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Abstract

Background: Acute Kidney Injury (AKI) is a shared complication among Intensive Care Unit (ICU), marked by high
cost, high morbidity and high mortality. As the early prediction of AKI is critical for patients’ outcomes and data
mining is such a powerful prediction tool, many AKI prediction models based on machine learning methods have
been proposed. Our motivation is inspired by the fact that the incidence of AKI is a changing temporal sequence
affected by the joint action of patients’ daily drug combinations and their physiological indexes. However, most
existing models have not considered such a temporal correlation. Besides, due to great challenges caused by sparse,
high-dimensional and highly imbalanced clinical data, it is hard to achieve ideal performance.

Methods: We develop a fast, simple and less-costly model based on an ensemble learning algorithm, named
Ensemble Time Series Model (ETSM). Besides benefiting from vital signs and laboratory results as explicit indicators,
ETSM explores the effect of drug combinations as possible implicit indicators for the AKI prediction. The model
transforms temporal medication information into a multidimensional vector to consider and measure drug
cumulative effects that may cause AKI.

Results: We compare ETSM with state-of-the-art models on ICUC and MIMIC III datasets. On the basis of the
experimental results, our model obtains satisfactory performance (ICUC: AUC 24 hours ahead: 0.81, 48 hours ahead:
0.78; MIMIC III: AUC 24 hours ahead: 0.95, 48 hours ahead: 0.95). Meanwhile, we compare the effects of different
sampling and feature generation methods on the model performance. In the ablation study, we validate that
medication information improves model performance (24 hours ahead: AUC increased from 0.74 to 0.81). We also find
that the model’s performance is closely related to the balanced level of the derivation dataset. The optimal ratio of
major class size to minor class size for the model is found for AKI prediction.

Conclusions: ETSM is an effective method for the early prediction of AKI. The model verifies that AKI incidence is
related to the clinical medication. In comparison with other prediction methods, ETSM provides comparable
performance results and better interpretability.
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Background
Acute Kidney Injury (AKI), a sudden loss of kidney func-
tions, is a shared complication in the Intensive Care Unit
(ICU) patients [1]. The incidence of AKI usually causes
a significant drain on medical resources and increases
patients’ morbidity and mortality [2]. It is noteworthy
that timely detection and management can effectively
reverse patients’ conditions. Therefore, the early predic-
tion of AKI helps physicians give patients timely med-
ical interventions and is critical for improving patients’
outcomes.
The application of machine learning methods in clinical

endpoint prediction works has greatly boomed in recent
years [3–6]. AKI prediction is in the spotlight and usually
modeled as a classification problem in the machine learn-
ing field. The methods currently adopted by researchers
can be divided into statistical machine learning methods,
such as Gradient Boosting Machine [7], Random Forest
[8] and Logistic Regression [9], and deep learning meth-
ods, such as Recurrent Neural Network and Multilayer
Perceptron[10, 11]. Mostly, these models mainly use raw
data directly as their predictors. For example, Flechet et al.
[12] used patient demographics, past medical history, vital
signs, and laboratory values as the input features. How-
ever, these prediction models are usually limited by the
following defects:

a) Failure to offer satisfactory prediction performance.
Deep learning models with relatively better results pay
the high cost on calculation and real-time updates.

b) Failure to consider the temporal correlation of
electronic health data and the influence of drug
combination.

In our previous work[13], we have developed a method
to extract features from the medication information
and this method is helpful for AKI prediction. This
paper extends that work with the following signif-
icant improvements. 1) More comprehensive experi-
ments are conducted on more datasets and new find-
ings are reported. 2) The interpretability of our model is
analyzed.
The incidence of AKI is a changing temporal sequence

affected by the joint action of patients’ daily drug combi-
nation and their physiological index. Therefore, the time
series modeling method is reasonable and essential in AKI
prediction because it enables instant correlation of elec-
tronic health data and is more medically interpretable.
Moreover, multiple factors, such as patients with no diag-
noses, no treatments, or missing records, cause electronic
health data sparsity. Besides, owing to the specificity of
clinical data, AKI patients of the whole cohort are often in
the minority. Such an imbalanced dataset also makes the
prediction difficult.

