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Benefit of thrombolytic therapy in patients with acute stroke, who are on anticoagulant
treatment, is not well addressed. The aim of this study was to investigate whether apixaban
can modify the thrombolytic efficacy of alteplase in vitro. Static and flow models and two
variants of red blood cell (RBC) dominant clots, with and without apixaban, were used. Clots
were prepared from the blood of healthy human donors and subsequently exposed to
alteplase treatment. Apixaban and alteplase were used in clinically relevant concentrations.
Clot lysis in the static model was determined both by clot weight and spectrophotometric
determination of RBC release. Clot lysis in the flow model was determined by measuring
recanalization time, clot length and spectrophotometric determination of RBC release. In the
static model, clots without apixaban; compared to those with apixaban had alteplase-
inducedmass loss 54 ± 8% vs. 53 ± 8%, p � 1.00; RBC release 0.14 ± 0.04 vs. 0.12 ± 0.04,
p � 0.14, respectively. Very similar results were obtained if plasma was used instead of
physiological buffered saline as the incubation medium. In the flow model, clot lysis without
apixaban; compared to those with apixaban was as follows: recanalization time 107 ±
46min vs. 127 ± 31 min, p � 1.00; recanalization frequency 90 ± 22% vs. 90 ± 22%,
p � 1.00; clot volume reduction 32 ± 15% vs. 34 ± 10%, p � 1.00; RBC release 0.029 ±
0.007 vs. 0.022 ± 0.007,p � 0.16, respectively. Apixaban had no positive effect on alteplase-
induced thrombolysis in both the in vitro static and flow models. Our data support current
clinical practice, such that thrombolysis is contraindicated in stroke treatment for patients
who have been treated with anticoagulants.
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INTRODUCTION

Non-vitamin K antagonist oral anticoagulants [novel oral anticoagulants (NOACs)] are the
preferable option over warfarin for secondary prevention of thrombotic events in patients with
atrial fibrillation (Connolly et al., 2009; Granger et al., 2011; Patel et al., 2011). Their use in clinical
practices is thus increasing (Jin et al., 2018; Chao et al., 2019). More frequent use, however, of NOACs
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itself poses new challenges in patients subsequently suffering
from stroke. While on NOACs, thrombolytic treatment is usually
contraindicated (Tsivgoulis and Safouris, 2017; Šaňák et al., 2018;
Shahjouei et al., 2020; Tsivgoulis et al., 2021). The only
alternative, mechanical thrombectomy, is however, suitable
only for patients with large vessel occlusion and is not
universally available (Šaňák et al., 2018; Shahjouei et al., 2020).
Idarucizumab is an antidote that allows thrombolysis in patients
on dabigatran (Šaňák et al., 2018). It is not, however, clear if the
antidote for direct factor Xa (FXa) inhibitors, adexanate, will
allow thrombolysis in patients on apixaban and/or if the cost of
adexanate will prevent its use in many countries around the
world. Therefore, it is important to study interaction between
intravenous alteplase and NOACs, especially direct FXa
inhibitors.

Apixaban is a NOAC, which directly inhibits both free and
clot-bound coagulation factor FXa, preventing prothrombin
cleavage to active thrombin (Jiang et al., 2009; Connolly et al.,
2011; Byon et al., 2019). In vitro studies (Jiang et al., 2009;
Escolar et al., 2013) have demonstrated that, by interfering
with thrombin generation, apixaban prolongs clotting time
and clot formation time, thereby altering viscoelastic
parameters during clot formation. Animal models have also
shown that apixaban reduces platelet and fibrin formations on
damaged vessels (Escolar et al., 2013) and inhibits clot
formation in a dose-dependent manner (Pinto et al., 2007).
Recent studies (Farag et al., 2016; Carter et al., 2018; Spinthakis
et al., 2019) have also indicated that apixaban shortens
fibrinolysis times and enhances endogenous fibrinolysis in
patients.

Despite the efficiency of apixaban pretreatment in high-risk
stroke patients, its interaction with thrombolytics is not well
known (Ishihara et al., 2014; Seiffge et al., 2015; Jin et al., 2018;
Chao et al., 2019). In order to provide a better understanding, we
established a combination of two in vitro thrombolytic models to
investigate the interaction between apixaban pretreatment and
alteplase-induced thrombolysis.

METHODOLOGY

This is an in vitro study using both static and flowmodels to study
the effect of apixaban pretreatment on alteplase-induced
thrombolysis and recanalization using apixaban-pretreated
human blood clots.

