to a gene set enrichment analysis using Ingenuity Path-
way Analysis (IPA). We first subjected genes associated
with CGs that showed linear correlation with stages of
HCC in the Pearson correlation analysis (Fig. 1b) (r >
0.8; r < − 0.8; delta beta > 0.2, < − 0.2). Notably, the top
upstream regulators of genes associated with these CGs
are TGFbeta (p < 1.09 × 10−17), TNF (p < 7.32 × 10−15),
dexamethasone (p < 7.74 × 10−12), and estradiol (p < 4 ×
10−12) which are major immune, inflammation, and
stress regulators of the immune system. Top diseases
identified were cancer (p value 1 × 10−5 to 2 × 10−51) and
hepatic disease (p < 1.24 × 10−5 to 1.11 × 10−25). A strong
signal was noted for liver hyperplasia (p < 6.19 × 10−1 to
1.11 × 10−25) and hepatocellular carcinoma (p < 5.2 × 10
−1 to 3.76 × 10−25). An inspection of the genes that are
differentially methylated reveals a large representation of
immune regulatory molecules such as IL2, IL4, IL5,
IL16, IL7, Il10, IL18, Il24, Il1B and interleukin receptors
such as IL12RB2, IL1B, IL1R1, IL1R2, IL2RA, IL4R,
IL5RA; chemokines such as CCL1, CCL7, CCL18,
CCL24, as well as chemokine receptors such CCR6,
CCR7 and CCR9; cellular receptors such as CD2, CD6,
CD14, CD38, CD44, CD80 and CD83; TGFbeta3 and
TGFbetaI, NFKB, STAT1, STAT3 and TNFa. Notably, a
CG site in the promoter of PD-1, a protein that triggers
an immune checkpoint and is now recognized as prom-
ising clinical target for anti-immune-blockade cancer
treatment [43], is gradually demethylated in PBMC as
HCC progresses (Fig. 5a). Differential methylation of 29
out of 78 CG probes associated with PD1 in the 450K
array strongly correlated with HCC progression (R < − 0.7,
Q < 1 × 10−8), a highly significant enrichment (hypergeo-
metric test, p = 4.3 × 10−238) (Additional file 12: Table S11).
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The average methylation of all significantly hypomethylated
PD-1 CGs was significantly correlated with HCC progres-
sion (Pearson cor R = − 0.9, p < 1.7 × 10−321) (Fig. 5b).
A comparative IPA analysis between differentially

methylated genes in PBMC and T cells revealed NFKB,
TNF, VEGF and IL4 and NFAT as common upstream
regulators. Overall, the DNA methylation alterations in
HCC PBMC and T cell show a strong signature in im-
mune modulation functions and are consistent with the
emerging role of the immune system in cancer. We have
previously delineated differentially methylated promoters
between HCC biopsies and noncancerous liver tissue
[23]. We found a nonsignificant overlap (n = 44) (hyper-
geometric test; p = 0.76) between promoters that are
differentially methylated in HCC in the cancer biopsies
(1983) and PBMC (545) (p < 1 × 10–7; delta beta < − 0.2;
> 0.2). These data support the hypothesis that changes in
DNA methylation seen in PBMC reflect changes in the

immune system in HCC and are not a footprint of circu-
lating DNA from tumors or tumor surrogates.
Since methylation of individual CGs across regions are

never homogenous, we analyzed extended differentially
methylated regions (DMRs) between all cancers and all
controls including chronic hepatitis B and C using the
champ.lasso function in Champ [55], shortlisted DMRs
in 5′ regions of genes, and calculated their average
methylation levels. We identified 4261 significant DMR
(FDR adjusted p < 0.05) in promoters and 5′ upstream
regions. We then tested whether the average methylation
levels of these promoter DMRs correlate with cancer
progression using Pearson correlation analysis. Five hun-
dred thirty DMRs ranging from 19 to 8951 bases showed
highly significant correlation with HCC progression (r >
0.8; r < − 0.8, p = 0) (Additional file 13: Table S12)
suggesting that differential methylation during HCC pro-
gression involves broad regulatory regions and is not

Fig. 4 Differences in DNA methylation between HCC and healthy controls in T cells DNA overlap with differences in methylation in PBMC. a Heat
map presentation of hierarchical clustering of ten healthy controls and HCC samples from T cells by 370 significantly differentially methylated CGs.
b Heat map presentation of hierarchical clustering of PBMC DNA methylation samples from 69 people by 370 CGs “trained” in T cells. c Heat map
presentation of hierarchical clustering of T cell samples from ten healthy controls and ten HCC by 350 CGs “trained” on T cell DNA. d Overlap of
differentially methylated CGs in HCC in T cells and differentially methylated CGs in PBMC at different stages of HCC
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limited to scattered individual CG sites. These DMRs
clearly cluster all HCC away from all controls including
hepatitis B and C and nicely differentiate HCC from
hepatitis (Fig. 5c).

