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Abstract: Fetal electrocardiography (ECG) monitoring during pregnancy can provide crucial infor-
mation for assessing the fetus’s health status and making timely decisions. This paper proposes a
portable ECG monitoring system to record the abdominal ECG (AECG) of the pregnant woman,
comprising both maternal ECG (MECG) and fetal ECG (FECG), which could be applied to fetal heart
rate (FHR) monitoring at the home setting. The ECG monitoring system is based on data acquisition
circuits, data transmission module, and signal analysis platform, which consists of low input-referred
noise, high input impedance, and high resolution. The combination of the adaptive dual threshold
(ADT) and the independent component analysis (ICA) algorithm is employed to extract the FECG
from the AECG signals. To validate the performance of the proposed system, AECG is recorded
and analyzed of pregnant women in three different postures (supine, seated, and standing). The
result shows that the proposed system can record the AECG in different postures with good signal
quality and high accuracy in fetal ECG and heart rate information. Sensitivity (Se), positive predictive
accuracy (PPV), accuracy (ACC), and their harmonic mean (F1) are utilized as the metrics to evaluate
the performance of the fetal QRS (fQRS) complexes extraction. The average Se, PPV, ACC, and F1
score are 99.62%, 97.90%, 97.40%, and 98.66% for the fQRS complexes extraction„ respectively. This
paper shows the proposed system has a promising application in fetal health monitoring.

Keywords: fetal; electrocardiography (ECG); health status; monitoring system; fetal heart rate (FHR)

1. Introduction

Perinatal complications contribute to approximately 40% of the total perinatal and
maternal deaths, whereas heart defect is an important factor in perinatal stillbirth world-
wide [1]. Therefore, monitoring the status of the fetal heart rate (FHR) is of paramount
importance during pregnancy or delivery [2].

Currently, as the gold standard for FHR monitoring, cardiotocography (CTG) provides
a visual representation of FHR and uterine contractions. Nevertheless, CTG only provides
an estimate of the FHR and is prone to signal loss and cannot be used for a long time.
Doppler ultrasound is routinely employed during pregnancy and delivery [3]. However,
ultrasound is not passive and requires frequent repositioning of the ultrasound transducer.
Thus, to monitor the fetus’s health during daily life, a comfortable, safe, long-term fetal
monitoring system that can be used conveniently is needed.

Studies reveal that a fetal electrocardiogram (FECG) estimates the fetal heart move-
ment, which has the potential to provide rhythm information and morphology, such as the
PR and QT intervals or ST segments [4]. FECG monitoring is a convenient scheme for early

Biosensors 2022, 12, 475. https://doi.org/10.3390/bios12070475 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12070475
https://doi.org/10.3390/bios12070475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-4951-3451
https://orcid.org/0000-0003-0180-4126
https://orcid.org/0000-0003-1965-3020
https://doi.org/10.3390/bios12070475
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12070475?type=check_update&version=1


Biosensors 2022, 12, 475 2 of 15

detection and diagnosis of fetal congenital heart disease and distress [5]. In practice, the
FECG signals can be collected in two strategies: fetal scalp electrocardiography (SECG) and
maternal abdomen electrocardiography (AECG). SECG is capable of providing accurate
FECG morphology and fetal heart rate (FHR). Nevertheless, SECG is invasive, expensive,
and requires skilled personnel. In contrast, AECG is inexpensive, convenient, and has no
harm to the mother and the fetus during the pregnancy. Additionally, AECG can work
earlier weeks (>20 weeks) while SECG monitors the fetus’s health during labor exclusively.
Therefore, developing a non-invasive FECG (NI-FECG) monitoring system is essential for
early heart disease detection, which can improve the effectiveness of appropriate treat-
ment for the fetus. At the present, non-invasive physiological measurement has gradually
become a new trend [6].

Currently, several devices are available that can acquire FECG signals [7–15], such
as Avalon (with wireless transducer) [7] and AN24 [8]. In addition, Fanelli et al. [10]
developed remote fetal care to monitor fetal health during pregnancy. The monitoring
system could help pregnant women monitor the status of themselves and their fetuses at
home. Le et al. [11] designed a home-based mobile maternal and fetal ECG acquisition,
which includes a cloud assistant. Yuan et al. [12] established a fetal ECG monitoring system
based on the android smartphone. Galli et al. [13] developed a fetal heart rate monitoring
using multiple dry electrodes.

There are two main technology challenges in implementing a home-based NI-FECG
monitoring system. The first challenge comes from the feasible hardware acquisition
module of the wearable FECG monitoring system that ensures the maternal AECG signal
is continuously collected in different states. Secondly, accurate and real-time waveform
analysis requires professional knowledge to be properly employed to the AECG signal of
the pregnant woman.

Wearable ECG monitoring is produced by the traditional ECG detection fusion materi-
als, electronics, information, artificial intelligence, and other emerging technologies, which
is increasingly prevalent in the push toward autonomous health monitoring [16–20]. It can
be worn by pregnant women to obtain the AECG signals and to realize continuous and
long-term dynamic monitoring of pregnant women. The collected maternal AECG signals
incorporate lots of noise interference such as baseline drift, power line, electromyography
(EMG), mother’s breathing interference, and motion artifacts [21]. In particular, the ampli-
tude of the maternal ECG (MECG) is often several times that of the FECG in the ECG signal
detected from the abdomen, which makes the extraction of the FECG quite difficult [22].

Although significant progress has been made in ECG signal processing in the past
few years, the analysis of the FECG signal is still in the early stages of development. Sev-
eral works of literature were presented on the location of the fetal QRS (fQRS) complexes
utilizing the AECG recordings [23]. The methods proposed in the literature include convo-
lutional neural network (CNN) [24], template subtraction (TS) [25], the least mean square
(LMS) adaptive filter (AF), the recursive least square (RLS) adaptive filter [26], Kalman fil-
tering (KF) [27], independent component analysis (ICA) [28], periodic component analysis
(πCA) [29], principal component analysis (PCA), wavelet transform (WT), the echo state
neural network (ESN), and fusion of different methods (FUSE method) [30], etc.

