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Abstract: The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays
essential roles in cell proliferation, survival, differentiation and development. It is activated in over
40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other
oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery
of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty
years of extensive studies have provided a wealth of information on the mechanisms underlying the
activation, regulation and biological functions of the Raf family. However, the mechanisms by which
activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf
can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation
loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially
melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development
that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated,
inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of
different sites, as well as complex interactions between Raf isoforms. In this review, we will focus
on the physiological complexity of the regulation of Raf kinases and their connection to the ERK
phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application
of Raf inhibitors in the treatment of cancer.
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1. Introduction

The Raf kinase family consists of three isoforms, C-Raf/Raf-1, B-Raf and A-Raf [1,2].
They are located directly downstream of Ras and upstream of MEK1/2 [3,4]. Since the
discovery of v-Ras, v-Raf and ERK [5–12] and the connection of this regulatory hub with
oncogenesis, tremendous efforts have been invested in the elucidation of the mechanisms
underlying the activation of Raf kinases. The Raf/MEK/ERK pathway is the first and
clearly defined mitogenic pathway whose signal is invoked by extracellular mitogenic
ligands and serves as a framework for other MAPK pathways [13]. Among three isoforms
of the Raf family, B-Raf is the only one that has so far been found mutated in many types
of cancers [14]. As all of the Raf family members directly act downstream of Ras, C-Raf
and A-Raf are also important factors contributing to oncogenesis, either mediating the
effects of mutated Ras or participating in oncogenic B-Raf -mediated pathogenesis. Thus,
the development of Raf inhibitors has been a focus in cancer therapy.

The Raf/MEK/ERK pathway plays important roles not only in physiological processes,
including cell proliferation, differentiation and development, but also in oncogenesis
and cancer progression [15]. The oncogenic Ras isoforms, KRas, HRas and NRas, whose
mutations have been found in more than 30% of human cancers, as well as overexpression
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of growth factors and mutations of their receptors in human cancer, all lead to the activation
of this pathway [11,12,16]. Furthermore, B-Raf mutations are present in approximately
8% of human cancers [17], including 50% of melanoma [14], 45% of papillary thyroid
cancer [18], 10% of colon cancer [19], 10% of non-small cell lung cancer [20] and almost
100% of hairy cell leukemia cases [21]. Thus, the development of drugs targeting the
Raf/MEK/ERK pathway is especially important for cancer therapy. To fulfill this objective,
the elucidation of this pathway is a crucial step. Although the mechanisms of MEK and
ERK activation are relatively straightforward, Raf activation is rather complex and still
incompletely understood. Moreover, the discovery of homo- and hetero-dimerization of
Raf isoforms adds to the complexity of deciphering the mechanism of their activation,
which also makes the development of Raf inhibitors a challenging and daunting task.
Therefore, this review will summarize current knowledge of the regulation of Raf isoforms
and progress in the drug development of Raf inhibitors for cancer therapy.

2. Discovery of the Raf/MEK/ERK Pathway

In the early 1980s, v-Raf was initially identified as a transforming gene of the murine
retrovirus 3611-murine sarcoma virus (MSV) [5,22]. In neonatal mice, it causes predom-
inantly fibrosarcoma and erythroleukemias. Hence, the name of Raf originated from its
capability to stimulate “Rapidly Accelerated Fibrosarcomas” [23]. Shortly after, the genome
of the avian carcinoma virus MH2 was found to encode a closely related oncogene named
v-mil [24]. Comparison of DNA sequences of these oncogenes coupled with biochemical
studies has revealed that v-Raf and v-mil are retroviral oncogenes derived from cellular
proto-oncogenes of mammalian and avian species. Both genes encode products that are
classified into the serine/threonine kinase family, homologous to tyrosine specific SRC
kinases in the kinase domain. v-Raf and v-mil are fused to the N-myristoylated (N-myr)
viral Gag sequence but with the deletion of amino-terminal moieties, in contrast to their
cellular counterparts [25,26].

The first cellular counterparts of v-Raf, C-Raf-1 and C-Raf-2, were cloned and sequenced
in 1985. However, it soon became apparent that C-Raf-2 is a pseudogene. Thus, the C-Raf-1
gene product was designated as C-Raf. Studies have reported that C-Raf is located at
human chromosomal band 3p25, consisting of nine exons that are similar to v-Raf and
v-mil as well as two extra exons that are related to v-mil [27,28]. Later on, two more Raf
family members, A-Raf and B-Raf, were identified in vertebrates [2,29,30]. Although C-Raf
was the first to be discovered in mammals, the ortholog of B-Raf is D-Raf in Drosophila
melanogaster and LIN-45 in Caenorhabditis elegans [31,32]. A-Raf is the smallest subtype with
a molecular weight of 68 kDa, C-Raf having a weight of 73 kDa, while B-Raf ranges from
75 to 100 kDa, this being attributable to variable splicing [33,34].