Validation of differentially methylated CGs by
pyrosequencing
We randomly selected CG sites that were significantly
different between HCC and controls in T cells that were
either hypermethylated A Kinase (PRKA) Anchor protein
7 (AKAP7) gene, the Signal Transducing Adaptor Family
1 (STAP1), or hypomethylated the Schlafen family

member 14(SLFN14) gene for validation using pyrose-
quencing (Fig. 6a). The SLFN14 region that we validated
contained three CGs which allowed us to calculate the
average methylation of the region which is also signifi-
cantly different between HCC and controls (Fig. 6a).
For our validation set, we used T cells DNA to reduce

cell composition issues. The validation set included 80
people, ten healthy controls and ten individuals from
each of the hepatitis B and C (total control n = 30) and
50 HCC (HCC stage1 n = 8; stage 2 n = 12, stage 3 n = 11
and stage 4 n = 19) (Table 2 and Additional file 14: Table
S13) and examined the same genes as well as one

Fig. 5 Progressive hypomethylation of PD-1 gene during HCC progression. a Correlation (linear fit) between average beta values for cg14453145
positioned at the TSS region of PD-1 and control (CTRL) (stage code 0), hepatitis B (HepB) (1), hepatitis C (HepC) (2), and the four stages of HCC
(St_1 to St_4) (3–6) diagnoses (equation and R values are indicated). One way ANOVA showed a highly significant effect of diagnosis on DNA
methylation (p = 1 × 10−13; F = 20.77). Bonferroni adjusted pairwise comparison revealed significant differences between HCC stage 1 and control
(p = 0.0058) and hepatitis B (p = 0.00079); between stage 2 and control (p = 0.0004) and hepatitis B (p = 4.9 × 10–5); between stage 3 and control
(p = 4.8 × 10–9), hepatitis B (p = 4.9 × 10–10), hepatitis C (p = 1.8 × 10–5) and stage 1(p = 0.00993); between stage 4 and control (p = 2.1 × 10–8),
hepatitis B (p= 2.3 × 10−9), hepatitis C (p= 5.9 × 10−5) and stage1 (p= 0.00558). b Correlation (linear fit) between average beta values of 24 CGs associated
to the PD-1 gene on the Illumina 450k arrays that were hypomethylated in HCC (average methylation score was calculated per person, the average of
these scores were then calculated per group). There was a highly significant effect of diagnosis on DNA methylation as determined by one way ANOVA
(p= 2.2 × 10–16, F= 52.74). Bonferroni adjusted pairwise comparison revealed significant differences between stage 1 HCC and control (p= 1.2 × 10−7),
hepatitis B (p= 7 × 10−8), hepatitis C (p= 0.00487), stage 3 (p= 0.00081), and Stage 4 (p= 6.4 × 10−6); between stage 2 and control (p= 4.7 × 10−11), hepatitis
B (p= 2.8 × 10−11), hepatitis C (p= 3.8 × 10−6), and stage 4 (p= 0.00645); between stage3 and control (p= 3.4 × 10−15), hepatitis B (2.1 × 10−15), hepatitis C
(2.1 × 10−10), and stage 1 (p = 0.00081); and between stage 4 and control (2 × 10−16), hepatitis B (2 × 10−16), hepatitis C (1.8 × 10−12), stage 1 (6.4 × 10−6),
and Stage 2 (p= 0.00645). c Heat map presentation of hierarchical clustering (city block) of 69 people by 5’DMR whose average methylation correlates with
HCC progression
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additional hypomethylated gene: Neuroblast differentia-
tion-associated protein (AHNAK) (cg14171514) (6b).
Linear regression between all controls including chronic
hepatitis B and C (healthy and hepatitis B and C) and
HCC stages 1 and 2 (0+A) revealed significant associ-
ation with early HCC stages (1, 2) for all four CGs after
correction for multiple testing (STAP1 p = 4.04 × 10−7;
AKAP7 p = .0.046; SLFNL14 p = 0.012; AHNAK p =
0.003436. Linear regression between all controls and all
stages of HCC revealed significant association for STAP1
(p = 1.6 × 10−6) and AHNAK (p = 0.026) with HCC after
correction for multiple testing. One way ANOVA
analysis was performed with methylation as the
dependent variable, and the seven diagnosis groups
(healthy, hepatitis B, hepatitis C, HCC stage 1 to 4) as
independent variables revealed significant effect for

diagnosis (F = 7.263; p < 7.49 × 10−6) on STAP1methyla-
tion. Dunnett test, a multiple comparison procedure
which compares each of the number of treatments with
a single control, revealed significant differences between
HCC stage 1 (BCLC 0) and HepB (p < 0.01) and stage 2
and HepB (p < 0.01) and no significant difference be-
tween chronic hepatitis B and healthy controls, hepatitis
B and hepatitis C, and hepatitis B and late stages HCC.
There was a significant effect of diagnosis on AKAP 7
methylation (F = 2.71155; p = 0.0198). A multiple com-
parison test (Dunnett) between the different diagnosis
groups and hepatitis B revealed significant differences
between HCC stage 1 (BCLC 0) and hepatitis B (p
< 0.05), but not between either stage 2 and hepatitis B,
hepatitis B and healthy controls, hepatitis B and hepatitis
C, and hepatitis B and late stages HCC. There was a