To solve the above problems, we propose an Ensemble
Time Series Model (ETSM) for AKI early prediction. First,
to utilize the temporal correlation of data, we creatively
design a fast and straightforward time-seriesmodel. Then,
to cope with the sparsity of data, the XGBoost algorithm
that we used has a strong tolerance to missing values. In
comparison with other prediction methods, ETSM pro-
vides comparable performance results and better inter-
pretability.
To mitigate the class imbalance problem, we implement

and compare the performance of random undersampling,
random oversampling and cost-sensitive XGBoost. Based
on overall performance, we finally select the random
undersampling technique and implement ETSM on two
datasets. According to the experimental results, ETSM
offers satisfactory early prediction performance in both
internal validation and external validation (ICUC: AUC 24
hours ahead: 0.81, 48 hours ahead: 0.78; MIMIC III: AUC
24 hours ahead: 0.95, 48 hours ahead: 0.95). Medication
information is verified to improve the model performance
(ICUC: 24 hours ahead: AUC increased from 0.74 to 0.81).
Such performance improvement also shows that medica-
tion information is related to AKI incidence. To further
improve model performance, the missing values are filled
with the adjacent timestamp. If a sample’s values of a spe-
cific feature are entirely missing, they would be filled with
the median. We also find the optimal ratio of AKI patients
and non-AKI patients when training the model. Through
comparing with other feature generation methods, it is
proved that our approach can not only obtain compara-
ble prediction performance but also offer guidance for
medical intervention.
The paper is arranged as follows. Details about the fea-

ture generation process and the ETSM for AKI prediction
are presented in Method. Statistical information of data
and experimental results are shown in Results. Our dis-
covery is discussed in Discussion and we summarized this
paper in Conclusion.

Methods
Problem formulation
In this study, we formulate the early prediction of AKI
as a classification task. Classified samples are patients,
who are represented by a series of values on the dataset.
These values contain an ID number, vital signs, labora-
tory results and medication information. Each patient has
a unique ID number, which helps to identify him/her.
Vital signs and laboratory results record the value of the
patient’s physiological index and medication information
record drugs used by the patient. For convenience, we
use di to represent a kind of drug. These values reflect
the patient’s physical condition and treatment received
during hospitalization and are organized in chronological
order.
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AKI patients, the samples of key research, are defined
as the positive class. Correspondingly, we define non-AKI
patients as the negative class. Then the early prediction of
AKI is to determine whether a sample is positive or neg-
ative with features generated from values that represent
patients.

Feature generation
Considering the sparsity and temporal correlation of clin-
ical data, features for each patient used in this study
are generated from sequential vital signs, laboratory
results and medication information through a creative
method. We model this information into two groups of
features, explicit indicator group and implicit indicator
group.

Definition 1 (Explicit indicator) Explicit indicator is the
feature generated from vital signs and laboratory results
value.

Vital signs and laboratory results reflect patients’ physi-
cal condition directly. Naturally, models can infer patients’
condition through fluctuations in such indexes. These
parts of data can be transformed into the model’s
features without complicated steps, helping to pre-
dict AKI. Therefore, we define features generated from
vital signs and laboratory results as explicit indicator
group.
Explicit indicator group includes two parts, ICU admis-

sion day’s data and predictive point’s data. Patients’ vital
signs and laboratory results values at these two days are
directly used.
For example, in Fig 1, we extract vital signs and

laboratory results of patient i at the ICU admission
day, “20110912”, and predictive point, “20110920” as the
explicit indicator group of input feature.

Definition 2 (Implicit indicator) Implicit indicator is
the feature generated from medication information.

The medication patients used does not directly reflect
the patients’ condition. For example, we can not figure
out the patient’s heart rate from his/her heart rate through
medication information. The relationship between
patients’ condition and medication need to dig. There-
fore, features generated from medication are defined as
the implicit indicator group. Moreover, recent research
has proved that some drug combinations worsen patients’
conditions [14]. Information hiding in the medication
records, especially drug combination, needs further dig-
ging. Since the side effects of many drug combinations are
unclear in clinical so far, the physician is hard to consider
the effect of all drug combinations.
Medication information of patients is taken as time

series. Beginning from sparse and high-dimensional data,
we adopt a method, aiming to dig valid information.
Figure 2 shows the complete process.
Firstly, daily drug intake of patients is recorded in

a table, in which drug combination is considered as a
unit. A drug combination is the combination of drugs
taken by a patient on a certain day. For patient i, he/she
used drugs d1, d2, . . . , dj on day t. Therefore we define
a drug combination of ck = {d1, d2, . . . , dj}. Collect-
ing drug combinations from the whole cohort, we obtain
the drug combination set C = {c1, c2, . . . , cM}, which
is unordered and distinct. Then the medication infor-
mation of patient i can metamorphose into sequence
si = {c1, c2, . . . , cN }. Patients may take the same drugs
on different dates and different patients perhaps take
the same drugs. Drug combination set C is classified
as the implicit indicator group. Each element in C rep-
resents a drug combination and an indicator of the
group.

