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A data‑driven ultrasound approach 
discriminates pathological high 
grade prostate cancer
Jun Akatsuka1,2,4, Yasushi Numata2,4, Hiromu Morikawa2, Tetsuro Sekine3, 
Shigenori Kayama1, Hikaru Mikami1, Masato Yanagi1, Yuki Endo1, Hayato Takeda1, 
Yuka Toyama1, Ruri Yamaguchi2, Go Kimura1, Yukihiro Kondo1 & Yoichiro Yamamoto2*

Accurate prostate cancer screening is imperative for reducing the risk of cancer death. Ultrasound 
imaging, although easy, tends to have low resolution and high inter‑observer variability. Here, we 
show that our integrated machine learning approach enabled the detection of pathological high‑grade 
cancer by the ultrasound procedure. Our study included 772 consecutive patients and 2899 prostate 
ultrasound images obtained at the Nippon Medical School Hospital. We applied machine learning 
analyses using ultrasound imaging data and clinical data to detect high‑grade prostate cancer. The 
area under the curve (AUC) using clinical data was 0.691. On the other hand, the AUC when using 
clinical data and ultrasound imaging data was 0.835 (p = 0.007). Our data‑driven ultrasound approach 
offers an efficient tool to triage patients with high‑grade prostate cancers and expands the possibility 
of ultrasound imaging for the prostate cancer detection pathway.

Prostate cancer is one of the most commonly diagnosed cancers in elderly  men1. Ultrasound imaging is widely 
used in prostate cancer screening because it is nonionizing, low-cost, and safe. However, its low resolution and 
high inter-observer variability deteriorate the accuracy of ultrasound  diagnosis2. Prostate cancer is a heteroge-
neous disease that ranges from indolent to  aggressive3. Pathological grading is considered an important factor 
in predicting the prognosis of prostate cancer  patients4. High-grade cancer tends to metastasize and is usually 
considered a castration-resistant prostate  cancer5. On the other hand, older men with low-grade cancer who 
undergo treatment may experience complications without reducing their risk of dying from prostate  cancer6. 
Accurate diagnosis through prostate cancer screening enables optimization of cancer management. Since patho-
logical cancer grading determines therapeutic strategies, it is necessary not only to detect the cancer, but also to 
estimate the pathological grading, such as the Gleason  score7, which would be desirable to know even during 
ultrasound examination.

Artificial intelligence (AI) technologies, including deep learning algorithms, are gaining extensive attention 
due to their excellent performance in image classification and object detection. Recently, these algorithms have 
been useful tools in the analysis of medical images of various cancers, such as breast  cancers8, brain  tumors9, lung 
 cancers10, esophageal  cancers11, skin  malignancies12, and prostate  cancers13–15. The robust performance of the 
deep learning algorithm indicates its potential clinical use for screening on computed tomography (CT) images 
of patients with suspected coronavirus disease 2019 (COVID-19)  pneumonia16,17. Furthermore, deep learning 
techniques have also been applied to ultrasound imaging. Li et al. reported that their deep convolutional neural 
network model showed similar sensitivity in identifying thyroid cancer compared with skilled  radiologists18. 
Gu et al. proposed an automated three-dimensional segmentation approach using deep learning on ultrasound 
images for breast  cancer19. In the field of prostate ultrasound image analysis, deep learning techniques enable 
accurate automatic  segmentation20. Furthermore, several studies proposed a deep learning framework to detect 
prostate cancer using contrast-enhanced ultrasound  images21,22. However, it is highly challenging to estimate 
pathology-level cancer grading using deep learning based on ordinary ultrasound images. In this study, we aim 
to estimate pathological high-grade cancer using ordinary ultrasound images and limited clinical data.
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Results
Image and patient characteristics. A flowchart of the study is presented in Fig. 1. We evaluated predic-
tion accuracies for prostate cancer using the following data sets: still ultrasound image data (left upper box), clin-
ical data (age and prostate-specific antigen [PSA]) (right upper box), and integrated data (ultrasound image data, 
total prostate volume [TPV] derived from ultrasound images, PSA density [PSAD], age, and PSA) (lower box).