Fig. 6 Validation of differentially methylated CGs in the discovery set and validation set by pyrosequencing. a Top row, CG sites that are differentially
methylated between HCC (n= 10) and healthy controls (n= 10) in T cells (significance was measured by student t test set at a threshold of < 0.05). The
primers for pyrosequencing and conditions are listed in Additional file 18: Table S17. The scattered plot shows the mean and 95% confidence intervals
(C.I.). The average methylation for three CG sites in the SLFN14 differentially methylated region is shown in the left panel. Summary of statistics including
CI, SD, and SEM values are presented in Additional file 16: Table S15. b Validation by pyrosequencing of DNA extracted from T cells in the validation set.
ANOVA was used to compare variance between the hepatitis B (HepB) control and other groups healthy (n= 10), hepatitis B (n= 10), hepatitis C (HepC)
(n= 10) group and the HCC stages 1 (n= 8), 2 (n= 12), 3 (n= 8), and 4 (n= 22). STAP1 replication presents pyrosequencing data from T cells DNA from the
second replication cohort (Additional file 15: Table S14). c ROC curve measuring specificity (Y axis) and sensitivity (X axis) of STAP1 methylation as a
biomarker for discriminating HCC from healthy controls in T cells first cohort (Illumina 450 K data), in first validation set (pyrosequencing) and third
validation set (pyrosequencing replication). d. ROC curve for STAP1 methylation as a biomarker for distinguishing HCC from healthy persons and
chronic hepatitis in PBMC (Illumina), first validation set (pyrosequencing), and third validation set (pyrosequencing, replication). Statistic code: * 0.05,
** 0.01, *** 0.001
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significant effect of diagnosis on SLFN14 methylation
(Cg00974761) (F = 3.877; p = 0.0018). A multiple com-
parison test (Dunnett) between the different diagnosis
groups and hepatitis B revealed significant differences
between HCC stage 1 (BCLC 0) and hepatitis B (p <
0.05), but not between either stage 2 and hepatitis B,
hepatitis B and healthy controls, hepatitis B and hepatitis
C, and hepatitis B and late stage HCC. We also
measured the average methylation of three CG sites in
the SLFN14 differentially methylated region. There was
a significant effect of diagnosis on DNA methylation of
this region (F = 3.727, p = 0.0028). A multiple comparison
test (Dunnett) between the different diagnosis groups and
hepatitis B revealed significant differences between early
stages HCC stage 1+2 and controls when they were
combined (p < 0.05), but no other significant differences
were detected in the other pairwise comparisons. There
was a significant effect of diagnosis on AHNAK methyla-
tion (F = 2.461; p = 0.0323). A multiple comparison test
revealed significant differences between early stages HCC
stage 1+2 and controls when they were combined (p <
0.05) but no other significant differences were detected in
the other pairwise comparisons (Fig. 6b).
Since our validation test indicated that STAP1 effect-

ively discriminated between either healthy controls or
chronic hepatitis and early stages of HCC, we further
validated association of STAP1 methylation with stages 1
and 2 HCC in T cell DNA derived from a third
independent cohort (n = 48) of healthy controls (n = 16)
HepB (9) and HCC stages 1 (n = 11) and 2 patients (n = 12)

(Additional file 15: Table S14). We included HepB samples
as a control since all HCC samples were HepB posi-
tive. Linear regression between all healthy controls
and stages 1 and 2 revealed significant association
with early HCC stages (1, 2) (p = 6.9 × 10−7, F = 35.62),
which remained significant even when sex and age were in-
cluded in the model as covariates (p = 1.9 × 10−6). Linear
regression between all controls including hepatitis B and
HCC stages 1 and 2 revealed a significant association (p =
3.3 × 10−5, F = 21.18) (Fig. 6b). We performed a multifactor-
ial ANOVA analysis on the methylation values of STAP1 as
a dependent variable and diagnosis (HCC versus non-HCC
including hepatitis B), sex, and age as independent variables
as well as interactions between sex, age, and diagnosis. Our
analysis revealed a significant main effect of diagnosis (p =
4.88 × 10−5, F = 20.48) and no significant interaction be-
tween sex and diagnosis (p = 0.96, F = 0.0024) or age and
diagnosis (p = 0.829, F = 0.0473). There was no significant
effect of either age (p = 0.1329, F = 2.349) or sex (p =
0.7529, F= 0.1004) on DNA methylation. One way
ANOVA analysis performed with methylation as the
dependent variable and the seven diagnosis groups (healthy,
HepB, HCC stage 1 to 2) as independent variables revealed
significant effect for diagnosis on STAP1 methylation (F =
6.983, p = 0.0006). A multiple comparison test (Dunnett)
between the different diagnosis groups and HepB (since all
HCC patients were positive for HepB) revealed significant
differences between HCC stage 1 and HepB (p < 0.01) and
stage 2 and HepB (p < 0.05), but no difference was detected
between HepB and healthy controls (Fig. 6b) (summary of