This paper aims to design a portable, home-based, FECG monitoring system, which
can be used for continuous monitoring of fetal health. The contributions of this work are
as follows.

1. Considering that fetal ECG is very weak and vulnerable to noise, a high-precision,
low-noise portable ECG measure device is designed and optimized to collect pregnant
women’s abdominal ECG signals in different states (supine, seated, and standing
posture). The system consists of biocompatible electrode materials, noise suppression
design and amplification circuit, data transmission, and storage module;

2. A major prerequisite in non-invasive AECG recordings analysis is the accurate ex-
traction of FECG signals in the presence of background noise and maternal arti-
facts. We present an effective algorithm for AECG signal analysis, including signal
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pre-processing, maternal QRS location, maternal ECG subtraction, and fetal QRS
complex detection.

This paper is organized as follows. Section 2 presents the design of the FECG monitor-
ing system briefly. Section 3 illustrates the algorithm for signal analysis. Section 4 details
the experiment designs and results. Section 5 demonstrates the discussion. Finally, the
conclusion is drawn.

2. Design of FECG Monitoring System

The diagram of the fetal monitoring system frame is presented in Figure 1. The
monitoring system mainly includes a data acquisition module, data transmission module,
signal storage module, and signal analysis platform. Electrodes will be attached to the
skin in a certain way for the collection of pregnant women’s AECG signals. The signal
acquisition module filters and amplifies the AECG signals (including maternal ECG signals
and fetal ECG signals) and converts them from an analog signal to a digital signal. The
signal transmission module transmits the abdominal ECG signals to the PC interface by
Bluetooth or stores them in a memory card. The signal analysis platform displays the
AECG waveform and processes and analyzes the AECG data.
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2.1. Electrode

The electrode is an important medium for connecting pregnant women’s abdomen
and signal conditioning circuits. Its performance directly affects the quality of the collected
signals and the comfort and reliability of the pregnant women during the use of the
equipment. To accurately and effectively collect the fetal ECG signal and ensure that
the signal has a high signal-to-noise ratio (SNR), the electrode demands meet specific
performance indicators. The AgCl electrode has good conductivity, low noise, and a stable
baseline, which can ensure high-quality signal acquisition.

It is investigated that three linearly independent ECG electrodes can be used to
construct a surface ECG vector map [31]. The electrode placement is designed with three
acquisition channels, a reference point, and a left leg drive. Determine the reference
electrode point 5 cm below the center of the pregnant woman’s navel. Three acquisition
electrodes draw a triangle around the navel. The left leg drive electrode is on the right
side of the participant. This configuration is chosen for the reason that it maximizes the
SNR [32].
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2.2. Signal Acquisition Module

When recording fetal ECG detection, instantaneous high voltage may be generated due
to the influence of the external environment, causing damage to the entire hardware circuit.
In addition, a lot of electromagnetic interference exists in the working environment of ECG
acquisition equipment. A buffer is designed to increase input impedance and improve
load capacity and noise immunity. Simultaneously, a preprocessing circuit is added to the
hardware acquisition system composed of a second-order passive low-pass filter and a
limiting circuit, which plays a crucial role in eliminating high-frequency interference and
overvoltage protection.

The fetal ECG signal is relatively weak, and the amplitude of the fetal ECG is varied
from 10 µV to 60 µV. It is susceptible to maternal interference, myoelectric interference,
and power frequency interference [33]. Therefore, the hardware acquisition system is
required to have low noise, high input impedance, and a high common-mode rejection ratio
(CMRR). The data acquisition module of this system is implemented with an analog front
end ADS1299 (Texas Instruments, Dallas, TX, USA), which includes a programmable gain
amplifier (PGA), high-precision analog to digital converter (ADC), and right leg drive (RLD).
Input referred noise, input impedance, and CMRR of the ADS1299 are 1 µVpp, 1000 MΩ,
and −110 dB, respectively, which meets the requirements of the acquisition system.

The AECG acquisition process is often subject to common-mode interference intro-
duced by the power line or other interference sources. The RLD circuit detects the common-
mode component in the input signal and feeds it back to the human body, thereby canceling
the common-mode voltage, reducing the displacement current, and effectively suppressing
the common-mode interference. The STM32F103 chip is used as the microcontroller unit
(MCU) of the monitoring system. The chip has high performance (72 MHz operating
frequency, single-cycle multiplication instructions, and hardware partition instruction), low
power consumption (0.19 mW/MHz), and rich peripherals. The technical information of
the proposed hardware system is shown in Table 1. The sampling rate of the acquisition
system is Fs = 500 Hz, and the data are recorded with a resolution of 24 bits.

Table 1. The technical information of the proposed hardware system.

Parameter Value

Sampling rate 500 Hz
Input voltage −185–185 mV

ADC resolution 24 bits
Gain 24

Power supply 3.7 V 1000 mAh
Input referred noise 2.4 µVpp

Input impedance 1000 MΩ
Size 55 mm × 55 mm

3. Algorithm for Signal Analysis

The framework of the proposed approach undertaken in this work includes three
steps: (1) Signal pre-processing. The AECG signals are processed for removing these
invalid values by spline interpolation method; signal quality assessment (SQA) for AECG
to get a better-quality signal based on SampEn; signal noise canceling (SNC) for AECG by
eliminating power line interference, baseline drift, and impulsive artifacts based on Notch
filter, Butterworth filter, and median filter, respectively. (2) A source separation algorithm
is applied to MECG subtraction for the FECG signal extraction. (3) Fetal QRS complexes
detection algorithm is performed on the filtered residual signals containing FECG signal.
The structure block diagram of fQRS location using the algorithm proposed in this paper is
presented in Figure 2.
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Furthermore, the other dataset employed in this work is from PhysioNet/Computing
in Cardiology Challenge 2013 Database (PCDB) [34]. The PCDB consists of 447 recordings
from five different databases. Seventy-five AECG recordings are included in training set A.
Each recording contains four channels of AECG signals, and they are 60 s long and sampled
at 1 kHz with 16-bit resolution. Reference annotations are generated by experts referring to
direct FECG signals, obtained from fetal scalp electrodes.