The Human Protein Atlas expression database shows that C-Raf mRNA and A-Raf
mRNA are predominantly present in skeletal muscle, bone marrow and the proximal
digestive tract, while B-Raf mRNA is highly expressed in the retina, bone marrow and
brain. Genetic and biochemical studies in C. elegans and D. melanogaster have demonstrated
that Raf functions downstream of Ras and participates in cell proliferation, differentiation
and development [31,32].

The mammalian mitogen-activated protein kinase (MAPK) was first identified in
mammalian cells and then in yeast [35,36]. When adipocytes were briefly treated with
insulin, a soluble serine/threonine kinase was rapidly activated, leading to increased phos-
photyrosine content on microtubule-associated protein-2. Hence, it was initially named
microtubule-associated protein-2 protein kinase (MAP-2 kinase). As it promotes cell cycle
progression in response to insulin, growth factors and transforming proteins of oncogenic
viruses, and phosphorylates a variety of protein substrates, it was renamed mitogen-
activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) [35,37,38].
Two isoforms, ERK1 and ERK2, are encoded by the MAPK3 and MAPK1 genes, respectively.
Activation of ERK1/2 requires phosphorylation at threonine and tyrosine residues and in-
activation through dephosphorylation [13,37,39,40]. Therefore, it is believed that a specific
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upstream kinase is responsible for phosphorylation and activation of ERK1/2 [41]. Subse-
quently, this kinase was found to be a dual-specificity kinase that phosphorylates threonine
and tyrosine on ERK and is activated by nerve growth factor or epidermal growth factor,
named MAP kinase kinase (MKK) or MAPK/ERK kinase (MEK) [42,43]. The kinase were
cloned by independent groups [44,45]. Like ERK, MEK is also under negative regulation
by dephosphorylation [13]. Further studies of the kinase cascade have revealed that Raf
is an upstream kinase that controls MEK activity by phosphorylation. Thus, Raf kinase
was positioned as the first serine/threonine upstream kinase of the canonical MEK-ERK
pathway in 1992 [3] and a direct effector of Ras in 1993 [4,46,47].

3. The Mechanism of Raf Activation
3.1. Ras and 14-3-3

The Raf family possesses a similar structure consisting of three highly conserved
regions, two (CR1 and CR2) in the N terminus [48] and the third (CR3) in the C terminus
(Figure 1) [49]. CR1 contains a Ras-binding domain (RBD) which binds to Ras-GTP and a
Cys-rich domain (CRD), the second Ras-binding site [50–53]. CR2 comprises a Ser/Thr-
rich region, which bears important inhibitory phosphorylation sites, participating in the
negative regulation of Ras binding and Raf activation. CR3 is the kinase domain [54]. As for
C-Raf, truncation of the N-terminal region confers its ability to transform cells because of
the elimination of inhibition imposed by the regulatory domains [55]. The overall homology
of amino acid sequences between B-Raf and C-Raf kinase domains is 76%, and 74% between
B-Raf and A-Raf kinase domains [29].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 21 
 

 

residues and inactivation through dephosphorylation [13,37,39,40]. Therefore, it is be-

lieved that a specific upstream kinase is responsible for phosphorylation and activation of 

ERK1/2 [41]. Subsequently, this kinase was found to be a dual-specificity kinase that phos-

phorylates threonine and tyrosine on ERK and is activated by nerve growth factor or epi-

dermal growth factor, named MAP kinase kinase (MKK) or MAPK/ERK kinase (MEK) 

[42,43]. The kinase were cloned by independent groups [44,45]. Like ERK, MEK is also 

under negative regulation by dephosphorylation [13]. Further studies of the kinase cas-

cade have revealed that Raf is an upstream kinase that controls MEK activity by phos-

phorylation. Thus, Raf kinase was positioned as the first serine/threonine upstream kinase 

of the canonical MEK-ERK pathway in 1992 [3] and a direct effector of Ras in 1993 [4,46,47]  

3. The Mechanism of Raf Activation 

3.1. Ras and 14-3-3 

The Raf family possesses a similar structure consisting of three highly conserved re-

gions, two (CR1 and CR2) in the N terminus [48] and the third (CR3) in the C terminus 

(Figure 1) [49]. CR1 contains a Ras-binding domain (RBD) which binds to Ras-GTP and a 

Cys-rich domain (CRD), the second Ras-binding site [50–53]. CR2 comprises a Ser/Thr-

rich region, which bears important inhibitory phosphorylation sites, participating in the 

negative regulation of Ras binding and Raf activation. CR3 is the kinase domain [54]. As 

for C-Raf, truncation of the N-terminal region confers its ability to transform cells because 

of the elimination of inhibition imposed by the regulatory domains [55]. The overall ho-

mology of amino acid sequences between B-Raf and C-Raf kinase domains is 76%, and 

74% between B-Raf and A-Raf kinase domains [29]. 