Table 1 shows 691 cases (2676 images) that underwent ultrasound-guided prostate biopsy (systematic biopsy 
and magnetic resonance imaging [MRI]-targeted biopsy) at the Nippon Medical School Hospital. The median age 
(interquartile range) of all cases was 71 (65–76) years, and that of the cancer cases was 72 (66–77) years. Patients 
with cancer were significantly older than those without cancer (p < 0.001). The median PSA value of all the cases 
was 8.3 (5.8–14.0) ng/mL, and that of the cancer cases was 9.5 (6.7–20.5) ng/mL. The PSA level was significantly 
higher in cancer cases than in non-cancer cases (p = 0.002). The median TPV of all the cases was 35.0 (25.8–50.6) 
 cm3, and that of the cancer cases was 30.9 (23.0–42.6)  cm3. TPV was significantly lower in cancer cases than 
in non-cancer cases (p < 0.001). The median PSAD of all cases was 0.245 (0.138–0.482) ng/mL/cm3, and that 
of the cancer cases was 0.352 (0.207–0.681) ng/mL/cm3. PSAD was significantly higher in cancer cases than in 
non-cancer cases (p < 0.001). The number of biopsy Gleason scores was 6 (47 cases), 7 (215 cases), 8 (79 cases), 
9 (94 cases), and 10 (1 case). High-grade cancer (Gleason score ≥ 8) accounted for 39.9% of the cancer cases.

Classification of prostate cancers (n = 691). Image‑level classification using a deep neural network. We 
performed two sets of deep learning analyses using different labels. First, we applied a deep neural network, 

Figure 1.  Flowchart of our study. Deep learning analysis for ultrasound images (upper left images), clinical data 
(upper right images), and integrated data (lower images).

Table 1.  Patient characteristics. PSA prostate-specific antigen, TPV total prostate volume, PSAD PSA density, 
IQR interquartile range, n number, SD standard deviation.

Total Cancer cases Non-cancer cases p value

Cases, n (images, n) 691 (2676) 436 (1691) 255 (985) –

Age (years)

Median (IQR)
Mean (SD)

71, 65–76
69.9 ± 8.59

72, 66–77
71.3 ± 8.18

69, 62–74
67.4 ± 8.71 < 0.001

PSA (ng/mL)

Median (IQR)
Mean (SD)

8.3, 5.8–14.0
128.9 ± 1034.7

9.5, 6.7–20.5
198.9 ± 1297.5

6.6, 4.9–10.4
9.20 ± 10.38 0.002

TPV (cm3)

Median (IQR)
Mean (SD)

35.0, 25.8–50.6
42.8 ± 29.1

30.9, 23.0–42.6
37.1 ± 27.4

45.9, 32.5–62.0
52.5 ± 29.2 < 0.001

PSAD (ng/mL/cm3)

Median (IQR)
Mean (SD)

0.245, 0.138–0.482
2.85 ± 18.1

0.352, 0.207–0.681
4.39 ± 22.6

0.140, 0.0939–0.214
0.201 ± 0.288 < 0.001

Gleason score, n

6 47 47 – –

7 215 215

8 79 79

9 94 94

10 1 1
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 Xception23, to ultrasound image data with labels of the cancer group (positive, Gleason score ≥ 6) and the non-
cancer group (negative). The area under the curve (AUC) of the cancer classification was 0.693 (95% confidence 
interval [CI] 0.640–0.746) (Table 2). Next, we applied the deep neural network to the same ultrasound image 
data with labels of the high-grade cancer group (positive, Gleason score ≥ 8) and the others (negative). The AUC 
of the high-grade cancer classification was 0.723 (95% CI 0.659–0.788) (Table 2). Note that we only used ultra-
sound images for these classifications. Supplementary Fig. S1 shows the receiver operating characteristic (ROC) 
curves for the classification accuracy.

Case‑level classification based on clinical data. We also applied logistic regression and support vector machine 
(SVM)24,25 analyses to the clinical data with the aforementioned labels: (1) cancer classification label: cancer 
(Gleason score ≥ 6) or non-cancer group, (2) high-grade cancer classification label: high-grade cancer group 
(Gleason score ≥ 8) or the other. Age and PSA were used as clinical data in this study because these clinical data 
are known to be important factors in the screening of prostate  cancers26. Table 2 presents the AUCs for each 
classification. The AUC of the cancer classification was 0.702 (95% CI 0.598–0.806), and that of the high-grade 
cancer classification was 0.691 (95% CI 0.582–0.801) (SVM). Note that we used only clinical data for this clas-
sification. Supplementary Fig. S2 shows the ROC curves for these classifications.