3.1. Signal Preprocessing
3.1.1. Signal Quality Assessment

AECG signal may contain invalid values because of human body movement. There-
fore, the signal needs to be preprocessed to remove these invalid values. The cubic spline
interpolation is applied to eliminate invalid values in this work. It is a challenging task
for fQRS complexes detection from the original AECG signals due to a variety of noise.
Signal quality assessment (SQA) plays a crucial role in physiological signal processing and
inaccurate characteristic estimation [35]. The sample entropy (SampEn) has been a vital
tool in SQA for ECG signal processing for the selection of the waveform, with reference to
the article from Liu [36]. The calculation process of SampEn is summarized below:

For RR segment x(i) (1 ≤ i ≤ N), given the parameters m and r, firstly form the vector
sequences Xm

i :

Xm
i = {x(i), x(i + 1), . . . , x(i + m− 1)}, 1 ≤ i ≤ N −m (1)

where the vector Xm
i represents m consecutive x(i) values. The definition of the distance

between Xm
i and Xm

j based on the maximum absolute difference is below:

dm
i,j = d

[
Xm

i , Xm
j

]
= max

0<k<m−1
|x(i + k)− x(j + k)| (2)

For each Xm
i , express Bm

i (r) as (N − m)−1 times the number of Xm
j (1 ≤ j ≤ N − m)

that meets dm
i,j ≤ r. Similarly, denote Am

i (r) as (N − m)−1 times the number of Xm+1
j that

meets dm
i,j ≤ r for all 1 ≤ i ≤ N − m.

The definition of SampEn is as follows:

SampEn(m, r, N) = − ln(
N−m

∑
i=1

Am
i (r)/

N−m

∑
i=1

Bm
i (r)) (3)

where m is the embedding dimension, r represents the tolerance threshold, and N is the
time-series length.
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At first, the AECG signal in each channel is divided into six non-overlapping segments
(10 s for each segment), and the average of their corresponding SampEn values is returned
as the SampEn result of the current channel. Then, the signal quality is evaluated by
comparing the SampEn value in each channel with a constant threshold, which is set to
1.5 for AECG recordings. The average SampEn value is greater than 1.5 for the channels
that are regarded as poor quality and are excluded. The signal of the channel whose mean
sampEn is less than 1.5 is regarded as good quality signal and is reserved. If less than
two channels are of good quality, the two channels with the penultimate and the smallest
SampEn values are reserved.

3.1.2. Signal Noise Canceling

The original AECG signals usually contain power line interference, baseline drift, and
impulsive artifacts. Power line interference includes a sinusoidal component at a frequency
of around 50 Hz, which significantly affects signal quality. Baseline drift is mainly caused
by human movement and breathing, and it is manifested in lots of AECG signals. These
noises have a harmful influence on the analysis and processing of the signal. The notch
filter is utilized to remove the power line interference in this work [37]. The combination
of Butterworth filter and median filter is applied to eliminate baseline drift and impulsive
artifacts. The power line interference, baseline drift, and impulsive artifacts of the AECG
are mostly eliminated after the signal noise-canceling step.

3.2. Maternal QRS Detection and Mother Cycles Subtraction
3.2.1. Maternal QRS Detection

The primary step for the R complex location is preprocessing, which consists of
wavelet transform analysis, absolute value transformation, and low-pass filtering step.
The preprocessing here is to convert the original ECG signal into a signal composed of
a single pattern of peaks. Compared with the original signal, the preprocessed signal is
more convenient for detection. After performing the preprocessing steps on the signal, the
adaptive dual threshold (ADT) algorithm is employed to locate the R-wave peak of the
signal [38,39]. The ADT approach sets a high threshold (thr_H) and a low threshold (thr_L)
to extract the R wave. If thr_L is smaller than lim_L, then thr_L = lim_L thr_L = lim_L. If P
is greater than thr_L, and P is smaller than thr_H, then thr_L = 0.45 × P and thr_H can be
described as:

thr_H = thr_L + |P−mean(P_prior)|/2 (4)

If P is greater than thr_L, then thr_L and thr_H can be expressed as:

thr_L = 0.3×mean(P_prior) (5)

thr_H = 0.7×mean(P_prior) (6)

where P is the amplitude of the current peak value, P_prior represents the sum of the
amplitude of the stored 10 peaks before the current peak value, and lim_L and lim_H are
the two empirical constants obtained after multiple trials, representing the lower limits of
the two threshold changes, respectively.

3.2.2. Mother Cycles Subtraction

It is well known that maternal ECG (MECG) is a major component of the AECG
signal and masks fetal ECG signals. Thus, it is necessary to effectively cancel the MECG
signal. Blind source separation (BSS) is described as solving the problem of separating or
estimating the source waveform from the sensor array without knowing the characteristics
of the transmission channel. The BSS method assumes that the source signals are statistically
independent, so the independent components of the original signal can be obtained from
the multi-channel AECG signal. The independent component analysis (ICA) approach
is one of the commonly used methods in BSS, and it is also one of the most promising
methods in current blind source separation. The ICA method is capable of eliminating
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the high-order statistical correlation in the observed signal by achieving the maximum
value of the objective function of a certain contrast function and realizing blind source
separation [40].

The correct application of ICA requires meeting the following conditions: (1) The signal
source is statistically independent; (2) The number of measurement signals is greater than
the number of signal sources. The mother’s myocardium is far away from the abdominal
leads, and the MECG is the strongest and the most common independent component.
Therefore, it can meet the conditions for the ICA application. The ICA approach is exploited
to separate the MECG from the other components.