Table 2 Clinical characteristics of the validation set

Variable Control (n = 10) HepB (n = 10) HepC (n = 10) HCC1 (n = 8) HCC2 (n = 12) HCC3 (n = 11) HCC4 (n = 19) p value

Age (mean ± SD) 35.5 ± 7.5 43.9 ± 15.46 50.1 ± 14.7 61.75 ± 9.39 56 ± 7.45 48.09 ± 7.49 53.63 ± 9.77 5 × 10−5

Sex

Male 6 (60%) 7 (70%) 5 (50%) 8 (100%) 10 (83%) 11 (100%) 16 (84%)

Female 4 3 5 0 2 0 3

Alcohol 8 × 10−4

No NA 10 (100%) 9 (90%) 7 (87.5%) 8 (67%) 3 (27%) 9 (47%)

Quit NA 0 1 0 0 0 1

Infrequent NA 0 0 0 1 0 0

Heavy NA 0 0 1 3 8 9

Smoking 0.035

No NA 6 (60%) 8 80%) 4 (50%) 8 (67%) 9 (82%) 9 (47%)

Quit NA 1 0 0 1 0 0

Low NA 0 0 0 0 0 1

Heavy NA 3 2 4 3 2 9

Cirrhosis 0 0 0 0 0 0 0

Hepatitis B 0 (0%) 10 (100%) 1 (10%) 8 (100%) 12 (100%) 11 (100%) 19 (100%) 3 × 10−13

Hepatitis C 0 (0%) 0 (0%) 10 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0

AFP 0 (0%) 0 (0%) 0 (0%) 1 (12.5%) 2 (16.6%) 4 (36%) 9 (47.3%) 0.34
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ANOVA tests and descriptive statistics could be found in
Additional file 16: Table S15).

Diagnostic value of differentially methylated CGs in
peripheral T cells and PBMC
A measure of the diagnostic value of a biomarker is the
receiver operating characteristic (ROC) which measures
sensitivity as a function of specificity and determines a
threshold value for a predictor which provides the high-
est accuracy as a biomarker for differentiating case from
control [56] (Fig. 6c, d). We first determined ROC
characteristics for the normalized Illumina 450K beta
values for T cells from healthy controls and HCC
(Fig. 6c). STAP1 (cg04398282) behaved as a potential
biomarker (accuracy 100%, AUC 1 and both sensitivity
and specificity 100%). The STAP1 biomarker was discov-
ered by comparing T cell DNA methylation from HCC
and healthy controls (Additional file 11: Table S10). We
therefore cross-validated the biomarker properties of
STAP1 cg04398282 by examining the ROC characteristics
using normalized beta values from the PBMC DNA sam-
ples which included hepatitis B and hepatitis C patients as
well as 29 additional HCC patients that were not
included in the T cell DNA methylation analysis
(Fig. 6d). The accuracy is 96% using a threshold beta
value of 0.6729; AUC was 0.9741379 (sensitivity 0.975 and
specificity 0.973). We then examined the ROC character-
istics using pyrosequencing values of STAP1 in the valid-
ation set of T cell DNA (Fig. 6c). The accuracy of calling
HCC 1,2 from all other controls (healthy and hepatitis B
and C) is 85.7% using a threshold beta value of 0.50;
AUC is 0.898 (89.5% sensitivity and 83% specificity)
(Fig. 6d). In the third cohort of T cell DNA
(Additional file 15: Table S14), the accuracy of calling
HCC stages 1 and 2 from all other controls (healthy
and hepatitis B) using a threshold of 44.5 is 87.5%;
the AUC is 84.7% (91.3 sensitivity and 84% specifi-
city). The accuracy of differentiating HCC stages 1
and 2 from healthy controls is 92.3%; the AUC is
0.924 (91.3% sensitivity and 93.75% specificity). We
noted however a “batch effect” in pyrosequencing.
While we can compare the groups within a study,
overall methylation levels vary between experiments
done at different times, which will require in the
future a normalization procedure that will allow com-
parisons across different batches.
In summary, STAP1 provides proof of principle for

potential DNA methylation biomarkers in HCC per-
ipheral white blood cells and for discriminating Stage
1 from chronic hepatitis and healthy controls which
is a critical hurdle in early diagnosis of liver cancer.
The other three CGs that we have validated using py-
rosequencing to be associated with stage 1 HCC in
the validation set do not exhibit biomarker properties

in ROC curves. Further experiments are required to
delineate and validate other high quality biomarkers
from the list of associated DNA methylation sites that
we have delineated in this paper.