Case‑level classification using an image integration approach. Next, we applied logistic regression and SVM 
to three ultrasound image data pre-analyzed by deep learning. We selected the ultrasound images with the top 
three highest probabilities (|Pdl − 0.5|,  Pdl: predicted probability of the deep learning classification) in every case. 
Table 2 shows the AUCs. Supplementary Fig. S3 shows the ROC curves for these classifications. The highest 
value of AUCs in cancer classification was 0.776 (95% CI 0.683–0.870) (SVM), and that in the high-grade cancer 
classification was 0.816 (95% CI 0.725–0.908).

Case‑level classification using a data integration approach. Finally, we applied logistic regression and SVM 
analyses to the integrated data (three ultrasound image data pre-analyzed by deep learning, TPV, PSAD, age, 
and PSA). We also selected the ultrasound images with the top three highest probabilities in every case. Table 2 
shows the AUCs. Supplementary Fig. S4 shows the ROC curves for these classifications. In the integrated data, 
the highest value of AUCs in cancer classification was 0.807 (95% CI 0.719–0.894) (SVM), and that in the high-
grade cancer classification was 0.835 (95% CI 0.753–0.916) (SVM). Figure 2 shows the ROC curves for the high-
grade cancer classification of clinical data without data derived from ultrasound images and with that derived 
from ultrasound images (integrated data). The AUC of the integrated data was significantly higher than that of 
the clinical data (0.691 [95% CI 0.582–0.801]) in high-grade cancer classification (p = 0.007).

Classification of prostate cancers in cases of systematic biopsy (n = 532). To eliminate selection 
bias based on MRI, we selected 532 cases of systematic biopsy without MRI-targeted biopsy. In image-level 
classification, the AUC of the cancer classification was 0.670 (95% CI 0.607–0.733), and that of the high-grade 
cancer classification was 0.732 (95% CI 0.658–0.807). We also applied logistic regression and  SVM24,25 analyses 
based on the clinical data. The AUC of the cancer classification was 0.639 (95% CI 0.511–0.766) (SVM), and that 
of the high-grade cancer classification SVM was 0.665 (95% CI 0.535–0.796). Next, we applied logistic regres-
sion and SVM anlyses to three ultrasound image data pre-analyzed by deep learning. The AUC of the cancer 
classification was 0.722 (95% CI 0.602–0.841) (SVM), and that of the high-grade cancer classification was 0.814 
(95% CI 0.708–0.920) (SVM). Finally, logistic regression and SVM anlyses were applied to the integrated data. 

Table 2.  AUCs of the cancer grading classification (n = 691). The bold text indicates the highest value of 
AUCs. AUC  area under the curve, CI confidence interval, SVM support vector machine. *AUC of clinical data 
versus that of data integration.

Images Clinical data Image integration Data integration p value*

Cancer classification
Deep learning
0.693 (95% CI 
0.640–0.746)

Ridge
0.671 (95% CI 
0.563–0.779)

Deep learning + ridge
0.774 (95% CI 
0.680–0.868)

Deep learning + ridge
0.789 (95% CI 
0.697–0.880)

0.104

Lasso
0.671 (95% CI 
0.562–0.779)

Deep learning + Lasso
0.774 (95% CI 
0.680–0.868)

Deep learning + Lasso
0.779 (95% CI 
0.686–0.873)

0.141

SVM
0.702 (95% CI 
0.598–0.806)

Deep learning + SVM
0.776 (95% CI 
0.683–0.870)

Deep learning + SVM
0.807 (95% CI 
0.719–0.894)

0.051

High-grade cancer clas-
sification

Deep learning
0.723 (95% CI 
0.659–0.788)

Ridge
0.675 (95% CI 
0.564–0.786)

Deep learning + Ridge
0.816 (95% CI 
0.725–0.908)

Deep learning + Ridge
0.822 (95% CI 
0.736–0.908)

0.012

Lasso
0.665 (95% CI 
0.553–0.777)