Fig. 1 Feature geeration process of explicit indicator group. Take patient i as an example, the duration of ICU stay is from 20110912 to 20110920.
Each color block stands for a series of vital signs and laboratory results value on a certain. This figure was generated by PowerPoint 2019
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Fig. 2 Feature generation process of implicit indicator group. Pi is the patient ID number. Each color block stands for a series of drugs taken on a
certain day. This figure was generated by PowerPoint 2019

After obtaining the drug combination ID sequence for
each patient, the next step is to calculate a proper weight
for each indicator. The count of each indicator is related
to the length of the sequence, so the importance cannot
be objectively measured. Indicator Frequency and Inverse
Cohort Frequency (IFICF) is a numerical statistic that
indicates how paramount a drug combination ck is to a
sequence si in the cohort. The IFICF value increases pro-
portionally to the number of times a drug combination
ck appears in the sequence si and is offset by the number
of sequences in corpus P that contain the drug combina-
tion ck , which assists in adjusting for the case that some
drug combinations appear more widely and frequently
than others.
IFICF is the product of two statistics, Indicator Fre-

quency (IF) and Inverse Corpus Frequency (ICF). IF is
the frequency that a drug combination occurs in the drug
combination ID sequence of a patient, calculated by Eq(1),
where fck ,si represents the number of times drug com-
bination ck occurs in sequence si and

∑

cεC
fc,si means the

total number of drug combinations in sequence si. ICF
is a measure of how important a drug combination is
over the corpus, calculated by Eq(2), where N represents
the number of patients in corpus P and nck means the
number of drug combination ID sequences having drug
combination ck .

IF(ck , si) = fck ,si∑

cεC
fc,si

(1)

ICF(ck ,P) = log
(

N
1 + nck

)

, nck = |{sεP,where ckεs}|
(2)

IFICF = IF × ICF (3)
The patient’s feature representation of the implicit indi-

cator group is generated after obtaining the drug combi-
nation ID sequence for each patient and calculating each
indicator’s proper weight through the IFICF method. The
IFICF method is derived from TFIDF (Term Frequency
and Inverse Document Frequency), reflecting the idea of
transforming time series modeling into text modeling.
Since the definition of term and document is quite differ-
ent from that in natural language processing, we redefine
IFICF to help readers, especially those who are unfamiliar
with this method, to understand our ideas.
In the feature generation process, we generate the

explicit indicator group from vital signs and laboratory
results. This group represents the patient’s physiological
indexes at ICU admission day and the predictive point.
It reflects changes in the patient’s physical condition dur-
ing this period. These changes are closely related to AKI



Wang et al. BMCMedical Informatics and DecisionMaking          (2020) 20:238 Page 5 of 13

incidence. Then we first creatively propose a method used
to generate the implicit indicator group from medication
information. This group represents how vital a drug com-
bination is to a patient and the whole cohort. Considering
we generate drug combinations as features, the correla-
tion between drug combination and AKI can be searched
through this method.

Prediction model
Since we formulate the early prediction of AKI as a clas-
sification task, the sparse and high-dimensional clinical
data makes it challenging. Meanwhile, we hope our model
can learn the effect of drug combination on AKI, aiming
to offer help to clinical data analysis.
Due to the above reasons, we consider XGBoost as

the classification model. Among the machine learning
methods used in practice, XGBoost, a scalable machine
learning system for tree boosting, runs faster when pro-
ducing large amounts of data and skillfully handling sparse
data. According to Chen et al. [15], XGBoost can runmore
than ten times faster than existing popular algorithms on
a single machine and handle billions of samples in dis-
tributed or memory-limited settings on the same datasets
comparing other tree algorithms, such as Gradient Boost-
ing Machines. In recent years, the XGBoost algorithm
has been proved that produced high predictive accuracy
on classification problems and performed brilliantly in
many other fields [16, 17]. The experiment of Nguyen
et al. [16] exhibited that the XGBoost algorithm offered
the highest accuracy level among XGBoost, Support Vec-
tor Machine (SVM), Random Forest (RF) and k-Nearest
Neighbor. These features just fit the needs for countering

sparse and high-dimensional clinical data when predicting
AKI.

Imbalanced dataset
In this study, the early prediction of AKI is formulated as a
binary classification task. Model performance has a great
relationship with the balance of the dataset. The imbal-
anced dataset often has a bad effect on the model’s pre-
diction [18]. However, in the case of the clinical dataset,
the negative class is much more than the positive one. To
address this issue, we implement and compare random
undersampling, random oversampling and cost-sensitive
XGBoost. Finally, we choose to undersample the imbal-
anced dataset on the derivation set, aiming to better train
themodel. In subsequent experiments, we find it improves
experimental results in the case of the highly imbalanced
dataset.

