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Abstract
Background: The randomized controlled trial (RCT) is the gold-standard research design in biomedicine. However, practical
concerns often limit the sample size, n, the number of patients in a RCT.We aim to show that the power of a RCT can be increased by
increasing p, the number of baseline covariates (sex, age, socio-demographic, genomic, and clinical profiles et al, of the patients)
collected in the RCT (referred to as the ‘dimension’).

Methods:The conventional test for treatment effects is based on testing the ‘crude null’ that the outcomes of the subjects are of no
difference between the two arms of a RCT. We propose a ‘high-dimensional test’ which is based on testing the ‘sharp null’ that the
experimental intervention has no treatment effect whatsoever, for patients of any covariate profile.

Results: Using computer simulations, we show that the high-dimensional test can become very powerful in
detecting treatment effects for very large p, but not so for small or moderate p. Using a real dataset, we demonstrate
that the P value of the high-dimensional test decreases as the number of baseline covariates increases, though it is still not
significant.

Conclusion: In this big-data era, pushing p of a RCT to themillions, billions, or even trillionsmay someday become feasible. And the
high-dimensional test proposed in this study can become very powerful in detecting treatment effects.

Abbreviations: OC = operating characteristic, RCT = randomized controlled trial.
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Strengths and limitations of this study

1. This paper presents a test for treatment effects in
randomized controlled trials, which harnesses the power
of ultrahigh dimensional big data.

2. The proposed high-dimensional test increases the power
of a RCT by increasing p, the number of baseline
covariates (sex, age, socio-demographic, genomic, and
clinical profiles et al, of the patients), rather than the
usual n, the number of patients.

3. The proposed high-dimensional test can become very
powerful in detecting treatment effect for large p, but not
so for small or moderate p.
1. Introduction

The randomized controlled trial (RCT) is the gold-standard
research design in biomedicine andprovides themost rigorousway
of determining whether a cause-effect relation exists between
treatment and outcome.[1,2] Randomization (randomallocation of
patients to intervention groups) and double blinding (neither the
patients or investigators being aware of the treatment assignments
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until the study is completed) are the hallmarks ofRCTs.A carefully
conducted RCT should be free from selection or confounding bias
that otherwise plagues most observational studies.[3]

RCTs are, however, more costly and time-consuming than
other studies. A realistic RCT is therefore often limited in sample
size (n, the number of patients participating in the study) to no
more than a few thousands patients. The power of a study is
however an increasing function of n; an investigator content with
a small n will likely get a non-significant result despite all the
efforts he/she put into conducting the trial.[4] We are therefore
posed with a dilemma—to recruit or not to recruit more patients.
We suggest new avenue for future RCTs. In this paper, we

develop a “high-dimensional test” for treatment effects. We will
show that the power of the test is an increasing function of p, the
number of baseline covariates (sex, age, socio-demographic,
genomic, and clinical profiles et al, of the patients) collected in a
RCT (p is also referred to as the “dimension”, and hence the
name of the test). We will show that the high-dimensional test can
become very powerful in detecting treatment effects if p can be
made very large. We will also use a real dataset to demonstrate
the methodology.

2. Methods

2.1. High-dimensional test

In a typical RCT comparing an experimental intervention and a
suitable control for a continuous or binary end point, letA denote
the treatment assignment indicator (A=1 for experimental
intervention; A=0 for control), Y, the outcome, and z, a vector
of baseline covariates (with a dimension of p). We use the generic
notation, f(·), to denote the (joint) probability density or mass
function of a random variable (vector), where appropriate. The
conventional test for treatment effects is based on testing the
following ‘crude null’,

f YjA ¼ 1ð Þ ¼ f YjA ¼ 0ð Þ; ð1Þ

That is, the outcomes of the subjects are of no difference
between the 2 arms of a RCT.
By contrast, the proposed high-dimensional test is based on

testing the following “sharp null”,

f YjA ¼ 1; zð Þ ¼ f YjA ¼ 0; zð Þ; ð2Þ

That is, the experimental intervention has no treatment affect
whatsoever, for patients of any covariate profile. In practice, we
can dichotomize Y into Y

∗
, such as ‘favorable’ (Y

∗
=1) and

‘unfavorable’ (Y
∗
=0) outcomes, based on some suitable criteria.