Deep learning + Lasso
0.816 (95% CI 
0.724–0.907)

Deep learning + Lasso
0.824 (95% CI 
0.737–0.911)

0.009

SVM
0.691 (95% CI 
0.582–0.801)

Deep learning + SVM
0.816 (95% CI 
0.725–0.908)

Deep learning + SVM
0.835 (95% CI 
0.753–0.916)

0.007
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The AUC of the cancer classification was 0.750 (95% CI 0.636–0.863) (SVM), and that of the high-grade cancer 
classification was 0.831 (95% CI 0.738–0.924) (SVM) (Supplementary Table S1). Supplementary Figs. S5, S6, S7, 
and S8 show the ROC curves for the classification accuracies. Figure 3 shows the ROC curves for the high-grade 
cancer classification of clinical data without data derived from ultrasound images and those derived from ultra-
sound images (p = 0.013). In AUCs, a tendency similar to that in “Classification of prostate cancers (n = 691)” 
was observed.

Prostate ultrasound images of top five cases corresponding to histological cancer grad‑
ing. Figure 4 shows the prostate ultrasound images of the top five cases according to pathological cancer 
grading based on the predicted probabilities of each class. The upper images show ultrasound images of high-
grade cancer cases using our proposed method. The middle section shows images of the low-grade cancer cases, 
and the lower images show non-cancer cases. Expert urologists analyzed these images as follows. Ultrasound 
images of high-grade prostate cancer (upper images) show an asymmetric prostatic lobe, an unclear boundary of 
the prostatic capsule, and extensive hypoechoic areas. In contrast, ultrasound images of low-grade cancer (mid-
dle images) show an intensive hypoechoic area, while maintaining the clear boundary of the prostatic capsule 
and symmetric prostatic lobe. On the other hand, ultrasound images of non-cancer cases (lower images) show a 
symmetric prostatic lobe and an isoechoic area with a clear boundary of the prostatic capsule.

A representative case with saliency map using explainable deep learning model. Supplemen-
tal Fig. S9 shows a representative case with saliency map using explainable deep learning model. We applied 
gradient-weighted class activation mapping (Grad-CAM) to construct a saliency  map27,28.

Figure 2.  ROC curves of high-grade cancer classification (n = 691: systematic biopsy and MRI-targeted biopsy 
cases). Blue line: ROC curve of the clinical data without ultrasound images. Red line: ROC curve of clinical data 
with ultrasound images (integrated data). Light blue area: 95% CI for the ROC curve of the clinical data without 
ultrasound images. Light red area: 95% CI for ROC curve of clinical data with ultrasound images (integrated 
data). ROC receiver operating characteristic, AUC  area under the curve, CI confidence interval.
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Discussion
We aimed to idenify pathological high-grade prostate cancer using ultrasound images and limited clinical data. 
We evaluated the prediction accuracies of the following different datasets: ultrasound image data, clinical data, 
and integrated data.

Several imaging examinations are performed complementary, each with its own strengths. For example, MRI 
contributes to the detection of significant prostate cancers. In recent years, several studies have reported the 
benefits of MRI prior to systematic  biopsy29. Pellicer-Valero et al. proposed a fully automatic system based on 
deep learning with prostate MRI that can show cancer segmentation and cancer  grading30. In their results, AUC 
of intermediate and high grade cancer detection (Gleason grade group ≥ 3) was 0.767 (ProstateX test  data31) 
and 0.840 (Valencia Oncology Institute Foundation  data30). On the othre hand, AUC when using our method 
of high grade cancer detection (Gleason grade group ≥ 4) was 0.835. The ROC curve showed sensitivity of 0.909 
and specificity of 0.609 at a cut off value optimized for triage. Ultrasound imaging is widely used in prostate 
cancer screening globally because ultrasound can be easily performed at bedside. In this study, we showed that 
our data-driven ultrasound approach offers an efficient tool to triage patients with high-grade prostate cancers.

The main limitation of this study was that it was conducted at a single facility. It is known that high inter-
observer variability deteriorates the accuracy of ultrasound diagnosis. However, we analyzed over 2500 ultra-
sound images. In addition, we applied an augmentation technique and transferred learning based on  ImageNet32. 
In the future, we will obtain a validation set for other facilities. Furthermore, a full three-dimensional ultrasound 
image analysis might be able to improve the prediction accuracy in order not to miss small cancer lesions. 
Although further investigation should be conducted in order to reinforce our results, we hope that our method 
will contribute to the accurate diagnosis of prostate cancer.