The source signals S are expressed as follows:

S(k) = S1(k), S2(k), . . . , Si(k) (7)

where S(k) is the independent source signal such as MECG, FECG, and noise, k is the time
instant, and i denotes the number of sources.

The observation signal X (the AECG recording) obtained from the sensor nodes is:

x(k) = x1(k), x2(k), . . . , xj(k) (8)

where j represents the number of AECG recordings utilized.
The observation signal x is preprocessed including de-averaging and whitening before

using the ICA algorithm. The process of removing the mean value is to subtract the mean
value vector m = E{x} of the signal from the observed signal so that the observed signal
becomes a zero-mean variable.

The extraction of the FECG signal is following the equation:

x(k) = AS(k) (9)

where A is the mixing matrix, which represents the mixing matrix of x after transformations
and observations.

Generally, the signal source S is acquired by constructing the inverse matrix W of
the mixing matrix A. By constructing the W matrix (W = S−1), the estimated independent
components Y of the source signal can be obtained.

Y = WS = WAS (10)

The residual signal (FECG signal) is obtained by subtracting the maternal cycle tem-
plate signal from the AECG signal by a combination of the ADT and the ICA algorithm
(ADT-ICA-based method).

3.3. Fetal QRS Complex Detection

The residual signal may still contain residual noise components, which may potentially
affect the estimation and correct identification of fetal QRS complexes. In this work, the
wavelet adaptive threshold de-noising method is applied to remove the noise components
of the FECG signal. Noise can be effectively removed and a clearer FECG waveform can
be gained through this step. Meanwhile, the JADE algorithm is adopted to process the
residual signal. Due to the implementation of the JADE algorithm, the FECG signals exhibit
enhanced and more pronounced peaks, thus aiding the fetal QRS detection process.

Despite previous steps eliminating noise and artifacts, the power of the fetal complex is
still small and mixed with residual noise, resulting in a poor SNR. It weakens the reliability
of the criteria for a priori selection of the best channel for fetal ECG detection. The fetal
QRS complex location step is performed on the extracted fetal ECG components. Fetal
QRS complexes are detected with an adaptive threshold of derivative amplitude, and
it is automatically initialized and recursively updated at every new detection [41]. The
algorithm searches for the maximum value of the weighted derivative signal. The weights
are defined by the trapezoidal window to enhance the samples close to the predicted QRS
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complex’s location. The fQRS complex detection procedure is applied to all channels. At
last, the best estimate of fQRS is selected based on the prior knowledge of typical fetal
RR values.

4. Experiments and Results
4.1. Experiment Design

The three subjects in this work are from the First Affiliated Hospital of Nanjing Medical
University. The detailed demographic information of this experiment is presented in Table 2.
Additionally, informed consent is obtained from each pregnant woman in this experiment.
The subject experimental protocol is approved by the Ethics Committee and the study
number is 2020-SRFA-183.

Table 2. The detailed demographic information of the subjects in this experiment.

Statistical Information Age (Years) Height (cm) Weight (kg)

Average 29 159 65
Standard Deviation 1.8 1.2 5.4

The experiment is designed in a laboratory similar to a home environment to verify the
proposed monitoring system can measure fetal signals in different states, including supine,
seated, and standing postures. The experiment protocol of this work consists of three steps.
At first, pregnant women are asked to maintain in a supine situation for four minutes. The
subjects are then asked to sit and monitor AECG signals for another two minutes. Finally,
the subjects change to a standing posture and are monitored for an additional two minutes.
The pregnant women are around 37 weeks.

4.2. Evaluation Performance

In the context of NI-FECG extraction, a matching window of 50 ms is applied with each
fetal QRS location annotated by experts as a center to evaluate the error of fQRS complexes
detection (i.e., fQRS within a ±50 ms window) [42]. If the detected fQRS location is in the
matching window, it illustrates that the detected fQRS is the correct value. The performance
of this study is evaluated in terms of sensitivity (Se), positive predictive accuracy (PPV),
accuracy (ACC), and their harmonic mean (F1), following the guideline of the ANSI/AAMI,
as defined below:

Se =
TP

TP + FN
(11)

PPV =
TP

TP + FP
(12)

ACC =
TP

TP + FP + FN
(13)

F1 = 2 ∗ PPV ∗ Se
PPV + Se

=
2TP

2TP + FN + FP
(14)

where TP is the number of True Positive that match the fetal QRS marked by experts (cor-
rectly detected fetal QRS complexes), FP stands for False Positive (wrongly detected fetal
QRS complexes), and FN represents False Negative (missed detected fetal QRS complexes).

Bland–Altman graph is a simple and intuitive way of illustrating the consistency
of data. The basic idea of the Bland–Altman method is to calculate the mean difference
between the two sets of measurement results and take the 95% agreement limit as the
mean difference (1.96 SD). Therefore, the Bland–Altman plot could be employed to further
evaluate the accuracy value of the detected fetal heart rate. The 95% limit is expected to be
chosen to test the difference between the estimated fetal heart rate values of the proposed
method and the reference annotations.
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4.3. Results

Our method has been implemented in Matlab 2019b (MathWorks Inc., Natick, MA,
USA). The dataset collected in this experiment (DS-database) consists of eight AECG
recordings (r01–r12) from three different subjects. Each recording contains 2-min long
three AECG signal channels for a total of 3309 fQRS waves. The reference annotations are
generated by the experts. The collected AECG signal of subject A, who simulated supine
posture, is shown in Figure 3. It can be seen that the quality of the AECG signal is good,
and a clear fQRS can be observed.
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Figure 3. The collected AECG signal of subject A, who simulated supine posture (DS-database).
(a) AECG signal with 120 s length interval. (b) AECG signal with 5 s length interval. (b) is a zoom
of (a).