Treatment Groups
Four experimental groups were established to test the
hypothesis that apixaban-pretreatment with subsequent
alteplase-treatment had different outcome, as compared to
alteplase-treatment of clots. These four groups included:
“untreated” (subject not on apixaban, without thrombolytic
treatment), “alteplase-treated” (subject not on apixaban, with
thrombolytic treatment), “apixaban-pretreated” (subject on
apixaban, without thrombolytic treatment) and “apixaban-
pretreated + alteplase-treated” (subject on apixaban, with
thrombolytic treatment).

In Vitro Model
Experiments were performed in static and flow in vitro models
described in contemporary literature (Harpaz et al., 1993; Prasad
et al., 2006), which were optimized to determine the suitably
measurable effect of alteplase in highly repeatable manner.
Briefly, the static model consisted of 1.5 ml plastic tubes
(Eppendorf, Germany) filled with medium to a total volume of
500 μL, in which the clots were individually incubated. Tubes
were placed into a dry-block incubator at 37°C and incubation
lasted 60 min (the same amount of time indicated for alteplase
treatment of stroke patients). The flow model comprised of
silicone chips (Sylgard 184 Silicone Elastomer, Dow Corning,
United States) prepared according to human middle cerebral
artery anatomy, with narrowings dimensionally based on patient
CT scans (n � 4). The bifurcation was included to enable
permanent circulation in the system. Each silicone chip was
connected by plastic pipes (internal diameter 3.1 mm) to an 8-
channel pump head peristaltic pump (Gilson Minipuls 3, Gilson,
Inc., United States) and the whole system was maintained at 37°C
for incubation lasting 180 min. This arrangement maintained the
hydrodynamic forces involved in clot removal (Diamond, 1999),
whereby a pressure gradient of 10 mm Hg was generated across
the occlusion.

Clots and Media Preparation
RBC dominant clots were employed in both types of in vitro
model. In the static model, clots were prepared from 200 μL
whole human venous blood and clotted in borosilicate glass
tubes (internal diameter 8 mm) for 5 h at room temperature to
allow for proper retraction (Sutton et al., 2013). Clots were
either incubated in physiological buffered saline (PBS, pH 7.4)
or 5-fold diluted human plasma. Concerning the flow model,
clots were prepared from 100 μL blood and clotted in
borosilicate glass tubes (internal diameter 6 mm) for 4 h at
room temperature. Clots in this instance were incubated in 5-
fold diluted human plasma only.

Two clots variants were used–those without or; those
supplemented with apixaban (250 ng ml−1), (a representative
of the apixaban-pretreated group). Both variants were divided
into two groups: untreated and alteplase-treated (1.3 mg L−1).

All blood donors had agreed to donate blood samples on the
premise of signed informed consent for the collection of blood.
Individuals who had received acetylsalicylic acid, non-steroidal
anti-inflammatory or antiplatelet drugs within 7 days before
blood collection were excluded.

All media were prepared using reagent grade chemicals. PBS
(pH 7.4) contained 8 g NaCl, 2.3 g Na2HPO4.12H2O, 0.2 g KCl
and 0.2 g KH2PO4 per liter. Plasma was freshly prepared for each
experiment from donors’ citrated blood (in standard ratio 3.8%
sodium citrate:blood, 1:9) by centrifugation (2000 g, 10 min, 4°C);
diluted 5-fold with PBS and kept at 4°C prior to the experiment.

Apixaban and Alteplase
Apixaban (provided by Pfizer Inc., United States; material no.
1151519, batch no. ABA8622) was initially dissolved in
dimethyl sulfoxide, and subsequently diluted with PBS to a
concentration of 2.5 mg ml−1. Diluted apixaban was stored
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aliquoted at −20°C and was not re-frozen once thawed.
Concentration of apixaban was selected to be in line with
clinically relevant dosing for the secondary prevention of
thrombotic events in patients with atrial fibrillation, which is
250 ng ml−1 (Artang et al., 2017).

Alteplase (Actilyse, provided by Boehringer-Ingelheim
International GmbH, Germany; Z. Nr. 1-24,717) was dissolved
in distilled water to a concentration of 1 mg ml−1 and was stored
aliquoted at -20°C (not re-frozen once thawed); after which it was
further diluted with PBS. The final concentration of alteplase was
also selected to be in line with clinically relevant dosing indicated
for patients with ischemic stroke (1.3 mg L−1), according to the
manufacturer’s instructions and supporting pharmacokinetic
data (Acheampong and Ford, 2012).