 

Figure 1. Structure of Raf family kinases. All Raf isoforms comprise three conserved regions: con-

served region 1 (CR1) contains a Ras-binding domain (RBD) and a Cys-rich domain (CRD); con-

served region 2 (CR2) is characterized by a Ser/Thr-rich sequence where 14-3-3 binds and inhibits 
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Figure 1. Structure of Raf family kinases. All Raf isoforms comprise three conserved regions:
conserved region 1 (CR1) contains a Ras-binding domain (RBD) and a Cys-rich domain (CRD);
conserved region 2 (CR2) is characterized by a Ser/Thr-rich sequence where 14-3-3 binds and inhibits
Raf; conserved region 3 (CR3) is the kinase domain where the B-Raf V600E mutation is found in
cancer. At the C-terminus, the second site promotes dimerization via binding to 14-3-3. BRS is a
B-Raf-specific site. The viral oncoproteins v-Raf and v-mil have amino-terminal truncations and are
fused with the N-myristoylated (N-myr) viral Gag protein. Four conserved phosphorylation sites of
each Raf isoform are indicated in rectangles, including 14-3-3 binding sites and phoshorylattion sites
in the activation loop. NtA: N-terminal acidic region.
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In a quiescent state, Raf maintains an inactive conformation through inter- and intra-
molecular interactions. When growth factors bind to their cell-surface receptor tyrosine
kinases (RTKs), growth-factor receptor-bound 2 (GRB2) and guanine nucleotide exchange
factors such as Son of Sevenless (SOS) are recruited to the plasma membrane, which
allows the exchange of GDP for GTP on Ras and initiates the process of Raf activation.
In addition, G protein-coupled seven transmembrane receptors (GPCRs) can activate
Ras [5–12] (Figure 2).
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 Figure 2. The Ras/Raf/MEK/ERK signaling cascade. Growth factor binds to receptor tyrosine kinase
and activates growth-factor receptor-bound 2 (GRB2) and Son of Sevenless (SOS) to load GTP to Ras.
Then, Ras-GTP recruits Raf to the plasma membrane where Raf is activated, leading to sequential
phosphorylation and activation of MEK and ERK. Activated ERK then phosphorylates a variety of
substrates and elicits various cellular responses. RBD-CRD-CR3 designates essential domains of Raf
and CR3 is the kinase domain.

Ras is constitutively situated at the plasma membrane through prenylation of the
carboxyterminal [56]. Upon loading with GTP, Ras interacts with Raf at two sites. First, it
binds to the Ras binding domain (RBD) on Raf in a GTP-dependent manner [57,58]. Second,
it binds to the cysteine-rich domain (CRD) independently of GTP [16,53,59]. This second
binding stabilizes the interaction between Ras-GTP and RBD. In addition, CRD interacts
with phosphatidyl-serine to locate Raf at the inner leaflet of the membrane [52,60,61].

An essential role is played by 14-3-3 in the regulation of Raf kinase activity [62–65].
There are two 14-3-3 binding sites, S259 and S621 (referring to C-Raf). While binding of
14-3-3 to pS259 exerts an inhibitory effect on Raf kinase activity [66], its binding to pS621
is essential for the kinase activity [62]. Therefore, it is postulated that the binding of a
dimeric 14-3-3 to these two sites holds Raf in an inactive conformation. Ras-GTP binding
destabilizes the association of 14-3-3 with pS259. As a result, one protomer of the dimeric
14-3-3 still sits on pS621, while the released one binds to pS621 of another molecule of
Raf, resulting in the dimerization of Raf for further activation [67,68]. Almost at the same
time, pS259 is dephosphorylated by phosphatases PP1 or PP2A to secure dimeric Raf at the
plasma membrane [68–70].
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3.2. The Role of Dimerization

Ras nanoclustering at the plasma membrane is driven by lipidated proteins at the
inner plasma membrane, where the actin cytoskeleton is engaged in the generation of
cholesterol-dependent clusters [71,72]. Thus, the formation of Ras nanoclusters promotes
Raf dimerization/oligomerization. The first evidence for the importance of dimerization
came from the observation that artificial dimerization of Raf strongly induces kinase
activation [73,74]. Several studies have shown that in mammalian cells Raf family members
form both homo- and hetero-dimeric complexes under physiological conditions [75–78].
However, the kinase activity of the B-Raf–C-Raf heterodimer is greater than that of the
homodimer [75–77].

3.3. Regulation of Raf Kinase by Phosphorylation

The intrinsic kinase activity of C-Raf and A-Raf is tightly controlled until they are
transported to the plasma membrane [79,80]. However, membrane recruitment is only
the first step and is insufficient to stimulate their activation [81]. The membrane targeting
brings Raf in close contact with activating kinases, including SRC family kinases and casein
kinase 2 (CK2), which phosphorylate the activation loop and the N-terminal acidic region
(NtA-region) between the N-terminal and C-terminal portions [82,83].

The existence of multiple phosphorylation sites reflects the fact that Raf proteins
are subject to complex regulation. Phosphorylation has been documented to have both
positive and negative impacts on Raf kinase activity; the impacts are listed in Table 1. Some
phosphorylation sites are conserved across all three Raf family members, while others are
isoform-specific, indicating common and distinct regulatory mechanisms [83]. As shown
in Figure 1, S259 phosphorylated by PKB and possibly PKA plays a negative role after
docking of 14-3-3, while binding of 14-3-3 to phosphorylated S621 is essential for Raf kinase
activity [67,84]. However, Mischak et al. reported that phosphorylation of S621 exerted a
negative impact on Raf kinase activity [85]. The data collected are based on in vitro studies.
It is not clear whether they were performed in the presence or absence of 14-3-3, which
might account for the discrepancy.