Discussion
The focus in DNA methylation studies in cancer to date
has been on the tumor, tumor microenvironment [27, 28],
and circulating tumor DNA [24, 25], and major ad-
vances were made in this respect. In this study, we
focused however on the host immune system since
the idea that the qualities of the host immune system
might define the clinical emergence and trajectory of
cancer has been proposed almost a century ago [2]
and there is an emerging line of evidence that is
consistent with this hypothesis [6–19]. New ap-
proaches to cancer therapy are targeted at boosting
the host immune system [43]. HCC is a very interest-
ing example since it frequently progresses from preex-
isting chronic hepatitis and liver cirrhosis [42] and
could provide a tractable clinical paradigm for ad-
dressing this question.
Our analysis revealed a large number of sites whose

quantitative state of methylation strongly correlates (r =
± 0.8–0.9) with progression of HCC which is consistent
with the idea that DNA methylation alterations in the
immune system are tightly linked with the development
of HCC. Interestingly, the overall direction of the differ-
ences in DNA methylation changes as HCC advances,
from hypermethylation to hypomethylation. Importantly,
there is a sharp boundary between stage 1 HCC and
chronic hepatitis B and C supporting the hypothesis that
changes in DNA methylation are linked with the transi-
tion from chronic hepatitis B and C to HCC. It should
be noted however that our study is a cross-sectional
study and we cannot distinguish at this stage between
progressive changes in the same individual from intrinsic
differences between people who develop advanced
cancer and those who have early stage HCC. Future lon-
gitudinal studies in the same patients will be required to
address this important question.
Careful inspection of the DNA methylation profiles

of chronic hepatitis and HCC in Fig. 1a suggests
however that some of the CG sites that undergo large
changes in methylation as HCC progresses are already
slightly altered in chronic hepatitis. This is consistent
with the fact that HCC often progresses from chronic
hepatitis and suggests that the changes in DNA
methylation in PBMC are seeded by chronic hepatitis
and that they might be playing a role in the progres-
sion from chronic hepatitis to HCC. Nevertheless, the
changes in DNA methylation between chronic
hepatitis and early HCC are dramatic, and a clear
boundary is seen in our heat maps between chronic
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hepatitis and HCC that might be utilized to diagnose
early transition from chronic hepatitis to HCC.
We also used a “case-control” approach comparing

each stage of HCC independently (n = 10) with healthy
controls (n = 10). Cross validation revealed highly signifi-
cant overlap between differentially methylated CGs in
the four stages of HCC. DNA methylation data for
chronic hepatitis B and C were not used for deriving the
HCC-stage differentially methylated CGs; nevertheless,
these CGs accurately clustered the hepatitis samples
with the healthy controls separately from other HCC
stages. Thus, these markers were “cross-validated” using
a separate set of non-HCC samples and other HCC sam-
ples, further demonstrating clear boundary in DNA
methylation profiles between all HCC samples and
chronic hepatitis. Although differentially methylated
CGs overlapped between different HCC stages, they
nevertheless differentiated stages of cancer from each
other because of the intensifying changes in DNA
methylation at these sites with progression of HCC. Im-
portantly, the differentially methylated sites remained
significant even after taking into account in the regres-
sion model differences in sex, age, smoking, and alcohol
abuse as well as differences in cell type distribution.
Combined, these data support the conclusion that the
emergence and progression of HCC is linked with robust
and broad changes in DNA methylation in the periph-
eral immune system.
We further “cross-validated” this conclusion by exam-

ining DNA methylation profiles in isolated T cells from
a subset of ten HCC patients and the ten healthy con-
trols. If indeed changes in DNA methylation that were
detected in PBMC were an artifact of differences in
cellular distribution, they should “disappear” using an
isolated subset of white blood cells. In addition, by using
a different set of DNA samples analyzed independently,
we could rule out technical and random effects. We
show a robust signature of HCC in peripheral T cell
DNA methylation that significantly overlaps with
changes in DNA methylation in PBMC and correctly
clusters other “untrained” HCC samples separately from
chronic hepatitis using DNA methylation data from
PBMC. Conversely, differentially methylated CG sites
derived from comparing PBMC DNA methylation pro-
files accurately cluster HCC samples away from controls
using T cell DNA methylation data.
Examination of the “gene set” that is differentially

methylated in peripheral immune cells in HCC provides
some cues as to the potential implications of these
changes. It is important to note that in difference from
circulating tumor DNA, differentially methylated CGs
delineated in our study in PBMC and T cells do not
overlap significantly with previously characterized differ-
entially methylated genes in HCC tumors [23].