Measure of Lytic Efficacy
Clot lysis in the static model was determined by measuring clot
weight (Prasad et al., 2006; Elnager et al., 2014) and by
spectrophotometric determination of red blood cell (RBC)
release into the incubation media at 575 nm. Clot lysis in the
flow model was determined by measuring recanalization time in
addition to clot length and spectrophotometric determination of
RBC release. Recanalization frequency was determined as
percentage ratio of complete recanalizations to the total
number of samples in the given treatment group.

Data Analysis and Statistics
We expected relative clot mass loss to be 30 ± 10% in the
untreated group. In the static model, experiments in PBS were
performed with two repetitions (with at least a 1-month interval)
on samples from 10 healthy male blood donors (aged 31 ±
10 years, ranging from 22 to 53 years) for each variant of the
clots (same donors for both clot variants), which would give us
80% power to detect relative clot mass loss of 43 ± 10% or more in
the treated group. Experiments in 5-fold diluted plasma were
performed on samples from 5 healthy male blood donors (mean
age 32 ± 13 years, ranging from 23 to 53 years) for each variant of
the clots (same donors for both clot variants). All samples were
processed in triplicates.

We expected recanalization time to be 180 ± 25 min in the
untreated group. Flow model experiments were performed on
samples from 5 healthy male blood donors (mean age 32 ±
9 years, ranging from 23 to 53 years) for each variant of
clots (different donors for clot variants), which would give us
80% power to detect recanalization time 135 ± 25 min or less
in the treated group. All samples were processed in
duplicates.

All analyses were performed with STATISTICA 12
(StatSoft) software. Data are expressed as mean ± SD and
medians with minimum and maximum values. The forest plot
shows mean values and confidence intervals (95%). Unpaired
t-test was used to compare data. Bonferroni correction of p-
value for multiple-comparisons was applied. The number of
null hypotheses considered for static and flow model was 2 and 4,
respectively. All p-values are reported after Bonferroni correction.
p-values ≤ 0.05 were considered to be statistically significant.

RESULTS

Thrombolysis
Static Model
Alteplase treatment provided greater clot mass loss compared to
the untreated group (54 ± 8% vs. 36 ± 11%, p < 0.01) and greater
RBC release compared to the untreated group (0.14 ± 0.04 vs.
0.07 ± 0.03, p < 0.01). For clots without apixaban and with
apixaban, alteplase induced the same clot mass loss (54 ± 8% vs.
53 ± 8%, p � 1.00) and the same RBC release (0.14 ± 0.04 vs.
0.12 ± 0.04, p � 0.14). Additionally, clots without apixaban and
with apixaban, both without alteplase treatment showed the same
clot mass loss (36 ± 11% vs. 35 ± 10%, p � 1.00) and the same RBC
release (0.07 ± 0.03 vs. 0.07 ± 0.03, p � 1.00). Results were nearly
the same if plasma was used instead of PBS. Results are shown in
Figures 1, 2 and in Supplementary Tables S1, S2.

Flow Model
Alteplase treatment provided lower recanalization time
compared to the untreated group (107 ± 46 min vs. 180 ±
0 min, p < 0.01) and greater recanalization frequency (90 ±
22% vs. 0 ± 0%, p < 0.01), RBC release (0.029 ± 0.007 vs.
0.012 ± 0.007, p < 0.01) and clot volume reduction (32 ± 15%
vs. 14 ± 15%, p � 0.02). For clots without and with apixaban,
alteplase induced the same recanalization time (107 ± 46 min vs.
127 ± 31 min, p � 1.00), recanalization frequency (90 ± 22% vs.
90 ± 22%, p � 1.00), clot volume reduction (32 ± 15% vs. 34 ±
10%, p � 1.00) and RBC release (0.029 ± 0.007 vs. 0.022 ± 0.007,
p � 0.16). Results are shown in Figures 3–6 and in
Supplementary Table S3.

Clotting
Clots prepared from blood without apixaban showed significantly
higher weight after 5-h of clotting compared to clots
supplemented with apixaban (0.08 ± 0.01 g vs. 0.07 ± 0.01 g,
p < 0.01), (Figure 7). We have not observed any significant
impact of such change of clot mass and respective volume in
controls as well as alteplase-treated variants.

DISCUSSION

Our in vitro study aimed to determine whether apixaban
pretreatment modifies efficacy of thrombolytic treatment with
alteplase. Two in vitromodels were used. Both were optimized to
detect the lytic effect of alteplase in a highly repeatable manner.
The effect of alteplase was observed even with PBS as the
incubation medium and efficacy of alteplase was thus
intermediated by plasminogen inside the clot. Concentrations
of alteplase (and apixaban) were calculated to reflect therapeutic
doses used in humans (Acheampong and Ford, 2012; Artang
et al., 2017). The extent of the effect of alteplase was comparable
to the rate of clot lysis in humans. Thus clot volume reduction
median was 33% at 180 min with alteplase in the flow model,
which is similar to the median clot volume reduction of 32% (Kim
et al., 2015) in humans. All these findings support that although
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our experiments were conducted in vitro, results may be relevant
to clinical data.