3.3.1. Positive Regulation

An SSYY motif (residues 338–341) in the NtA-region of C-Raf is conserved in A-Raf,
which requires phosphorylation of both Ser338 and Tyr341 for their activation [86]. In the
corresponding NtA-region of B-Raf (residues 446–449, SSDD), two tyrosine residues are
replaced with aspartic acids and thus only S446 is phosphorylated, forming a salt bridge
that stabilizes the Raf dimer [79,87,88]. These findings could explain why B-Raf has a
higher basal activity than A-Raf and C-Raf.

S338 phosphorylation is usually used as a surrogate marker for C-Raf activation.
p21-activated protein kinase (PAK) family kinases are reported to phosphorylate S338 in
response to growth factor stimulation [88,89] and integrin activation as part of a PI3K–
CDC42 and RAC signaling axis [89–91]. However, studies by us and others have indicated
that PAK does not have a role in Ras-mediated induction of S338 phosphorylation [92],
although the involvement of PAK in the phosphorylation and its association with C-Raf
could be detected in the presence of nocodazole [92,93]. Similarly, several studies have
reported that this site can be transphoshorylated in a heterodimer with B-Raf [75–77].
Another study has suggested that S338 is phosphorylated by MEK [75–77]. Our study
suggested that S338 can be autophosphorylated in the homodimer form [78].

In addition to the NtA-region, phosphorylation of the activation loop is also critical to
Raf activation [77,94,95]. Zhang et al. were the first to identify two phosphorylation sites in
the activation loop, T599 and S602 on B-Raf, which are induced by Ras. Mutation of these
two sites to alanine diminishes the kinase activity, while phospho-mimetic mutation (B-
RafED) enhances the activity [95]. These two residues are conserved in other Raf isoforms,
T491 and S494 in C-Raf, and T452 and T455 in A-Raf. Additionally, direct activation of C-Raf
by PKC was observed via phosphorylation of S497/S499 [96,97]. The fact that the V600E
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mutation has been frequently found on B-Raf in some human cancers further reinforces the
importance of phosphorylation of the activation loop.

3.3.2. Negative Regulation

Several studies have shown that S43 is phosphorylated by PKA, leading to impediment
of Ras binding and C-Raf activation [98–100]. However, there are studies showing that PKA
regulates other sites in the catalytic domain of C-Raf in addition to S43, possibly through
phosphorylation of S621 [85,101,102]. Other phosphorylation sites include S289/S296/S301,
which was reported by Balan et al. [103,104] and was found to play a positive role in
mediating MEK/ERK feedback regulation. By contrast, S29/S43/S289/S296/S301/S642
were reported by Dougherty et al. [103] to be the phosphorylation sites that were responsive
to MEK activation and which negatively regulated Raf kinase activation. Noticeably, some
sites are the same in these two studies. The reasons underlying the discrepancies are not
clear. Neither of these studies examined the role of individual phosphorylation sites but
instead induced bulky mutations at all sites to alanine and then assessed their massive role
in the regulation of kinase activity. Phosphorylation of B-Raf S151 reduces the dimerization
of the kinases and also leads to direct disruption of B-Raf–C-Raf heterodimers [103].

Table 1. Impact of phosphorylation on C-Raf kinase activity.

Site Impact on Raf
Kinase Activity Kinase References

S29 Negative Kinases downstream of
MEK1/2 [103]

S43 Negative PKA [98–100,105]

S259 Negative,
14-3-3 binding PKB, PKA [106–110]

S269 Positive KSR [111,112]

S289 Negative, positive Kinases downstream of
MEK1/2 [103,104]

S296 Negative, positive Kinases downstream of
MEK1/2 [103,104]

S301 Negative, positive Kinases downstream of
MEK1/2 [103,104]

S338 Positive PAK3, Raf, MEK [78,87,90,91]

Y341 Positive Src [78,87,90,91]

S471 Positive [77,94,95]

S497 Positive PKC [96,97,113]

S499 Positive PKC [96,97,113]

T491 Positive Raf or unclear [49]

S494 Positive Raf or unclear [49]

S621 Negative or positive,
14-3-3 binding Raf, PKA [67,84,85]

S642 Negative Kinases downstream of
MEK1/2 [103]