Ensemble time series model
Figure 3 exhibits the framework of ETSM. Patients’
vital signs, laboratory results and medication records are
organized by date in our dataset. It is common to set
the predictive point before one or two days at clinical
endpoint prediction. Therefore, our prediction model is
intended to predict AKI 24 hours or 48 hours ahead
before its onset, which enables patients to receive timely
treatment.
Firstly, we extract vital signs, laboratory results, med-

ication information and patients’ AKI status from the
dataset. Secondly, we generate an explicit indicator group
from vital signs and laboratory results. Then we generate
an implicit indicator group from medication information.

Fig. 3 Framework of ETSM. This figure was generated by PowerPoint 2019
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Thirdly, we divide samples into the derivation set and val-
idation set. Fourthly, the XGBoost model is trained with
an undersampled derivation set. Last, we examination
the model performance on the validation set and get the
prediction results.
This study was approved by the institutional review

boards atWest China hospital and was granted a waiver of
informed consent (2019-S-361). Since this work is a retro-
spective study, the ethics committee did not require each
patient to sign the informed consent.

Results
In this section, we first introduce statistical information
of two datasets and experimental settings. Secondly, we
compare the performance of random undersampling, ran-
dom oversampling and cost-sensitive XGBoost. Thirdly,
we empirically evaluate the effectiveness of ETSM for the
early prediction of AKI on the datasets. Fourthly, we dis-
cuss the data imbalance problem and the effectiveness of
feature generation design.

Data description
To verify our model’s effectiveness, we use two ICU
patient collections observed in different hospitals and dif-
ferent countries for evaluation.We first validate ourmodel
on a local dataset, ICUC (ICU data in China), supported
by Westchina critical care information system. To fur-
ther verify the scalability of our model, we experiment
on the external dataset. A publicly available, large-scale
ICU dataset, MIMIC III (Medical Information Mart for
Intensive Care)[19], is used for data extraction and model
validation.
In this study, AKI is defined as serum creatinine

increases by 0.3 mg/dl (26.5 μmol/l) or more in 48 hours
or a rise to at least 1.5-fold from baseline within seven days
in light of Kidney Disease Improving Global Outcomes
(KDIGO) classification [20]. Table 1 shows the summary

Table 1 Study sample characteristics of ICUC and MIMIC III

Subject ICUC MIMIC III

Original samples 13053 52152

AKI samples 2035 29344

Timing of AKI onset Avg 3.92 Avg 2.00

Timing of AKI onset Max 30 Max 7

Timing of AKI onset Min 0 Min 0

Vital signs and laboratory results 101 38

Distinct drug 75 3235

Drug combination 5154 3085

Most widely used drug in samples 91.49% 68.82%

Patients with insufficient information 1401 5559

Samples used to predict AKI 24 hours ahead 11501 46593

Samples used to predict AKI 48 hours ahead 10921 30217

characteristics of the study samples. It should be noted
that in theMIMIC III dataset, we treat a unique icustay ID
as a sample.
The number of samples in the negative class is usu-

ally far more than the positive class is universal trou-
ble of the clinical dataset. ICUC is also imbalanced,
and the negative class is almost 6.7 times the positive
class. The original cohort contains 13053 patients, among
which 2035 patients have developed AKI, accounting
for about 16%. According to statistical results, samples
developed AKI on average about the fourth day after
ICU admission. 101 vital signs and laboratory results
were recorded. 75 distinct drugs were included. On the
ICUC, 5154 drug combinations are ever used by samples.
The most widely used drug in samples covered 91.49%
samples.
MIMIC III is much more balanced than ICUC. The

original cohort contains 52152 patients, among which
29344 patients have developed AKI. On average, patients
of MIMIC III suffered AKI on the second day after
ICU admission. 38 vital signs and laboratory results were
recorded. 3235 distinct drugs were included. On the
MIMIC III, 3085 drug combinations are ever used by
samples. The most widely used drug in samples covered
68.82% samples.
In Fig 4(a) and (b) separately show the distribution of the

timing of AKI onsets. Most patients developed symptoms
within the first three days of ICU admission on the two
datasets. (c) and (d) show the use range of different drugs
on the two datasets.
In the raw data, there are some invalid samples with

no vital signs, laboratory results, or medication informa-
tion and thus need to be removed. Moreover, patients
with a length of hospitalization are shorter than 24 hours
or 48 hours and are also removed in the correspond-
ing experiment. Table 1 shows the number of removed
samples.
We did not use demographics features in this paper,

such as age, sex. On the one hand, ICUC is a retrospec-
tive dataset. These demographics features are with a lot
of missing value and correctness cannot be guaranteed.
On the other hand, in the practical situation, especially
in developing countries, this information is not always
available.