Deep learning algorithms have achieved great success in medical image analyses owing to the high affinity 
between neural networks and images. Integrated analysis of medical multimodal data is a key factor driving 
practical technology in the next stage. Even if the predictive power of each datum is insufficient, data integra-
tion can improve the predictive power by appropriate machine learning techniques. Identifying the appropriate 
combination of data is important for better use of the data stored in the hospital. In this study, the image selection 

Figure 3.  ROC curves of high-grade cancer classification (n = 532: only systematic biopsy cases). Blue line: 
ROC curve of the clinical data without ultrasound images. Red line: ROC curve of clinical data with ultrasound 
images (integrated data). Light blue area: 95% CI for the ROC curve of the clinical data without ultrasound 
images. Light red area: 95% CI for ROC curve of clinical data with ultrasound images (integrated data). ROC 
receiver operating characteristic, AUC  area under the curve, CI confidence interval.
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itself was performed quantitatively. This is an important step towards more accurate and integrated medical AI. 
Our study expands the possibility of ultrasound imaging. Recognizing pathological high-grade cancers during 
ultrasound procedures improves cancer management, significantly reduces mental burden on the patient, and 
leads to improved quality of life.

Gleason score 8

Gleason score 
6-7

No cancer

Top 1 Top 2 Top 3 Top 4 Top 5

Top 1 Top 2 Top 3 Top 4 Top 5

Top 1 Top 2 Top 3 Top 4 Top 5

PP=1.00 PP=0.96 PP=0.83 PP=0.76 PP=0.73

PP=0.88 PP=0.81 PP=0.80 PP=0.78 PP=0.72

PP=1.00 PP=0.99 PP=0.98 PP=0.97 PP=0.97

Figure 4.  Prostate ultrasound images of top 5 cases corresponding to pathological cancer grading. Upper 
images: high-grade cancer cases. Middle images: low-grade cancer cases. Lower images: non-cancer cases. PP: 
normalized predicted probability.
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Materials and methods
Study population. Our study included 772 consecutive patients and 2899 ultrasound images acquired 
between November 2017 and June 2020. The patients underwent ultrasound-guided prostate biopsy at Nippon 
Medical School Hospital in Tokyo, Japan. The study profile is shown in Fig. 5. We excluded cases with a trans-
perineal biopsy of the prostate (eight cases), a history of post intravesical bacillus Calmette-Guerin therapy (two 
cases), and others (insufficient saved image and data: 71 cases). We evaluated 2676 ultrasound images (691 cases) 
via a transrectal approach using deep learning analysis. A systematic biopsy was performed in 532 patients. A 
combination of both MRI-targeted and systematic biopsies was performed in 159 cases. We divided these images 
into training data (November 2017 to December 2019: 590 cases, 2,299 images) and test data (January 2020–June 
2020: 101 cases, 377 images). We determined the hyperparameters using only the training data (Supplementary 
Table S2). This study was confirmed and approved by the Institutional Review Boards of the Nippon Medical 
School Hospital (reference 28-11-663) and RIKEN (reference Wako3 29-14). Informed consent was obtained 
from all patients. All methods were carried out in accordance with relevant guidelines and regulations.

Ultrasound and biopsy procedure. Ultrasound images of prostate glands were saved at four locations 
(base, mid, apex-mid, and apex). The prostate volume was calculated for each case. Subsequently, a prostate 
biopsy was performed. Figure 6 shows systematic prostate biopsy sites at each location (number of biopsy sites): 
lateral apex (2), parasagittal apex (2), lateral apex-mid (2), parasagittal apex-mid (4), lateral mid (2), and lateral 
base (2). In 532 cases, a systematic biopsy was performed. Furthermore, in 159 cases, a combination of both 
MRI-targeted and systematic biopsies was performed. The highest biopsy Gleason score on each ultrasound 
image was used as the label of the corresponding images. We gave different Gleason scores for each ultrasound 
image. We used an ultrasound system (Aplio i800; Canon Medical Systems, Tokyo, Japan) with a 6 MHz tran-
srectal probe (PVT-770 RT; Canon Medical System, Tokyo, Japan). All still ultrasound images were saved in 
Digital Imaging and Communications in Medicine (DICOM) format.