Figure 4 shows the original AECG recording and the filtered AECG after SNC. It can
be seen that the AECG waveform becomes cleaner after this step. Part of the result of
the extraction process of the MECG signal, mQRS location, fetal ECG signal, and fQRS
location is shown in Figure 5. It can be seen that the MECG signal and FECG signal are well
separated. An example result of mQRS and fQRS estimation using the proposed algorithm
on the raw AECG signal is illustrated in Figure 5a. The figure manifests that the mQRS
and fQRS wave positions are correctly located, respectively. A visual display of extracted
MECG along with the result of mQRS location is exhibited in Figure 5b. In this Figure, we
can see the complete MECG signal and correct mQRS position. In addition, the residual
signal (i.e., fetal ECG signal) with the location of the estimated fetal R peaks and the truth
value annotations of fetal R peaks by the experts is presented in Figure 5c. We are capable
of obtaining that the estimated fetal R peak matches the reference annotation.
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Figure 5. Part of the result of the extraction process of MECG signal, mQRS location, fetal ECG
signal, and fQRS location (DS-database). (a) An example result of mQRS and fQRS estimation on
the raw AECG signal. The ‘+’ represents the mQRS location position, and the ‘*’ represents the fQRS
location position. (b) A MECG template signal is extracted and mQRS location on the extracted
MECG signal. The ‘+’ represents the mQRS location position. (c) A FECG template signal is extracted
and fQRS location on the extracted MECG signal. The ‘*’ indicates the fQRS location position using
the algorithm, and the ‘o’ denotes the truth value annotated by the expert.

The Bland–Altman statistical analysis method for the estimated fetal heart rate values
of the proposed method and the reference annotations (recording r02 and r09) is displayed
in Figure 6. The results show that most of the values lie within the 95% interval for the
recording of r02 and r09. Performance metrics of the fQRS detection using this method on
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the DS-database are summarized in Table 3. We can obtain the correct number of fQRS
wave detections, and the number of errors detected for each AECG recording. The average
diagnostic Se, PPV, ACC, and F1 score are 99.62%, 97.90%, 97.40%, and 98.66%, respectively.
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Table 3. Performance metrics of the fQRS detection using this method.

Subject Recording Position TP FP FN Se (%) PPV (%) ACC (%) F1 (%)

A

r01 Supine 282 3 1 99.65 98.95 98.60 99.30
r02 Supine 281 0 0 100 100 100 100
r03 Seated 280 1 0 100 99.64 99.64 99.82
r04 Standing 260 15 7 97.38 94.55 92.20 95.94

B

r05 Supine 267 4 1 99.63 98.53 98.16 99.07
r06 Supine 284 8 2 99.30 97.26 96.60 98.27
r07 Seated 274 0 0 100 100 100 100
r08 Standing 275 17 2 99.28 94.18 93.54 96.66

C

r09 Supine 275 2 2 99.28 99.28 98.57 99.28
r10 Supine 271 3 2 99.27 98.91 98.19 99.09
r11 Seated 273 4 1 99.64 98.56 98.20 99.09
r12 Standing 269 14 0 100 95.05 95.05 97.46

Intuitive results of Se, PPV, ACC, and F1 score of all the subjects in supine, seated,
and standing postures are shown in Figure 7. It demonstrates that the average Se, PPV,
ACC, and F1 score in spine posture are 99.52%, 98.82%, 98.35%, and 99.17% with a standard
deviation of 0.28%, 0.82%, 0.96%, and 0.49%, respectively. When the subjects changed
their posture from supine to seated, the mean Se, PPV, ACC, and F1 score are 99.88%,
99.4%, 99.28%, and 99.64% with a standard deviation of 0.21%, 0.75%, 0.95%, and 0.48%,
respectively. In the standing position, the mean Se, PPV, ACC, and F1 score are 98.89%,
94.59%, 93.60%, and 96.69% with a standard deviation of 1.35%, 0.44%, 1.43%, and 0.76%,
respectively. Compared to the results in the standing position, the results in supine and
seated postures perform better. The results in the seated positions performed slightly better
than the results in the supine position.
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5. Discussion

In this work, we develop a portable, home-based FECG monitoring system that can
be used to monitor pregnant women and fetuses’ health. The combination of ADT and
the ICA algorithm is implemented to realize the FECG waveform and fetal heart rate
extraction. The Monica AN24 and Avalon fetal monitoring systems are capable of acquiring
FECG signals. However, those two devices are not the most convenient solutions for
home-based monitoring owing to the demand for professional skills and knowledge to
utilize the acquisition device [9]. Compared to the home-based monitoring solutions that
were previously mentioned, our FECG monitoring system has done signal acquisition
verification and fetal heart rate analysis in different postures (supine, seated, and standing).

It is worth mentioning that we can see the FECG signal clearly from the displayed
AECG signal in Figure 3. The result in Figure 5 proves that the extracted FECG signals from
the collected AECG signals are relatively clear and usable, and thus can serve as a valuable
source of information for fetal health state monitoring. It needs to be emphasized that the
quality of the AECG signal is of paramount importance for reliable morphological analysis
of pregnant women and fetuses. Therefore, it also puts forward higher requirements for
the acquisition module of the monitoring system. Furthermore, to satisfy the reliability
of the subsequent signal analysis, SampEn is applied to assess the quality of the AECG
signal. Subsequently, we extracted the FECG signal from the preprocessed AECG data in
the database and collaborated with experts to annotate the fQRS, ensuring the accuracy of
the data annotation.

Table 3 demonstrates the diagnostic PPV, ACC, and F1 score of r04 (standing) are
94.55%, 92.20%, and 95.94%, respectively. The diagnostic PPV, ACC, and F1 score of r08
(standing) are 94.18%, 93.54%, and 96.66%, respectively. In addition, the diagnostic PPV,
ACC, and F1 score of r12 (standing) are 95.05%, 95.05%, and 97.46%, respectively. The
signal fetal R wave detection results in the standing posture are worse than those in the
supine and seated states, which might be related to the relatively poor signal quality in
the standing posture. In the standing state, the fetus has more space and more time for
movement, resulting in poor signal quality.