Experimental settings
In this study, we compare our model with single classi-
fiers, embracing Naive Bayes and k-Nearest Neighbor, and
ensemble classifiers, including AdaBoost and Random
Forest, on the dataset.
The selection of the evaluation metric is critical. The

area under the receiver operating curve (AUC), sensitiv-
ity, F1-score and Average Precision (AP) are selected to
estimate model performance.



Wang et al. BMCMedical Informatics and DecisionMaking          (2020) 20:238 Page 7 of 13

a b

c d

Fig. 4 Study sample characteristics of ICUC and MIMIC III. (a) ICUC-timing of AKI onset (b)MIMIC III-timing of AKI onset (c) ICUC-drugs popularity (d)
MIMIC III-drugs popularity. These figure were generated by Excel 2019

We calculate AUC by Eq(4).

AUC =
∑

insiεpositiveclass rankinsi − M×(M+1))
2

M × N
(4)

where M is the number of positive class, and N is the
number of negative class. rankinsi represents the possibil-
ity rank of sample insi in the positive class. AUC indicates
classifiers’ ability to distinguish both positive and negative
classes. Even in the condition of the highly imbalanced
dataset, it can still put forward sensible evaluation.

We calculate sensitivity by Eq(5).

Sensitivity = TurePositive
PositiveClass

(5)

It is the ratio of correctly-classified positive samples to
all positive samples. Sensitivity indicates the capacity of
classifiers for classifying positive class unerringly.
We calculate F1-score by Eq(6).

F1 − score = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

(6)
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Precision = TurePositive
TurePositive + FalsePositive

(7)

Precision represents the ability of the model to make
positive predictions correctly. It is ideal for both the pre-
cision and sensitivity score to be high. However, these
two scores are contradictory and cannot be double-high.
Therefore, F1-score, the harmonic mean of precision and
sensitivity, is an appropriate choice.
AP is the area under the PR curve. Taking the sensitiv-

ity score as the horizontal axis and the precision score as
the vertical axis, the PR curve can be drawn. This area
can represent the overall performance of the model on
precision and sensitivity.
For model development, the dataset was randomly

divided into a derivation set (60%) used to train the
model and a validation set (40%) to test the accuracy
of the model, using the stratified sampling method. All
experiments were repeated ten times. To mitigate the
imbalanced dataset problem, we adopt a strategy that
undersamples the negative class on the derivation set to
produce a proper ratio of the number between positive
and negative classes when fitting model. We do not make
this adjustment when validating model performance.

Comparison of imbalanced learning techniques
The research has shown that for some basic classifiers,
the balanced data set provides better performance than
the imbalanced data set [21]. Sampling methods are dedi-
cated to constructing amore balanced datasets to improve
model performance. Random oversampling and random
undersampling are classic sampling techniques. Random
oversampling technique balances data by randomly dupli-
cating samples of the minority class, while random under-
sampling technique randomly drops samples of the major-
ity class. In addition, XGBoost also provides a solution.
Cost-sensitive XGBoost can offer better performance on
binary classification problems with a severe class imbal-
ance.We implement three techniques and compare model
performance on the ICUC dataset. Table 2 shows the
model performance of random undersampling, random
oversampling and cost-sensitive XGBoost.
According to the result, the random undersampling

technique has better AUC and sensitivity scores but
also has worse F1-score and AP. However, in the longer

predictive period, the random undersampling technique
expands its advantages and reduced the disadvantage.
Additionally, the random undersampling technique not
only reduces running time and but also helps prevent
overfitting [22]. Therefore, we select the random under-
sampling technique in the follow-up experiment.

Performance comparisons
Tables 3 and 4 respectively exhibit the performance of pre-
diction models in the experiment of predicting AKI inci-
dence 24 hours and 48 hours ahead on ICUC and MIMIC
III. For model development, we use the grid search to esti-
mate the best parameters for baseline models. k-Nearest
Neighbor has 6 neighbors. Random Forest has 140 estima-
tors, and AdaBoost has 200 estimators. XGBoost has 144
estimators. The max depth of XGBoost is 8, and min child
weight is 5.
In conformity to the experimental results, ETSM comes

into the possession of the best result on forecasting AKI
incidence both 24 hours (ICUC: AUC 0.81; MIMIC III:
AUC 0.95) and 48 hours ahead (ICUC: AUC 0.78; MIMIC
III: AUC 0.95). It offers brilliant outcomes at the sensi-
tivity both 24 hours (ICUC: 0.75; MIMIC III: 0.95) and
48 hours ahead(ICUC: 0.68; MIMIC III: 0.98). ETSM also
outperforms on F1-score (ICUC: 24 hours ahead: 0.58, 48
hours ahead: 0.44; MIMIC III: 24 hours ahead: 0.96, 48
hours ahead: 0.98) and provides competitive performance
on AP compared to other models. In general, ensemble
learning algorithms perform better than base algorithms,
especially in terms of sensitivity. The experimental results
demonstrate that base classifiers are not up to such com-
plex classification problems with high-dimensional input
features.
An ablation study where we exclude the implicit indi-