Pathological cancer grading. Two pathologists reviewed each biopsy core and reported cancer with an 
assigned Gleason score. Prostate cancer was diagnosed pathologically based on the International Society of 
Urological Pathology  grading33. Pathologists diagnosed all cases independently and then reached a consensus.

Ultrasound images. All DICOM ultrasound images were converted into JPEG images. We then extracted 
a rectangular region of the prostate from the images. This rectangular region included proximate tissues, such 
as the prostatic capsular vessels, pelvic fascia, and rectum. We then adjusted these images to a size of 256 × 256 
pixels. We applied an augmentation technique, including a parameter of zoom range for deep learning analysis. 
We provided positive or negative labels to these datasets based on the pathological grading. We defined (1) labels 

Figure 5.  Study profile.
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for the cancer group (Gleason score ≥ 6) or the other. We also defined (2) labels for the high-grade cancer group 
(Gleason score ≥ 8) or the other.

Classification using a deep neural network. First, we tested three deep convolutional neural network 
models,  Xception23,  inceptionV334, and  VGG1635 which were pre-trained on ImageNet with classification layers 
adapted to our  labels32. We selected Xception in this study because it exhibited the most precise performance for 
ultrasound image classification. We divided all images into test and training data based on the date of ultrasound 
evaluation for each case (Fig. 5). To evaluate the classification by the deep neural network, we constructed an 
ROC curve with the corresponding AUC. This study employed the RIKEN AIP Deep Learning Environment 
(RAIDEN) supercomputer system for all computations.

Machine learning analysis for the case‑level prediction. First, we applied logistic regression (ridge 
and lasso) and SVM anlayses only to the clinical data (age and PSA) to classify the case data. Subsequently, we 
applied these algorithms to three ultrasound image data pre-analyzed by deep learning (predicted probability of 
deep learning classification). Comparison among the different number of image sets showed that the AUC was 
the highest with the top three highest probabilities (|Pdl − 0.5|,  Pdl: predicted probability of deep learning classifi-
cation) (Supplementary Table S3). We, therefore, selected ultrasound images with those three ultrasound images 
in every case. We used only cases with more than three images in this case-level prediction. 678 cases were 
remained for case-level classification. We also divided these case data into training and test sets, as described 
in “Study population”. Finally, we applied these algorithms to the integrated data: three ultrasound image data 
pre-analyzed by deep learning, TPV, PSAD, age, and PSA. We constructed an ROC curve using the correspond-
ing AUC. We used R software for the analysis, using the glmnet package (version 2.0.16) for the ridge and lasso 
regression and the e1071 package (version 1.7.0) for the SVM. Calculations were performed automatically using 
the software packages.

Prostate ultrasound images corresponding to histological cancer grading. We evaluated pros-
tate ultrasound images corresponding to pathological cancer grading based on two types of labels: (1) the cancer 
classification label and (2) the high-grade cancer classification label. We selected the top five highest predicted 
probability cases from the high-grade cancer logistic regression (ridge) as representative cases corresponding to 
the high-grade cancer group. We selected the top five lowest predicted probability cases from the cancer logistic 
regression as representative cases corresponding to the non-cancer group. We defined the top five highest pre-
dicted probability cases of cancer without high-grade cancer as the low-grade cancer group.

Saliency map. We applied Grad-CAM to construct a saliency map for deep learning  analysis27,28. Grad-
CAM is a technique used to produce visual explanations of decisions made by convolutional neural networks.

Statistical analysis. We compared the characteristics of patients who were cancer cases or non-cancer 
cases using the Wilcoxon rank-sum test for continuous data. The ROC curves were constructed and compared 
using the ‘pROC’ (version 1.13.0) package in  R36. All reported p values were two-sided, with the level of statisti-
cal significance set at p < 0.05.

Figure 6.  Prostate biopsy sites (systematic biopsy). Red needles indicate the prostate biopsy sites in our study.
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Data availability
The clinical datasets used were collected at the Nippon Medical School Hospital. They are not publicly available, 
and restrictions apply to their use.
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