With regard to the connection between phosphorylation and dimerization in Raf
activation, several models have been proposed based on experimental data. For example,
phosphorylation of Y341 facilitates that of S338; although phosphorylation of both sites
does not require C-Raf dimerization in advance, the phosphorylation of Y341 promotes
dimerization [114]. Recruitment of C-Raf to the plasma membrane depends on Ras binding
but not on Raf dimerization. Shaw and his colleagues proposed a model in which allosteric
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Raf activation occurs in functionally asymmetric dimers [75–77]. In this model, B-Raf is
first recruited to the plasma membrane and activated by Ras-GTP and then dimerized
with C-Raf, leading to cis-autophosphorylation of C-Raf at the activation loop, which then
phosphorylates and activates MEK. Finally, activated MEK induces phosphorylation of
S338, resulting in full activation of C-Raf. In line with this, a study showed that MEK1
could activate C-Raf [115]. As for B-Raf, the NtA-region contains two aspartic acids
(D448/D449) and S446 is constitutively phosphorylated [87]. Thus, this highly acidic
region could promote homo- and hetero-dimerization. Of note, there are still questions
that need to be addressed if the model holds. For example, tissue distribution of B-Raf
and C-Raf is different, and deletion of their alleles generates distinct phenotypes. If their
functions are always tied together, these aspects should be similar. Hence, it is conceivable
that homo- and hetero-dimers exist in cells and execute different roles in qualitative and
quantitative manners.

Raf kinases are subject to additional negative regulation such that physiological pro-
cesses are well under control. If such feedback regulation is disabled, disordered biological
consequences ensue, such as senescence and carcinogenesis [116–118]. Certainly, feedback
inhibition is complex and variable, including with respect to direct and indirect control.
For example, accumulation of ERK in the nucleus promotes expression of Raf kinase in-
hibitor protein (RKIP) which binds to Raf-1, MEK or ERK, interfering with key steps in
activation of the pathway [119,120]. Another molecule that can interfere with the activation
of downstream effectors is sprouty, which disrupts Ras–Raf interaction [121,122].

Activated Raf recruits and phosphorylates MEK1/2 at S218 and S222 in the activation
loop. The phosphorylated MEK is released from the Raf–MEK complex and in turn
phosphorylates ERK1/2 at conserved Threonine and Tyrosine residues in the activation
loop, leading to activation of ERK1/2. The latter subsequently phosphorylates protein
substrates in the cytoplasm and is also translocated to the nucleus to phosphorylate and
regulate transcription factors [57,123,124]. This completes a canonical cascade of kinase at
three levels, triggering cell-specific responses [125]. The three Raf isoforms have different
abilities to activate MEK1 and MEK2. B-Raf is the strongest MEK kinase and A-Raf is
the weakest MEK activator, which preferentially activates MEK1, while C-Raf has almost
the same activity toward MEK1 and MEK2 [79,126]. In addition, Raf–MEK coupling is
also promoted by PAK1 phosphorylation of MEK1 at S298 [127,128]. Since the linear ERK
pathway was first delineated, many other molecules have been documented as being
involved in the regulation of this pathway through crosstalk that entails positive and
negative feedback mechanisms [129].

3.4. Scaffolds as Raf Regulators

Genetic screens in C. elegans and D. melanogaster have identified additional factors that
contribute to Ras–ERK signaling. In addition to direct interaction between components of
the Ras–ERK pathway, scaffold proteins play important roles in tethering them together,
enabling efficient signal transmission. One of them is Kinase Suppressor of Ras (KSR), a
kinase domain-containing protein [130–132]. Other scaffolding proteins include Connector
Enhancer of KSR (CNK) [133], SUR-8 in C. elegans, known as SHOC2 in humans [134], β-
arrestin [135], paxillin [136] and MAPK Organizer Protein 1 (MORG1) [137]. These proteins
modulate the activation of Raf by Ras and physically bridge Raf to other components
downstream of Ras, consequently facilitating pathway crosstalk.

Two KSR isoforms, KRS1 and KRS2, are found in mammals, which contain two
distinctive regions, conserved area 1 (CA1) and conserved area 2 (CA2) but which lack
RBD [132]. It is widely accepted that the primary function of KSR is to act as a scaffold to
regulate the intensity and duration of the ERK pathway [138]. A study has suggested that
KSR proteins act as allosteric inducers of Raf catalytic function [139]. This finding is in line
with the observation that deletion of KSR renders mice resistant to tumor induction [140].
Other scaffolding activities of KSR have recently been reported, including crosstalk in
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Ras–ERK, calcium–calcineurin, and PKA signaling via phosphorylation-based regulation
of the N- and C-terminal 14-3-3-binding sites on Raf [141,142].

4. Role of Raf in Biology

Genetic knockouts of different Raf isoforms in mice all lead to embryonic lethality or
severe growth retardation and abnormal development [143–145]. Thus, A-Raf knockout
mice were born alive but showed severe intestinal distension and neurological defects
and died around postnatal day 20 [143]. B-Raf knockout mice succumbed in utero at
embryonic day 12.5 due to massive bleeding in the body cavity, with severe vascular and
neuronal abnormalities [144]. The phenotypes are attributed to increased apoptosis of
endothelial cells and endothelial precursor cells in embryos and large blood vessels [146].
Ablation of C-Raf is fatal from embryonic day 10.5 to day 12.5, with dysplasia of the
placenta, liver, hematopoietic organs, profound deafness and increased apoptosis of tissue
cells [145,147–149]. It has been shown that C-Raf plays a critical role in the regulation of
cell proliferation and suppression of apoptosis during embryogenesis [149]. A-Raf acts as a
B-Raf effector and participates in Ras signaling when C-Raf is exhausted [150]. Moreover,
A-Raf stabilizes B-Raf–C-Raf interaction to maintain signaling efficiency, especially in the
presence of Raf inhibitors [150]. However, the cellular function of individual Raf is still less
clear. Complex connections and interactions exist among them, which may depend on cell
types or developmental stages.