cator group on ICUC is carried out so as to investigate
the contribution of medication information to the model.
Model with the explicit indicator group as its only input
feature is named ETSM-ex. The performance of ETSM-
ex in the predictive experiment is exhibited in Tables 5
and 6. It is transparent that ETSM has better performance
than ETSM-ex. This advantage is particularly prominent
in the experiment of predicting AKI 24 hours ahead (AUC
ETSM: 0.81, ETSM-ex: 0.74). Furthermore, the incor-
poration of medication information brings considerable
growth to the sensitivity score, F1-score and AP increase

Table 2 Performance of imbalanced learning techniques on ICUC

AUC Sensitivity F1-socre AP

24h 48h 24h 48h 24h 48h 24h 48h

Random Undersample 0.81 0.78 0.75 0.68 0.58 0.44 0.59 0.41

Random Oversample 0.78 0.69 0.64 0.43 0.62 0.44 0.66 0.46

Cost-sensitive XGBoost 0.78 0.70 0.64 0.45 0.61 0.46 0.67 0.47
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Table 3 Performance of prediction models on ICUC

Model
AUC Sensitivity F1-score AP

24h 48h 24h 48h 24h 48h 24h 48h

ETSM 0.81 0.78 0.75 0.68 0.58 0.44 0.59 0.41

AdaBoost 0.78 0.75 0.66 0.62 0.54 0.41 0.60 0.41

Random Forest 0.73 0.75 0.51 0.59 0.54 0.44 0.60 0.40

Naive Bayes 0.53 0.52 0.09 0.05 0.15 0.07 0.60 0.41

k-Nearest Neighbor 0.63 0.62 0.37 0.30 0.36 0.31 0.59 0.41

(24 hours: sensitivity increased from 0.63 to 0.75, F1-
score increased from 0.47 to 0.58, AP increased from
0.47 to 0.59). In closing, the incorporation of medication
information heightens the model performance.

Performance with different model initialization
As mentioned above, the imbalanced dataset has a sig-
nificant impact on the performance of the model. To
mitigate this effect, we construct a series of derivation
sets with different positive and negative proportions to
train the model. Then compare their performance on the
original imbalanced dataset. The proportion of positive to
negative class ranges from 10:1 to 1:10.
Figure 5 demonstrates differently trained models’ per-

formance in the predictive experiment. As can be seen in
Fig 5, the AUC and sensitivity score gradually decrease
along with the increase in positive class accounted
for. However, the two scores have opposite develop-
ment trends along with the increase in negative class
accounted for. The AUC score gradually declines while
the sensitivity score gradually rises. Both of F1-score
and AP show the same trend of first rising and then
falling.
Comprehensively compare the performance on differ-

ent derivation sets, 1:1 or 1:2 ratios between positive and
negative classes lead to better experimental results.

Feature generation methods comparisons
In this part, we test another two feature generation meth-
ods and implement them with the original XGBoost
model on ICUC, aiming to explore the effect of dif-
ferent feature generation methods on the prediction
results.

Comparedmethods
In previous research, patients’ vital signs and laboratory
results are generated in the same way as mentioned in our
method, but medication information was often consid-
ered as distinct drugs and directly generated as features.
We keep the explicit indicator group unchanged and use
two other implicit indicator group generation methods to
compare their performance.

a) Bool-Drug Method: In this method, each dimension
of the implicit indicator group stands for a kind of
drug. The weight of implicit indicators is boolean. If
patients ever took a kind of drug, the corresponding
dimension would be marked as true. Otherwise, it
would be marked as false. For example, there are n
kinds of drugs in the dataset. Then the implicit
indicators are generated as {d1, d2, . . . , dn}. If patient
i ever used d1, the weight of d1 is 1. Otherwise, the
weight of d1 is 0. This derived model is named
ETSM-bool.

b) Times-Drug Method: In this method, each
dimension of the implicit indicator group also stands
for a kind of drug. The weight of the implicit
indicator group is the times that patients ever took a
kind of drug. For example, there are n kinds of drugs
in the dataset. The implicit indicators are also
generated as {d1, d2, . . . , dn}. If patient i ever used d1
for three times, the weight of d1 is 3. This derived
model is named ETSM-times.