Analysis of the upstream regulators of the differentially
methylated genes provides an overall picture of the func-
tional pathways that are affected. The list includes mem-
bers of nodal inflammatory and immune regulatory
pathways such as TGFbeta, TNFalpha, and the gluco-
corticoid receptor. Notably, the upstream regulators
TGFbeta and TNFalpha are differentially methylated
themselves. Interestingly, the enrichment of stress
responsive glucocorticoid-regulated pathway might indi-
cate that a fraction of the changes in DNA methylation
reflects activation of stress-related processes in the HCC
patients. Differentially methylated genes include nodal
transcription factors in the immune system and inflam-
matory response such as NFAT, STAT3, and NFKB; a
rich representation of interleukins, chemokines, chemo-
kine receptors and nodal cellular antigens that are
involved in cellular fate and differentiation such as
CD38 CD44 as well as PD-1 a protein that controls an
immune response checkpoint and is now recognized as
a promising clinical target for immunity-boosting anti-
cancer treatment [43]. CD38 is an enzyme that
synthesizes cyclic ADP-ribose and nicotinate-adenine di-
nucleotide phosphate, is expressed in leukocytes and
functions in cell adhesion and calcium signaling. Inter-
estingly, CD38 is associated with plasmablastic lymph-
oma and prolymphocytic leukemias. CD44 is a cell
surface glycoprotein that is involved in multiple cellular
functions relevant to the immune system including
lymphocyte activation, recirculation and homing,
hematopoiesis, and tumor metastasis. It is unclear how
these broad and complex changes in methylation of
genes in immune and inflammatory pathways in PBMC
affect the overall output and function of the immune
system and inflammatory reactions during progression
of HCC. Our data provides however compelling data im-
plicating an escalating epigenetic reprogramming of the
immune and inflammatory systems during HCC
advancement.
The relationship between changes in DNA methylation

and steady state transcription is complex. Moreover,
DNA methylation alterations might “program” genes in
the immune system to respond to transient signals that
are time and context dependent and are not captured by
examining steady state mRNA levels. Extensive future
experiments are required to understand how this “epi-
genetic” reprogramming of the immune system affects
its function in promoting/suppressing HCC. One inter-
esting question that remains to be answered is whether
the changes described here for HCC occur in other
cancers or whether these changes are unique to HCC, a
disease that frequently emerges from chronic inflamma-
tion of the liver. However, the changes in DNA methyla-
tion in HCC are dramatically enhanced in comparison
with the effects of chronic hepatitis on DNA methylation
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supporting the conclusion that these are cancer-related
changes.
A cardinal question that our data is raising is whether

these changes in DNA methylation are a cause or conse-
quence of HCC. The fact that the changes in DNA
methylation intensify with the advance of HCC is
consistent with the idea that they respond to HCC pro-
gression. However, they might be still playing an import-
ant role in the escalation of the disease. This idea is
consistent with recent approaches to cancer therapy that
target the immune system to boost a cytotoxic T cell
response to tumor cells such as current anti-PD-1 treat-
ments [43]. It is tempting to speculate that targeting the
epigenetic changes in the immune system in addition to
the changes in the tumor itself might have therapeutic
effects. Our data suggests that this possibility should at
least be considered.
The observation that HCC has a DNA methylation

signature in easily accessible PBMC and T cells points to
the opportunity that these could serve as “noninvasive”
biomarkers for detection of early transition from chronic
hepatitis to HCC as well as HCC progression. We
provide here several examples that present a “proof of
principle” for using PBMC differentially methylated CGs
as “biomarkers” in HCC. However, future extensive ana-
lyses of large samples of HCC and controls are required
before it is possible to confirm that such “biomarkers”
have sufficient accuracy to differentiate early stage HCC
from controls. It is also expected that a single CG site
will not have sufficient accuracy and that a combination
of sites within a region will be required. Nevertheless,
this study provides a “proof of principle” for further ex-
ploring this opportunity.
One limitation of our data is the relatively small num-

ber of samples. However, the effect sizes that we observe
are large because of the low average variance in DNA
methylation values across individuals. A power calcula-
tion using the pooled standard deviation of control and
stage 1 HCC groups (0.022) and desired power of 0.8
shows that an extremely “small” (unreliable) sample size
(n = 4) is required to detect a delta beta of 0.1 at
genome-wide significance (p = 1 × 10−7). This large effect
size might explain how sites that were discovered by
comparing two groups with sample sizes of 10, cross-
validated in other samples and were replicated. Power
calculation suggests that increasing the sample size from
10 to 100 would not increase power as it is maximized
with n = 10. However, it is clear that further replication
is required to rule out random bias or stratification in
our samples.