Raf kinase family kinases play important roles in oncogenesis, inasmuch as they
act as key effectors downstream of Ras, whose mutations account for oncogenesis in
approximately 30% of human cancers, and as mediator for other oncogenes [11,150–152].
B-Raf has attracted great interest since the report that it was found to be mutated in 66%
of malignant melanomas in 2002 [153]. Over 100 mutations in B-Raf have been identified
in cancer patients. Most B-Raf mutations are concentrated in two regions: the glycine-
rich P loop of the N lobe, and the activation segment and flanking regions in the kinase
domain [154]. Among them, the most common mutation is a single amino acid substitution
of valine 600 (V600, some reports designated V599) for glutamic acid, accounting for up to
90% of the mutations [124,153,155]. While most of the mutations significantly increase the
kinase activity, some (e.g., B-Raf G595R) exhibit impaired activity and cannot phosphorylate
MEK directly [156]. However, the B-Raf mutants with decreased kinase activity could hyper-
stimulate the ERK pathway [154,157]. Therefore, the oncogenic mechanism of B-Raf is
fundamentally different from that of the constitutively activated v-Raf found in murine
retrovirus [158].

Although mutations of Raf-1 are much rarer in cancer than B-Raf, several studies have
reported germline mutations of C-Raf in human diseases. For example, two mutations,
S427G and I448V, are found in the kinase domain of C-Raf in patients with therapy-related
acute myeloid leukemia [159]. The mutation of S427G causes increased activity of the
Raf/MEK/ERK pathway, while I448V mutation does not affect the kinase activity. This
study suggests that these germline mutations of C-Raf are predisposing factors for human
neoplasia. In addition, mutation of C-Raf has been documented in “RASopathies”—a
diverse collection of disorders caused by germline mutations in genes that code for the
components or regulators of the RAS-RAF-MEK-ERK pathway. The disorders are character-
ized by postnatal short stature and neurocognitive delay, including neurofibromatosis type
1, Noonan syndrome, Noonan syndrome with multiple lentigines, cardio-facio-cutaneous
syndrome and Legius syndrome [160–162].

In terms of dimerization state, there are three major types of B-Raf mutations described
in human cancers (Figure 3). The most common one is the Class I with V600E mutation,
which renders the kinase active as a monomer. The mutation mimics phosphorylation of
the activation loop, leading to disruption of inactive conformation [153]. Class II mutations,
including K601E, L597Q, and G469A, cause spontaneous dimerization, resulting in the
activation of the kinase. These mutations destabilize auto-inhibition by disrupting the
inhibitory interaction of the activation loop with the Gly-rich loop and disable feedback



Int. J. Mol. Sci. 2022, 23, 5158 9 of 20

suppression of Raf dimers [163]. Class III mutations impair kinase activity toward MEK and
adopt a tumor-specific mechanism by which the mutants transactivate endogenous C-Raf
through phosphorylation of the activation loop by forming B-Raf–C-Raf heterodimers [164].
Unlike Class I and Class II mutants, Class III mutants bind to Ras more tightly than wild-
type B-Raf. Intriguingly, mutations equivalent to B-Raf V600E in C-Raf and A-Raf fail to
produce oncogenic effects unless a negative charge is introduced into the NtA-region. These
results support the notion that the regulation of C-Raf and A-Raf kinase domains is tighter
because mutations at the two sites are required to confer transforming ability [163,165].
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5. Development of Raf Inhibitors 

Figure 3. Functional classes of B-Raf mutations. Class I B-Raf mutants contain V600E/D mutations in
the activation loop which can signal as active monomers, independent of Ras. Class II B-Raf mutants
are Ras-independent and signal as dimers. Class III B-Raf mutants have reduced kinase activity
and drive the activation of ERK signaling by transactivating wild-type Raf which signals as mutant
B-Raf–wild-type C-Raf dimers. These mutants require active Ras to trigger a signaling cascade.

5. Development of Raf Inhibitors

Due to the prevalence of B-Raf mutations in melanomas, the development of Raf
inhibitors has become a research hotspot (Table 2). To understand the mechanism by which
Raf kinase inhibitors function, Lavoie and Therrien [1] proposed a model to illustrate the
mechanism underlying the actions of Raf inhibitors (Figure 4). Wild-type Raf maintains an
inactive conformation featuring an αC-helix and a DFG OUT position. Dimerization of Raf
results in a closed conformation between the N-terminal lobe (N-lobe) and C-terminal lobe
(C-lobe) with an αC-helix and DFG transitioned into the IN position to stabilize the side-to-
side interface [166,167]. Exceptionally, V600E mutation leads to B-Raf activation even in
the form of a monomer. Raf inhibitors can stabilize the αC-helix at a position between IN
and OUT conformation, forming defective dimers due to variances in the position of each
protomer αC-helix. Hence, Raf inhibitors are divided into two categories according to the
conformational types of Raf they act on. One class consists of the ‘αC-IN’ inhibitors; the
other consists of the ‘αC-OUT’ inhibitors, such as vemurafenib and dabrafenib [168].
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Table 2. B-Raf inhibitors in cancer therapy.