The major finding is that apixaban at clinically relevant
concentration did not change the level of efficiency of alteplase
in vitro. In the static model no significant impact of apixaban on
alteplase efficiency was observed. Alteplase lysed apixaban-
pretreated clots behaved similarly to clots without apixaban
pretreatment, both in terms of clot mass loss and RBC release.
Spontaneous thrombolysis of these clots remained similar as well.

Minor differences in the initial clot mass did not affect
thrombolysis. We reproduced this experiment in the static
model in the presence of diluted plasma, since apixaban is a
highly hydrophobic compound and plasma proteins could
interact with it (Carter et al., 2018). Results were unchanged
as compared with PBS. This indicated that all factors important
for the alteplase action were already present in the clot and the
interaction of apixaban with alteplase was independent of plasma
proteins in our experimental system. Compared to previous

FIGURE 1 | Static model: clot lysis expressed as relative clot mass loss. The forest plot shows mean values (square) and 95% confidence interval (whiskers).
n � 54–57 for incubation in PBS and 12–15 for incubation in plasma. Results demonstrate that alteplase treatment provided efficient thrombolysis, e.g., documented
as greater clot mass loss compared to untreated group in plasma (52 ± 9% vs. 33 ± 9%, p < 0.01). For clots with and without apixaban, alteplase-induced lysis did not
differ, e.g., in plasma clot mass loss was 51 ± 11% vs. 52 ± 9%, p � 1.00. See Supplementary Table S1 for more details.

FIGURE 2 | Static model: clot lysis expressed as red blood cell release into incubation media. The forest plot shows mean values (square) and 95% confidence
interval (whiskers). n � 54–57 for incubation in PBS and 12–15 for incubation in plasma. Results demonstrate that alteplase treatment provided efficient thrombolysis,
e.g., documented as greater red blood cell release compared to untreated group in plasma (0.12 ± 0.04 vs. 0.05 ± 0.03, p < 0.01). For clots with and without apixaban,
alteplase-induced lysis did not differ, e.g., in plasma red blood cell release was 0.09 ± 0.04 vs. 0.12 ± 0.04, p � 0.18. See Supplementary Table S2 for more
details.
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in vitro studies with NOACs (apixaban and rivaroxaban) (Varin
et al., 2013; Carter et al., 2018), we have not observed
enhancement of thrombolysis by apixaban. Such observation is
largely attributable to the therapeutic level of alteplase (∼1 mg L−1),
which disfavor the molecular basis of the positive effect of a NOAC

on plasminogen activation by alteplase (see detailed discussion
below).

More importantly, in the flow model there was no influence of
apixaban on alteplase efficiency as documented by four
previously mentioned metrics: recanalization time,

FIGURE 3 | Flow model: time to recanalization of in vitro vessel. The forest plot shows mean values (square) and 95% confidence interval (whiskers). n � 9–10.
Dashed line shows experiment time window. Results demonstrate that alteplase treatment provided efficient thrombolysis, e.g. documented as lower recanalization time
compared to untreated group (107 ± 46 min vs. 180 ± 0 min, p < 0.01). For clots with and without apixaban, alteplase-induced lysis did not differ, e.g. recanalization time
was 127 ± 31 min vs. 107 ± 46 min, p � 1.00. See Supplementary Table S3 for more details.

FIGURE 4 | Flow model: recanalization frequency of in vitro vessel. The forest plot shows mean values (square) and 95% confidence interval (whiskers). n � 5.
Results demonstrate that alteplase treatment provided efficient thrombolysis, e.g. documented as greater recanalization frequency compared to untreated group (90 ±
22% vs. 0 ± 0%, p < 0.01). For clots with and without apixaban, alteplase-induced lysis did not differ, e.g., recanalization frequency was 90 ± 22% vs. 90 ± 22%, p � 1.00.
See Supplementary Table S3 for more details.