Table 4 summarizes the performance of PPV, ACC, and F1 score on the PCDB and
DS-database between our work and other popular approaches. As shown in Table 4, the
result of this work outperformed the approaches of CNN, TS, AF, and FUSE method.
According to statistical analysis, the proposed approach truly detects 3291 (TP) fetal QRS
complexes and wrongly detects 18 (FP) fetal QRS complexes for all AECG recordings from
the DS-database. Diagnostic Se, PPV, ACC, and F1 score are 99.46%, 97.89%, 95.86%, and
98.67% from the DS-database, respectively. Furthermore, the proposed approach truly
detects 9210 (TP) fetal QRS complexes and wrongly detects 372 (FP) fetal QRS complexes
for all AECG recordings from the PCDB database. Diagnostic PPV, ACC, and F1 score are



Biosensors 2022, 12, 475 13 of 15

96.12%, 96.20%, 92.67%, and 96.16% from the PCDB database, respectively. The average
PPV, ACC, and F1 score from this work is slightly higher than the fetal QRS detection result
of the TS algorithm and FUSE method. Meanwhile, the experimental result of this work is
significantly higher than the fetal QRS location result of the CNN and AF approach. It also
proves that the proposed approach will greatly improve the accuracy of detection of the
fetal QRS complexes.

Table 4. Comparison of performance metrics for fetal QRS detection of different subjects in differ-
ent methods.

Database Approach Se (%) PPV (%) ACC (%) F1 (%)

PCDB

CNN [24] 76.00 82.00 - 78.00
TS [25] - - - 93.90

FUSE method [30] 95.90 96.00 - 0.9600
This work 96.12 96.20 92.67 96.16

DS-database
TS [25] 98.37 96.59 93.40 97.47
AF [26] 90.18 92.87 86.69 91.51

This work 99.46 97.89 95.86 98.67

The adaptive filter method is theoretically more suitable, but the result closely depends
on the presence of a signal in chest leads and the setting of the adaptive filter. Additionally,
optimal filter settings may vary with the position of the fetus in the uterus and the mother’s
gestational week, etc. The non-adaptive approach provides the superiority of using only
abdominal electrodes without thoracic electrodes. In our future study, we focus on utilizing
a combination of adaptive and non-adaptive methods for fetal ECG signal analysis and R
wave extraction. It is worth knowing that the hybrid method should be able to accurately
extract fetal signals and perform better in the analysis of the fetal signal.

The present work has only tested short-term recordings in three postures (supine,
seated, and standing), and consistent signal quality over longer monitoring periods has
not been experimentally demonstrated. Moreover, the number of subjects is small, and a
power analysis conducted is not performed.

6. Conclusions

In this study, we develop a portable, home-based FECG monitoring application system
that can be applied to health monitoring in different postures (supine, seated, and standing)
of pregnant women. The result reveals that the quality of the AECG signal in supine and
seated postures performs better than that of standing posture. The combination of ADT
and the ICA algorithm is incorporated for FECG signal extraction with JADE algorithm for
enhanced quality of the FECG, which can provide an accurate and reliable FHR estimation.
The fetal health monitoring system contributes in terms of medical resources and physician
time. The system is suitable for pregnant women and has certain application prospects.

In the future, the data collection of more participants will be carried out to ver-
ify the practicability of the wearable fetal monitoring system in a 24-h or long-term
monitoring system.

Author Contributions: Conceptualization, A.G., C.L. and Y.Z.; methodology, Y.Z. and C.Y.; software,
Y.X.; validation, Z.X., Y.X. and Y.Z.; formal analysis, C.Y.; investigation, Y.Z.; resources, Z.X.; data
curation, Y.X.; writing—original draft preparation, Y.Z.; writing—review and editing, C.L., A.G., C.Y.
and Y.Z.; visualization, Y.Z.; funding acquisition, C.L. and J.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (2019YFE0113800), the National Natural Science Foundation of China (62171123, 62001111,
62071241, 62101120, and 81871444), and the Natural Science Foundation of Jiangsu Province of China
(BK20190014, BK20192004, BK20200364, and BK20210208).



Biosensors 2022, 12, 475 14 of 15

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical
University, understudy number 2020-SRFA-183.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Maternal and Perinatal Health. 2016. Available online: https://www.who.int/maternal_child_

adolescent/topics/maternal/maternal_perinatal/en/ (accessed on 20 February 2017).
2. Kovács, F.; Torok, M.; Habermajer, I. A rule-based phonocardiographic method for long-term fetal heart rate monitoring. IEEE

Trans. Biomed. Eng. 2000, 47, 124–130. [CrossRef] [PubMed]
3. Barnett, S.B.; Maulik, D. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications. J.