Conclusions
Our study shows that the host immune system has a dis-
tinct DNA methylation signature in cancer, that this

signature intensifies as cancer progresses, and that this
signature differentiates HCC from liver inflammatory
diseases chronic hepatitis B and C. Importantly, distinct
DNA methylation differences emerge at early stages and
these might serve as noninvasive diagnostic markers of
early stage HCC. The broad differences in DNA methy-
lation that progress with HCC suggest a possible role for
epigenetic modulation of the peripheral immune system
in HCC and its progression that warrants further
exploration.

Methods
Patient samples
HCC staging was diagnosed according to EASL–EORTC
Clinical Practice Guidelines: Management of hepatocel-
lular carcinoma. The patients were divided into four
groups, including stage 0 (1), stage A (2), stage B (3),
and stage C+D (4). For simplicity, we refer to stages 1–4
in the figures and manuscript. Chronic hepatitis B diag-
nosing was confirmed using AASLD practice guideline
for chronic hepatitis B, and chronic hepatitis C diagnos-
ing was according to AASLD recommendations for test-
ing, managing, and treating Hepatitis C. A strict
exclusion criterion was cirrhosis, any other known in-
flammatory disease (bacterial or viral infection with the
exception of hepatitis B or C, diabetes, asthma, auto-
immune disease, active thyroid disease) which could
alter T cells and monocyte characteristics as well as
presence of other cancers. Clinical characteristics of pa-
tients are provided in Tables 1 and 2 and additional in-
formation is found in Additional file 14: Table S13,
Additional file 15: Table S14 and Additional file 17:
Table S16. The participants in the study provided con-
sent according to the regulations of the Capital Medical
School. All methods were performed in accordance with
the relevant guidelines and regulations. All the candi-
dates were enrolled in the study since 2014 and all the
patients prior to receiving the standard therapy according
to the BCLC criteria. Whole-blood specimens were col-
lected before the start of standard therapy for the second
and third cohort. For the first cohort, blood was drawn
either prior to initiation of therapy, prior to surgery, or on
the day of surgery (see Additional file 17: Table S16 for
details). Informed consent has been obtained from all par-
ticipants and the study received ethical approval from The
Capital Medical School in Beijing and McGill University
(IRB Study Number A02-M34-13B).

Illumina Beadchip 450K analysis
DNA was extracted from T cells isolated using antiCD3
immuno-magnetic beads (Dynabeads Invitrogen),
bisulfite converted, and subjected to Illumina Human-
Methyaltion450k BeadChip analysis. Samples were ran-
domized with respect to slide and position on arrays,
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and all samples were hybridized and scanned concur-
rently to mitigate batch effects as recommended by Mc-
Gill genome center using Illumina Infinum HD
technology user guide. Illumina arrays were analyzed
using the ChAMP Bioconductor package in R [46].
IDAT files were used as input in the champ.load func-
tion using minfi quality control and normalization
options. Raw data were filtered for probes with a detec-
tion value of P > 0.01 in at least one sample. We filtered
out probes on the X or Y chromosome to mitigate sex
effects and probes with SNPs as identified in [57], as
well as probes that align to multiple locations as identi-
fied in [57]. Batch effects were analyzed on the non-
normalized data using the function champ.svd. Five out
of the first six principal components were associated
with group and batch (slides). Intra-array normalization
to adjust the data for bias introduced by the Infinium
type 2 probe design was performed using beta-mixture
quantile normalization (BMIQ) with function champ.-
norm (norm = “BMIQ”) [46]. We corrected for batch
effects after BMIQ normalization using champ.runcom-
bat function. Cell count analysis for white blood cells
distribution in our samples was performed according to
the Houseman algorithm [54] using the function estima-
teCellCounts and FlowSorted.Blood.450k data as refer-
ence. We used the Beta values of the batch corrected
normalized data for downstream statistical analyses. To
compute linear correlation between HCC stages and
quantitative distribution of DNA methylation at the
450K CG sites, we performed Pearson correlation
between the normalized DNA methylation values and
stages of HCC (with stage codes of 0 for control, 1 and
2 for hepatitis B and C, respectively, and 3–6 for the
four stages of HCC) using the Pearson correlation func-
tion in R and correcting for multiple testing using the
method “fdr” of Benjamini Hochberg (adjusted P value
(Q) of <0.05) as well as the conservative Bonferroni cor-
rection (Q < 1 × 10−7). Differentially methylated CGs
(MVP) were called using the Bioconductor package
Limma [45] as implemented in ChAMP using either
“fdr” for multiple testing correction (adjusted P value
(Q) of < 0.05) or Bonferroni corrections. Multifactorial
ANOVA with group, sex, and age as cofactors was
performed for CGs that were shortlisted for association
with HCC using loop_anova lmFit function with Bonfer-
oni adjustment for multiple testing. Multivariate linear re-
gression was performed on the shortlisted CG sites that
were found to associate with HCC to test whether these
associations will survive if we used cell counts, sex, age,
and alcohol abuse as covariates in the linear regression
model using the lmFit function in R. Comparison of differ-
entially methylated (relative to control) gene lists in differ-
ent groups was performed using Venny (Oliveros JC 2007;
http://bioinfogp.cnb.csic.es/tools/venny/index.html).