FIGURE 5 | Flowmodel: clot lysis expressed as relative clot volume reduction. The forest plot shows mean values (square) and 95% confidence interval (whiskers).
n � 9–10. Results demonstrate that alteplase treatment provided efficient thrombolysis, e.g., documented as greater clot volume reduction compared to untreated group
(32 ± 15% vs. 14 ± 15%, p � 0.02). For clots with and without apixaban, alteplase-induced lysis did not differ, e.g., clot volume reduction was 34 ± 10% vs. 32 ± 15%,
p � 1.00. See Supplementary Table S3 for more details.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7409305

Thalerová et al. Effect of Apixaban Pretreatment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


recanalization frequency and clot volume reduction and RBC
release. Apixaban alone did not affect these characteristics as well.
The obtained data are in agreement with the more simplistic
static model. Compared to the static model, the flow model
reflected clinical scenario better, because it included
hemodynamic factors. Expectation was that the
hydromechanical forces and resulting interstitial flow present
in this system should allow better penetration of alteplase into the
clot as previously reported (Diamond, 1999). To our knowledge
there was no previous study documenting how apixaban can
influence alteplase efficiency in an in vitro flowmodel, though the
anticoagulant properties of apixaban were assayed under flow
conditions in recent studies (Hosokawa et al., 2014; Sugihara
et al., 2016; Pujadas-Mestres et al., 2017).

Previous experimental data, both in vitro and clinically
indicated a positive effect of NOACs on thrombolysis, which
is contrary to our finding. These studies however used alteplase at
the endogenous level (∼1 μg L−1) (Varin et al., 2013; Carter et al.,
2018) or studied impact of NOACs on endogenous thrombolysis
(Farag et al., 2016; Spinthakis et al., 2019). The therapeutic
dosage, however, resulted in concentration which is about
three orders of magnitude higher (1.3 mg L−1 in this study).
Massive activation of plasminogen by such high concentration of

alteplase can overwhelm NOAC-mediated enhancement of
slow initial activation of plasminogen on intact fibrin fibers
(Talbot et al., 2013; Carter et al., 2018). That is why NOACs
can enhance thrombolysis at endogenous levels of alteplase, as
observed in previous studies (Varin et al., 2013; Farag et al.,
2016; Lau et al., 2016; Carter et al., 2018; Spinthakis et al.,
2019); but is excluded at therapeutic level of alteplase as
presented in this study. Accordingly, our finding that
apixaban at clinically relevant concentration did not change
the efficiency of alteplase in vitro corresponds with recent
clinical meta-analyses. They indicated that apixaban
pretreatment did not increase efficiency of alteplase in
ischemic stroke patients. The combination of apixaban
pretreatment with subsequent thrombolytic therapy with
alteplase may be safe for selected patients; however, more
data is needed to determine risk of bleeding (Tsivgoulis and
Safouris, 2017; Shahjouei et al., 2020; Tsivgoulis et al., 2021).

A possible limitation of our study is that we used blood from
healthy donors. In clinical practice patients suffer from
comorbidities. With the exception of diabetes, these
comorbidities do not directly affect function of alteplase
(Zangerle et al., 2007). Hence, we do not expect major
differences in results that would be obtained using blood from

FIGURE 6 | Flow model: clot lysis expressed as red blood cell release into incubation media. The forest plot shows mean values (square) and 95% confidence
interval (whiskers). n � 9–10. Results demonstrate that alteplase treatment provided efficient thrombolysis, e.g. documented as greater red blood cell release compared
to untreated group (0.029 ± 0.007 vs. 0.012 ± 0.007, p < 0.01). For clots with and without apixaban, alteplase-induced lysis marginally increased red blood cell release
for clots without apixaban (0.022 ± 0.007 vs. 0.029 ± 0.007, p � 0.16). See Supplementary Table S3 for more details.

FIGURE 7 | Clot weight after 5-h of clotting. The forest plot shows mean values (square) and 95% confidence interval (whiskers). n � 142 (clots without apixaban),
n � 137 (apixaban-supplemented clots). Results demonstrate that apixaban supplementation provided lower clot weight after 5-h of clotting compared to clots without
apixaban (0.07 ± 0.01 g vs. 0.08 ± 0.01 g, p < 0.01).
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patients. Another limitation of the presented in vitromodels is the
inability to study intracranial bleeding, which would be a clinical
concern if alteplase was administered to patients treated with
apixaban.

In conclusion, our data from two different in vitro models,
static and flow, consistently indicated no effect of apixaban on
thrombolysis and recanalization induced by therapeutic levels of
alteplase. We used different metrics and documented that
alteplase had a suitably measurable effect, which supports the
validity of our findings. Our data thus support current clinical
practice that patients are not treated with alteplase if they
were previously medicated with apixaban; due to no positive
impact on thrombolysis and recanalization but uncertain risk
of bleeding.
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