Matern.-Fetal Neonatal. Med. 2001, 110, 75–84. [CrossRef]
4. Lai, K.C.; Shynk, J.J. A successive cancellation algorithm for fetal heart-rate estimation using an intrauterine ECG signal. IEEE

Trans. Biomed. Eng. 2002, 49, 943–954. [PubMed]
5. Di Maria, C.; Liu, C.; Zheng, D.; Murray, A.; Langley, P. Extracting fetal heart beats from maternal abdominal recordings: Selection

of the optimal principal components. Physiol. Meas. 2014, 35, 1637–1664. [CrossRef]
6. Xiao, Z.; Xing, Y.; Yang, C.; Li, J.; Liu, C. Non-Contact electrocardiograms acquisition method based on capacitive coupling. IEEE

Instru. Meas. Mag. 2022, 25, 53–61. [CrossRef]
7. Avalon Fetal Monitor. Available online: https://www.usa.philips.com/healthcare/resources/landing/avalon (accessed on

30 July 2019).
8. Monica. Introducing the Monica AN24. Available online: http://www.monicahealthcare.com/products/ (accessed on

30 July 2019).
9. Yang, C.; Antoine, C.; Young, B.K. A pilot study on fetal heart rate extraction from wearable abdominal inertial sensors. IEEE

Sens. J. 2019, 19, 10773–10781. [CrossRef]
10. Fanelli, A. Tele Fetal Care: Development of Wearable System for Fetal Monitoring during Pregnancy. Ph.D. Thesis, Politecnico di

Milano, Milano, Italy, April 2013.
11. Le, T.; Fortunato, J.; Maritato, N. Home-based mobile fetal/maternal electrocardiogram acquisition and extraction with cloud

assistance. In Proceedings of the 2019 IEEE MTTS International Microwave Biomedical Conference (IMBioC), Nanjing, China,
6–8 May 2019; pp. 1–4.

12. Yuan, L.; Yuan, Y.; Zhou, Z.; Bai, Y.; Wu, S. A fetal ECG monitoring system based on the android smartphone. Sensors 2019, 19, 446.
[CrossRef]

13. Galli, A.; Peri, E.; Zhang, Y.; Vullings, R.; van der Ven, M.; Giorgi, G.; Ouzounov, S.; Harpe, P.J.A.; Mischi, M. Dedicated Algorithm
for Unobtrusive Fetal Heart Rate Monitoring Using Multiple Dry Electrodes. Sensors 2021, 21, 4298. [CrossRef]

14. Sharma, M.; Ritchie, P.; Ghirmai, T.; Cao, H.; Lau, M.P.H. Unobtrusive acquisition and extraction of fetal and maternal ECG in the
home setting. In Proceedings of the 2017 IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; pp. 1–3.

15. Steinberg, C.; Philippon, F.; Sanchez, M.; Fortier-Poisson, P.; O’Hara, G.; Molin, F.; Sarrazin, J.F.; Nault, I.; Blier, L.; Roy, K.; et al.
A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality.
Biosensors 2019, 9, 17. [CrossRef]

16. Arquilla, K.; Devendorf, L.; Webb, A.K.; Anderson, A.P. Detection of the Complete ECG Waveform with Woven Textile Electrodes.
Biosensors 2021, 11, 331. [CrossRef]

17. Xing, Y.; Zhang, Y.; Xiao, Z.; Yang, C.; Li, J.; Cui, C.; Wang, J.; Chen, H.; Li, J.; Liu, C. An Artifact-Resistant Feature SKNAER for
Quantifying the Burst of Skin Sympathetic Nerve Activity Signal. Biosensors 2022, 12, 355. [CrossRef] [PubMed]

18. Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [CrossRef] [PubMed]
19. Xing, Y.; Zhang, Y.; Yang, C.; Li, J.; Li, Y.; Cui, C.; Li, J.; Cheng, H.; Fang, Y.; Cai, C.; et al. Design and Evaluation of an Autonomic

Nerve Monitoring System Based on Skin Sympathetic Nerve Activity. Biomed. Signal Process. Control. 2022, 76, 103681. [CrossRef]
20. Liu, C.; Yang, M.; Di, J.; Xing, Y.; Li, Y.; Li, J. Wearable ECG: History, Key Technologies and Future Challenges. Chin. J. Biomed.

Eng. 2019, 38, 641–652.
21. Silva, I.; Behar, J.; Zhu, T.T.; Oster, J.; Clifford, G.D.; Moody, G.B. Noninvasive fetal ECG: The PhysioNet/Computing in Cardiology

challenge 2013. In Proceedings of the Computing in Cardiology (CinC), Zaragoza, Spain, 22–25 September 2013; pp. 149–152.
22. Behar, J.; Andreotti, F.; Zaunseder, S.; Li, Q.; Oster, J.; Clifford, G.D. An ECG model for simulating maternal-foetal activity

mixtures on abdominal ECG recordings. Physiol. Meas. 2014, 35, 1537–1549. [CrossRef]
23. Clifford, G.D.; Silva, I.; Behar, J.; Moody, G.B. Editorial: Non-invasive fetal ECG analysis. Physiol. Meas. 2014, 35, 1521–1536.

[CrossRef]
24. Zhong, W.; Liao, L.; Guo, X. A deep learning approach for fetal QRS complex detection. Physiol. Meas. 2018, 39, 045004. [CrossRef]

https://www.who.int/maternal_child_adolescent/topics/maternal/maternal_perinatal/en/
https://www.who.int/maternal_child_adolescent/topics/maternal/maternal_perinatal/en/
http://doi.org/10.1109/10.817627
http://www.ncbi.nlm.nih.gov/pubmed/10646287
http://doi.org/10.1080/jmf.10.2.75.84
http://www.ncbi.nlm.nih.gov/pubmed/12214884
http://doi.org/10.1088/0967-3334/35/8/1649
http://doi.org/10.1109/MIM.2022.9756379
https://www.usa.philips.com/healthcare/resources/landing/avalon
http://www.monicahealthcare.com/products/
http://doi.org/10.1109/JSEN.2019.2930886
http://doi.org/10.3390/s19030446
http://doi.org/10.3390/s21134298
http://doi.org/10.3390/bios9010017
http://doi.org/10.3390/bios11090331
http://doi.org/10.3390/bios12050355
http://www.ncbi.nlm.nih.gov/pubmed/35624656
http://doi.org/10.3390/s17010130
http://www.ncbi.nlm.nih.gov/pubmed/28085085
http://doi.org/10.1016/j.bspc.2022.103681
http://doi.org/10.1088/0967-3334/35/8/1537
http://doi.org/10.1088/0967-3334/35/8/1521
http://doi.org/10.1088/1361-6579/aab297