Significance of overlap between two groups was deter-
mined using hypergeometric Fisher exact test in R.
Hierarchical clustering was performed using one minus
Pearson correlation, and heatmaps were generated in the
Broad institute GeneE application (https://software.broa-
dinstitute.org/GENE-E/).

Pyrosequencing
Pyrosequencing was performed using the Pyro Mark Q24
(Qiagen) machine, and results were analyzed with Pyro
Mark Q24 Software 2.0 (Qiagen). All data were expressed
as mean ± standard error of the mean (SEM). The statis-
tical analysis was undertaken using Prism (GraphPad
Software Inc., San Diego, California). Primers used for the
analysis are listed in Additional file 18: Table S17. All data
were analyzed using Student’s t test. Significance was set
at P < 0.05 for comparisons of two groups. When multiple
groups were involved, ANOVA followed by Bonferroni
corrections for multiple testing were used. We determined
using multivariate linear regressions whether confounding
clinical variables age, sex, smoking, drinking, or treatment
were potential covariates. None of these confounding fac-
tors showed consistent correlation with CG methylation
across the groups.

Additional files

Additional file 1: Table S1. CG sites whose quantitative level of DNA
methylation correlates with the stage of HCC as determined by a Pearson
correlation analysis (P<1x10-7). (CSV 675 kb)

Additional file 2: Table S2. Differentially methylated sites between
Stage 1 HCC and healthy controls. (CSV 929 kb)

Additional file 3: Table S3. Differentially methylated sites between
Stage 2 HCC and healthy controls. (CSV 1433 kb)

Additional file 4: Table S4. Differentially methylated sites between
Stage 3 HCC and healthy controls. (CSV 2002 kb)

Additional file 5: Table S5. Differentially methylated sites between
Stage 4 HCC and healthy controls. (CSV 3562 kb)

Additional file 6: Table S6. Annotated non-redundant list of 350CGs
and 369 CGs that are differentially methylated between stages of HCC and
healthy controls. (CSV 41 kb)

Additional file 7: Figure S1. Differentially Methylated CG Sites at
different stages of HCC and “cross-validation”. a. Heat map presentation
of hierarchical clustering of 69 people by 14 differentially methylated CGs
between HCC stage 2 and control. b. Heat map of hierarchical clustering
of 69 people by 58 differentially methylated CGs between HCC stage 3
and control. Figure S2. Differentially Methylated CG Sites at different stages
of HCC in a “training set” and “cross-validation” in a “validation set”. a. Heat
map presentation of hierarchical clustering of 35 people by a 369 CG
signature that correlate with progression in a “training set” (right panel)
classify HCC and controls in a “validation set” (left panel as well). b. Heat map
of a randomized list of 350 CGs on all patients and controls. Figure S3.
Prediction of late stage HCC using a penalized model using the 369 CG list
which was trained on a randomized half of the HCC patients and controls
("training set") and tested on the other half ("validation set"). The plot shows
the “validated” samples (The y axis indicates the predicted probability of late
stage HCC for each person (from 0 to 1) (True if prediction >0.5 and False if
prediction is <0.5). All late HCC stages in the “validation set” are TRUE and
all other stages and controls are FALSE. (PDF 717 kb)
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Additional file 8: Table S7. List of CG DNA methylation markers derived
from penalized regression model on 350 CG and 369CG sites distinguishing
early stages HCC from late stages. (CSV 395 bytes)

Additional file 9: Table S8. Multivariate analysis of 350 CGs. Table
provides p values on the right and adjusted values (350 measurements,
Bonferroni) on the left. (CSV 95 kb)

Additional file 10: Table S9. Multifactorial ANOVA analysis of 350
CGs. No interaction detected between group (HCC) and sex and age
as independent variables with CG methylation as a dependent
variable. (CSV 31 kb)

Additional file 11: Table S10. Differentially methylated CG sites in T cell
DNA between healthy controls and HCC. (CSV 1586 kb)

Additional file 12: Table S11. Correlation of methylation of CG sites
associated with the PD-1 gene and progression of HCC. (CSV 2 kb)

Additional file 13: Table S12. Differentially methylated that correlate
with HCC progression in PBMC. (CSV 57 kb)

Additional file 14: Table S13. Clinical data of second cohort. (CSV 11 kb)

Additional file 15: Table S14. Clinical data of third cohort. (XLSX 10 kb)

Additional file 16: Table S15. Descriptive statistics for (Fig. 6a).
(XLS 87 kb)

Additional file 17: Table S16. Clinical data of first cohort. (XLSX 18 kb)

Additional file 18: Table S17. Pyrosequencing primers. (CSV 867 bytes)
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