Performance comparisons
Tables 5 and 6 provides the performance of the
model with different input features in the experiment of

Table 4 Performance of prediction models on MIMIC III

Model
AUC Sensitivity F1-score AP

24h 48h 24h 48h 24h 48h 24h 48h

ETSM 0.95 0.95 0.95 0.98 0.96 0.98 0.98 0.98

AdaBoost 0.89 0.93 0.93 0.97 0.93 0.96 0.98 0.98

Random Forest 0.78 0.78 0.91 0.97 0.86 0.91 0.93 0.97

Naive Bayes 0.67 0.65 0.61 0.66 0.68 0.73 0.82 0.86

k-Nearest Neighbor 0.72 0.82 0.64 0.83 0.76 0.88 0.83 0.93
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Table 5 Performance of derived ETSM on ICUC in the
experiment of predicting AKI 24 hours ahead

Model AUC Sensitivity F1-score AP

(95% CI) (95% CI) (95% CI) (95% CI)

ETSM 0.810±0.002 0.746±0.003 0.577±0.003 0.594±0.004

ETSM-ex 0.737±0.002* 0.629±0.004* 0.470±0.002* 0.470±0.003*

ETSM-bool 0.759±0.002* 0.654±0.005* 0.512±0.003* 0.530±0.004*

ETSM-times 0.803±0.002* 0.726±0.003* 0.579±0.003 0.647±0.003

Note: CI = confident interval
*indicates ETSM significantly outperforms the baseline with p <0.01 using Student
t-test

predicting AKI 24 hours and 48 hours ahead. According
to the table, the three models have their advantages and
disadvantages. However, ETSM is able to utilize the drug
combination information effectively.

Feature importance analysis
In addition to validating our model’s predictive ability, we
analyze the information provided by the trained model
about feature importance. Based on the results, drug com-
binations indeed play a key role in determining AKI.
Table 7 shows drug combinations with top 10 feature
importance. Based on previous studies, most of the drugs
listed in Table 7, such as norvancomycin, ibuprofen and
naproxen, can cause drug-induced renal disorders indi-
vidually or in combination[23, 24], which proves that the
features selected by our model are reasonable. We hope
that the drug combination we found can attract atten-
tion, provide suggestions for the study of inappropriate
drug co-administration, and narrow the scope of clinical
verification and testing.

Discussion
In this paper, we propose an easy and straightforward time
series model method to generate features from clinical
data. In the experiment, our model provides a comparable
result. In the internal validation, our model identifies AKI
risky patients in the next 24 hours and 48 hours with an

AUC of 0.81 and 0.78, respectively. In the external valida-
tion, it predicts AKI risky patients in the next 24 hours and
48 hours with an AUC of 0.95. Compared with state-of-
the-art machine learning methods [7, 25, 26], our results
are competitive. Such early prediction allows patients at
high risk for AKI to obtain timely and early intervention
and could mitigate patients’ morbidity and mortality. The
data we used is readily available in the real clinical process.
Comparing to the recent predictive model based on

the deep learning approach [10], our model focuses on
exploring the effect of non deep learning methods on the
AKI prediction task. In practical application, the deep
learning model is a blackbox, and its interpretability is
weaker than the ensemble tree model. Clinical data is a
structured dataset, and each feature has a clear meaning.
Deep learning models are hard to grasp the relationship
between features and predicted values well. We have also
noticed that there are many tools to help improve the
interpretability of deep learning models, such as LIME
(local interpretable model agnostic explanations), SHAP
(Shapley additional plans), Captum and CD (contextual
decomposition). These tools provide methods for visu-
alizing the results and exploring the meaning of deep
learning models. However, these methods are not per-
fect. Take LIME for an example, small perturbations that
have minimal (or no) effect on the underlying model’s
predictions, yet have significant effects on the explana-
tions given be the interpreters meant to explain them [27].
Also, the training of SHAP is of exponential complexity
for deep learning models, which is very time-consuming.
But for tree algorithms, the training time complexity of
SHAP can be optimized to be linear and the cost is
greatly reduced [28]. The model’s interpretability decides
whether it can provide valuable guidance for realistic
events rather than just offering prediction results [29].
Important features selected by the interpretable model
lead physicians to pay more attention to the key physio-
logical indexes of patients. Such information is sometimes
more meaningful than the predictive result since it is ben-
eficial to offer patients appropriate medical interventions.
Our creative feature generation method and XGBoost

Table 6 Performance of derived ETSM on ICUC in the experiment of predicting AKI 48 hours ahead

Model AUC Sensitivity F1-score AP

(95% CI) (95% CI) (95% CI) 7 (95% CI)