RAF Inhibitor Mechanism Clinical Stage Features

First generation

Sorafenib ‘αC-IN’/‘DFG-OUT’
inhibitor

Approved for advanced renal cell
carcinoma and hepatocellular

carcinoma

Transactivation of ERK1/2 pathway in WT
B-Raf cells

Second generation

Vemurafenib ‘αC-OUT’/‘DFG-IN’
inhibitor

Approved for B-Raf-V600E
metastatic melanoma

Causes photosensitivity, development of
drug resistance and tumor recurrence

Dabrafenib ‘αC-OUT’/‘DFG-IN’
inhibitor

Approved for melanoma patients
with B-Raf-V600E/K mutations

Causes fever, development of drug
resistance and tumor recurrence

Third generation

CCT196969 ‘αC-IN’/‘DFG-OUT’
inhibitor

Antitumor activity in preclinical
studies against B-Raf-V600E

melanomas, Ras-mutant
melanomas and colorectal tumors

Dual pan-Raf and SRC kinase inhibitor,
effective in patient-derived xenograft

(PDX) models that included melanomas
with intrinsic or acquired resistance to

second-generation Raf and MEK inhibitors

CCT241161 ‘αC-IN’/‘DFG-OUT’
inhibitor

Antitumor activity in preclinical
studies against B-Raf-V600E

melanomas, Ras-mutant
melanomas and colorectal tumors

Dual pan-Raf and SRC kinase inhibitor,
effective in patient-derived xenograft

(PDX) models that included melanomas
with intrinsic or acquired resistance to

second-generation Raf and MEK inhibitors

LY3009120 ‘αC-IN’/‘DFG-OUT’
inhibitor

Antitumor activity in Phase I
clinical studies against NRas or
KRas mutant tumors and B-Raf

deletions in pancreatic and
thyroid tumors

Effective in vemurafenib-resistant
melanomas; inhibit monomeric and
dimeric B-Raf with similar potency

TAK-580
(MLN2480)

‘αC-IN’/‘DFG-OUT’
inhibitor

Antiproliferative activity in Phase
I clinical studies against

melanomas and other solid tumor
cell lines harboring B-Raf, NRas

or KRas mutations; delay
emergence of resistance

Effective in vemurafenib-resistant
melanomas harboring B-Raf or N-Ras

mutations and B-Raf-V600E colorectal or
thyroid tumors
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Figure 4. Conformation transition of the Raf kinase domain. The kinase domain consists of an
N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe) linked through a hinge. αC-helix and DFG
(green) alter from OUT to IN position upon Raf activation, resulting in a dimer with side-to-side
interface “closed” conformation. The conformational transition between inactive and active states
is shown.



Int. J. Mol. Sci. 2022, 23, 5158 11 of 20

Both the first and second generations of Raf inhibitors bind to Raf in an ATP-competitive
manner but recognize different conformations. The first generation of Raf inhibitors con-
sists of small ATP-competitive ‘αC-IN’ inhibitors (refer to Figure 4), such as Sorafenib [169].
These can faintly inhibit the monomer activity of B-Raf V600E. The major limitation is
that the first generation of Raf inhibitors cannot inhibit wild-type Raf but instead promote
dimerization of Raf, resulting in the transactivation of wild-type Raf by V600E mutants of
B-Raf, followed by activation of the ERK1/2 pathway. This phenomenon is known as the
‘B-Raf inhibitor paradox’ [15,170,171].

The second generation of Raf inhibitors, including vemurafenib and dabrafenib, con-
sists of ‘αC-OUT’ Raf inhibitors approved by the FDA for clinical use [172,173]. These
two drugs are relatively unable to inhibit dimeric Raf in non-Raf mutated cells but are
effective in inhibiting B-Raf V600E and can lead to subsequent development of dimer-
driven resistance. They are predicted not to be effective in tumors with non-V600 mutant
B-Raf [172,174]. In most cases, the drugs are limited by the development of drug resistance
and tumor recurrence, although they extend patient life spans to some extent. In addition
to acquired resistance, increased Raf dimerization may lead to an adaptive response to
Raf inhibitor therapy, as increased Ras activation may promote Raf dimerization [168,175].
However, it has been found that increasing the concentration of inhibitors to occupy two
dimer partners could overcome this paradoxical activation mechanism [176].