Biosensors 2022, 12, 475 15 of 15

25. Martens, S.; Rabotti, C.; Mischi, M.; Sluijter, R. A robust fetal ECG detection method for abdominal recordings. Physiol. Meas.
2007, 28, 373–388. [CrossRef]

26. Widrow, B.; Glover, J.; McCool, J.; Kaunitz, J.; Williams, C.; Hearn, R.; Zeidler, J.; Dong, E.; Goodlin, R. Adaptive noise canceling:
Principles and applications. Proc. IEEE 1976, 63, 1692–1716. [CrossRef]

27. Akhbari, M.; Niknazar, M.; Jutten, C.; Shamsollahi, M.B.; Rivet, B. Fetal electrocardiogram R-peak detection using robust
tensor decomposition and extended Kalman filtering. In Proceedings of the Computing in Cardiology (CinC), Zaragoza, Spain,
22–25 September 2013; pp. 189–192.

28. Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. A multi-step approach for non-invasive fetal ECG
analysis. In Proceedings of the Computing in Cardiology (CinC), Zaragoza, Spain, 22–25 September 2013; pp. 281–284.

29. Sameni, R.; Jutten, C.; Shamsollahi, M.B. Multichannel electrocardiogram decomposition using periodic component analysis.
IEEE Trans. Biomed. Eng. 2008, 55, 1935–1940. [CrossRef]

30. Behar, J.; Oster, J.; Clifford, G.D. Combining and benchmarking methods of foetal ecg extraction without maternal or scalp
electrode data. Physiol. Meas. 2014, 35, 1569–1589. [CrossRef] [PubMed]

31. Mcsharry, P.E.; Clifford, G.D.; Tarassenko, L. Dynamical model for generating synthetic electrocardiogram signals. IEEE Trans.
Biomed. Eng. 2003, 50, 289–294. [CrossRef] [PubMed]

32. Rooijakkers, M.J.; Song, S.; Rabotti, C.; Oei, S.G.; Bergmans, J.W.; Cantatore, E.; Mischi, M. Influence of electrode placement on
signal quality for ambulatory pregnancy monitoring. Comput. Math. Methods Med. 2014, 2014, 960980. [CrossRef] [PubMed]

33. Crowe, J.A.; Harrison, A.; Hayes-Gill, B.R. The feasibility of long-term fetal heart rate monitoring in the home environment using
maternal abdominal electrodes. Physiol. Meas. 1995, 16, 195–202. [CrossRef]

34. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, 215–220. [CrossRef]

35. Liu, C.; Zhang, X.; Zhao, L.; Liu, F.; Chen, X.; Yao, Y.; Li, J. Signal quality assessment and lightweight QRS detection for wearable
ECG SmartVest system. IEEE Internet Things J. 2018, 6, 1363–1374. [CrossRef]

36. Liu, C.; Li, P.; Zhao, L.; Maria, C.D.; Zhang, H.; Chen, Z. A multi-step method with signal quality assessment and fine-tuning
procedure to locate maternal and fetal qrs complexes from abdominal ecg recordings. Physiol. Meas. 2014, 35, 1665–1683.
[CrossRef]

37. Hamilton, P.S. A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Trans.
Biomed. Eng. 1996, 43, 105–109. [CrossRef]

38. Han, D.; Bashar, S.K.; Lázaro, J.; Mohagheghian, F.; Peitzsch, A.; Nishita, N.; Ding, E.; Dickson, E.L.; DiMezza, D.; Scott, J.; et al. A
Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia.
Biosensors 2022, 12, 82. [CrossRef]

39. Qin, Q.; Li, J.; Yue, Y.; Liu, C. An adaptive and time-efficient ECG R-peak detection algorithm. J. Healthc. Eng. 2017, 2017, 5980541.
[CrossRef]

40. Radek, M.; Radana, K.; Janusz, J. Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG from Abdominal Signals:
Toward Non-invasive Fetal Monitoring. Front. Physiol. 2018, 9, 648.

41. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [CrossRef] [PubMed]
42. Behar, J.; Andreotti, F.; Zaunseder, S.; Oster, J.; Clifford, G.D. A practical guide to non-invasive foetal electrocardiogram extraction

and analysis. Physiol. Meas. 2016, 37, R1–R35. [CrossRef] [PubMed]

http://doi.org/10.1088/0967-3334/28/4/004
http://doi.org/10.1109/PROC.1975.10036
http://doi.org/10.1109/TBME.2008.919714
http://doi.org/10.1088/0967-3334/35/8/1569
http://www.ncbi.nlm.nih.gov/pubmed/25069410
http://doi.org/10.1109/TBME.2003.808805
http://www.ncbi.nlm.nih.gov/pubmed/12669985
http://doi.org/10.1155/2014/960980
http://www.ncbi.nlm.nih.gov/pubmed/24639888
http://doi.org/10.1088/0967-3334/16/3/006
http://doi.org/10.1161/01.CIR.101.23.e215
http://doi.org/10.1109/JIOT.2018.2844090
http://doi.org/10.1088/0967-3334/35/8/1665
http://doi.org/10.1109/10.477707
http://doi.org/10.3390/bios12020082
http://doi.org/10.1155/2017/5980541
http://doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178
http://doi.org/10.1088/0967-3334/37/5/R1
http://www.ncbi.nlm.nih.gov/pubmed/27067431

	Introduction 
	Design of FECG Monitoring System 
	Electrode 
	Signal Acquisition Module 

	Algorithm for Signal Analysis 
	Signal Preprocessing 
	Signal Quality Assessment 
	Signal Noise Canceling 

	Maternal QRS Detection and Mother Cycles Subtraction 
	Maternal QRS Detection 
	Mother Cycles Subtraction 

	Fetal QRS Complex Detection 

	Experiments and Results 
	Experiment Design 
	Evaluation Performance 
	Results 

	Discussion 
	Conclusions 
	References