ETSM 0.776±0.002 0.683±0.004 0.437±0.003 0.406±0.004

ETSM-ex 0.775±0.003 0.684±0.006 0.434±0.003 0.396±0.005*

ETSM-bool 0.786±0.003 0.702±0.005 0.453±0.003 0.434±0.006

ETSM-times 0.806±0.002 0.739±0.006 0.476±0.003 0.476±0.005

Note: CI = confident interval
*indicates ETSM significantly outperforms the baseline with p <0.01 using Student t-test
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Fig. 5 Performance of ETSM with different initialization on ICUC in the experiment of predicting AKI 24 hours ahead. This figure was generated by
Excel 2019

algorithm make ETSM well interpretable. For example,
patients’ health condition is also under drug-induced risk
in the practical clinical process. Some drugs may, individ-
ually or in combination, have the potential to trigger renal
injury [30]. However, drug combination information is
hard to catch through the usual feature generation meth-
ods. Unlike most existing prediction models that consider
different drugs separately, we treat the drug combina-
tion as the implicit indicator group. Since the XGBoost
algorithm that ETSM used is a collection of decision
trees that are more interpretable than other classifiers,
the decisions made by tree nodes are easily available and
understandable. By combining the clinical meaning of

implicit indicators, the drug-induced risk caused by drug
combinations can be discovered through further analyz-
ing the contribution of implicit indicators. In this way,
our model could help lower drug-induced risk by offering
physicians clinical medication guidance.
Moreover, aiming to further validate the contribution

of medication information for AKI prediction, we car-
ried out an ablation study where we removed the implicit
indicator group. According to the experimental result, it
is transparent that the performance declined when pre-
dicting AKI both 24 hours and 48 hours ahead. On the
one hand, this experiment reflects that utilizing medica-
tion information effectively is quite beneficial to improve
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Table 7 Drug combinations with top 10 feature importance

Rank Drug Combination

1 5, 21

2 43, 69

3 21, 46

4 21, 43

5 21, 23, 43

6 1, 43, 69

7 5, 21, 50

8 21, 43, 69

9 21, 32

10 1, 21, 43

Note: Each number represents a kind of drugs. The number is the index for this drug
in the ICUC dataset
1: norvancomycin
5: ciprofloxacin lactate and sodium chloride injection
21: indometacin enteric-coated tablets
23: piperacillin sodium/tazobactam sodium
32: ibuprofen
43: ceftazidime for injection
46: cefathiamidine for injection
50: aztreonam for injection
69: naproxen

model performance. On the other hand, this ablation
study has further verified that patients are indeed under
drug-induced risk caused by drug co-administration, and
implicit indicators are essential for AKI prediction.
As to imbalanced data, we found that the ratio of pos-

itive and negative samples would affect model perfor-
mance. However, the better ratio setting of positive and
negative class about model initialization needs further
exploration. Therefore, we conducted a series of com-
parative experiments and selected the optimal ratio by
evaluating model performance based on AUC, sensitiv-
ity, F1-score and AP comprehensively. Results show that
when the ratio of positive to negative is 1:1 or 1:2, the
model can get better performance. It should be noted that
the ratio is also related to the dataset, but 1:1 or 1:2 is
recommended.
At last, to further verify the rationality and superior-

ity of our time series modeling method, we have tested
two other feature generation methods ever used by pre-
vious researches, then validated the model performance.
According to the results, our time series modelingmethod
is overall better than several methods. However, Our
methods can utilize drug combination information and
help lower drug-induced risk. The experiment verified
that our time series modeling method possesses high
performance and practical clinical value.
Even better, our feature generation method is not con-

fined to AKI prediction. The time series modelingmethod
proposed in the paper is scalable and can be widely applied
to other clinical prediction tasks.

Conclusion
In this paper, we proposed a competitive predictionmodel
for AKI based on an ensemble learning algorithm. Our
model overcomes the difficulty caused by sparse and
high-dimensional clinical data, providing comparable pre-
diction results of AKI 24 hours and 48 hours ahead in
both internal validation and external validation, which
is paramount for ameliorating patients’ outcomes. Our
model is quite competitive by comparison with other AKI
prediction models, samely based on the machine learn-
ing method, predicting AKI nearly 2-day in advance. This
time span between evidence of increased AKI risk and
AKI onset is an ideal period for medical intervention.
Additionally, we proposed a fast and straightforward time
series modeling method for complex medication infor-
mation and further verified that AKI patients are indeed
under the drug-induced risk.
There are some limitations to this study. First, our

model is developed from clinical data from ICU but is not
implemented in other hospital departments, and its gen-
eralizability needs further validation. Second, the detailed
information about the drug combination effect on AKI
incidence needs further research.
In the future study, we will further explore the correla-

tion between drug combination and AKI incidence.
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