Development of the third generation of Raf inhibitors is underway to solve problems
associated with the paradoxical activation arising from the previous two generations of
Raf inhibitors. According to structural and biochemical studies, they are divided into two
categories, pan-Raf inhibitors and paradox breakers (Figure 5). Pan-Raf inhibitors include
AZ628, belvarafenib, CCT196969, CCT241161, LY3009120 and TAK-580 (MLN2480); these
target ‘DFG-OUT’ and ‘αC-IN’ conformations of Raf [177–183]. Binding of active Raf dimers
and monomers with similar affinity leads to inhibition of ERK signaling in cells containing
active Raf monomers or dimers. Although they could potentiate the dimerization of Raf by
stabilizing ‘αC-IN’ conformation, transactivation is prevented due to their similar binding
affinity for and inhibition of wild-type B-Raf or C-Raf. Of note, although the pan-Raf
inhibitors are effective in vitro, due to their lack of selectivity for B-Raf mutations, they also
inhibit wild-type Raf dimers in normal cells [183–185]. Hence, their application in vivo is
more limited, which significantly reduces their therapeutic index.
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Figure 5. Functional properties of different RAF inhibitors. The upper part shows the effect of RAF
inhibitors on monomeric RAF kinases; the lower part shows the effect of RAF inhibitors on dimeric
RAF kinases. The first and second generations of Raf inhibitors lead to paradoxical activation in
dimeric kinases. The inhibitor binds to one protomer within an RAF dimer, causing conformational
change and decreasing the affinity of the inhibitor for the other protomer, as well as substantial
transactivation of this protomer (dotted arrow), resulting in higher downstream signaling activation.
The third generations of Pan-Raf inhibitors bind to monomeric and dimeric kinases with similar
affinity. The third generation of paradox breakers disrupt the B-Raf dimer interface and specifically
inhibit B-Raf dimerization but not C-Raf homodimerization, although they bind to C-Raf. INH:
inhibitor. RAF designates any isoforms of Raf.
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Paradox breakers are ATP-competitive inhibitors and include PLX7904 and its ana-
logue PLX8394 [177,186,187]. This class of inhibitor binds closely to Leu505, which disrupts
the Raf dimer interface and allosterically blocks the kinase activity. They can specifically
perturb B-Raf dimers, including B-Raf homodimers and B-Raf–C-Raf heterodimers that
commonly exist in oncogenic Ras-containing cells, but not C-Raf homodimers or A-Raf
homodimers (Figure 5). This novel dimer selective inhibitor neither activates nor inhibits
wild-type Raf and will have a wider therapeutic window than pan-Raf inhibitors [177].
However, these drugs are ineffective against resistance resulting from Ras activation or by
any other means of activation of C-Raf homodimers [188–190].

In general, the Raf inhibitors that have been approved so far only block B-Raf V600
mutant monomers, rendering them ineffective against malignancies where Raf signals as a
dimer. The pan-Raf inhibitors have equal affinity for both protomers in Raf dimers and
have less selectivity within Raf isoforms. Thus, they may not only suppress mutant dimers
in tumors but also impair MAPK signaling in normal cells. Phase I research on the paradox
breakers is presently underway. They particularly disrupt B-Raf dimers, which might help
to overcome the limitations of pan-Raf inhibitors and improve therapeutic outcomes.

In melanomas containing B-Raf V600E mutations, Raf inhibitors are used in com-
bination with MEK inhibitors to provide more effective and durable inhibition of ERK
signaling [191,192]. As a result, the combination of drugs delays the development of drug
resistance and reduces the toxicity associated with B-Raf inhibitors seen in monotherapy.
The improved efficacy of the combination is associated with the ability of MEK inhibitors
to prevent the reactivation of residual ERK. Three MEK inhibitors have been approved by
the FDA in combination with B-Raf inhibitors—trametinib, cobimetinib and binimetinib.
For example, combined use of dabrafenib and trametinib increases the response rate from
54% to 76% and the median duration of response from 5.8 months to 10.5 months [193–196].
As pan-Raf inhibitors, MEK inhibitors and ERK inhibitors block the MAPK pathway in
normal cells; the therapeutic window for these agents is narrower than that for B-Raf kinase
inhibitors, such as vemurafenib, dabrafenib and encorafenib, which limits their clinical use.
Several next generation ‘αC-IN’ Raf inhibitors designed to inhibit dimeric Raf and thus be
more effective in a wide range of tumors containing non-V600E B-Raf or activating mutants
of Ras are currently in clinical trials [15].

6. Conclusions

Since the discovery of v-Raf, great efforts have been made to elucidate the signaling
transduction pathway involving Raf and its role in physiological and pathophysiologi-
cal functions. Although the framework of the Ras/Raf/MEK/ERK pathway has been
delineated, the mechanisms of Raf activation, especially C-Raf and A-Raf, which involve
other factors, kinases and inter-regulation among Raf isoforms, are not fully understood.
This being so, it is difficult to develop Raf kinase inhibitors as cancer therapeutic agents.
Although several inhibitors of Raf are used in clinic or are in clinical trials, resistance is
quickly developed, which limits their use. In the future, more effective drugs will rely on
the context of B-Raf mutations as a result of the unravelling of the complexity of Raf iso-
form interaction and inter-regulation. The goal of developing Raf inhibitors is to eliminate
cancerous cells but not normal cells.
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