(Y
∗
may already be a binary variable, such as ‘survival’ (Y=1)

and ‘death’ (Y=0). This case is then simply Y
∗
=Y) Supplemen-

tary Note, http://links.lww.com/MD/D302 shows that alterna-
tively, we can test the sharp null in a RCT, based on the following
two equalities:

f zjA ¼ 1;Y� ¼ 1ð Þ ¼ f zjA ¼ 0;Y� ¼ 1ð Þ ð3Þ

and

f zjA ¼ 1;Y� ¼ 0ð Þ ¼ f zjA ¼ 0;Y� ¼ 0ð Þ: ð4Þ

This alternative sharp-null formulation implies no difference in
the baseline covariates between the two arms of a RCT,
2

separately for those with favorable outcomes (3) and those with
unfavorable outcomes (4).
Assume that a RCT recruits a total of n (i=1, . . . ,n) subjects.

The data collected consists of the treatment assignment indicator,
Ai, the outcome (and the dichotomized outcome), Yi (and Y�

i ),
and a total of p (j=1, . . . ,p) baseline covariates, Zij, for i=1,
. . . ,n. To test the crude null (1), one can use the usual two-
sample test,

T2
crude ¼

P
i:Ai¼1 Yi

n1
�
P

i:Ai¼0 Yi

n0

� �2

=
ŝ2
Y

n1
þ ŝ2

Y

n0

� �
; ð5Þ

where n1(n0) is the number of subjects receiving the experimental
(control) intervention (n1+n0=n), and ŝ2

Y ¼ 1
n�1 �P

i Yi � 1
n � P

k Yk
� �2

is an estimate of the variance of the
outcome under the crude null. T2

crude in (5) is distributed
asymptotically as a chi-squared distribution with one degree of
freedom under the crude null. The same can be done for the
dichotomized outcome, Y�

i .
To test the sharp null using (3) and (4), we can construct a test

statistic for the jth baseline covariate,

T2
j ¼

P
i:Ai¼1;Y�

i ¼1 Zij

n11
�
P

i:Ai¼0;Y�
i ¼1 Zij

n01

 !2

=
ŝ2
j;1

n11
þ ŝ2

j;1

n01

 !

þ
P

i:Ai¼1;Y�
i ¼0 Zij

n10
�
P

i:Ai¼0;Y�
i ¼0 Zij

n00

 !2

=
ŝ2
j;0

n10
þ ŝ2

j;0

n00

 !
;

ð6Þ

where n11(n01) and n10(n00) are the numbers of subjects
receiving the experimental (control) intervention and ultimately
leading to, respectively, favorable and unfavorable outcomes

(n11 þ n01 þ n10 þ n00 ¼ n), and ŝ2
j;1 ¼ 1

n11þn01�1 �P
i:Y�

i ¼1 Zij � 1
n11þn01

� P
k:Y�

k¼1 Zkj

� �2
and ŝ2

j;0 ¼ 1
n10þn00�1 �P

i:Y�
i ¼0 Zij � 1

n10þn00
� P

k:Y�
k¼0 Zkj

� �2
are the estimates of the

variances of the jth baseline covariate under the sharp null among
subjects with, respectively, favorable and unfavorable outcomes.
The first term to the right of the equality sign in (6) is a test
statistic based on (3), and the second term, that based on (4).
These 2 terms involve different sets of subjects and are
independent of one another. Under the sharp null, T2

j in (6) is
therefore distributed asymptotically as a chi-squared distribution
with 2 degrees of freedom.
Next, we sum up the statistics of all p baseline covariates as our

high-dimensional test,

T2
sharp ¼

Xp
j¼1

T2
j : ð7Þ

The ordinary chi-square approximation may not apply for
T2

sharp in (7) because the baseline covariates themselves may not
be independent of one another. We, therefore, propose perform-
ing Monte-Carlo permutations for the sampling distribution of
T2

sharp under the sharp null. To be precise, we fix z and shuffle (A,
Y∗) among the study subjects (or vice versa). The permutation-
based high-dimensional test is a distribution-free test, suitable for
use with normal or non-normal data and in large or small RCTs.

http://links.lww.com/MD/D302


Lee and Lin Medicine (2019) 98:43 www.md-journal.com
2.2. Simulation study

We considered a small RCT with n=50 and a large one with n=
250. Each patient is randomized either to the treatment or the
control arm, with equal probability. The outcomes of the trials
(survival or death) are recorded for each patient. The trials also
collected p baseline covariates for each patient.
We assume a potential-outcome model[3,5] for a particular

disease: the experimental treatment is beneficial to 15% of
patients (they will live upon being given the treatment andwill die
otherwise), is harmful to 5% of patients (they will instead die
upon being given the treatment but will live otherwise), and is of
absolutely no effect on the rest (30% and 50% of patients are
destined to live or die, respectively, regardless of the treatment
given). We also consider a stochastic version of the model, in
which those who will live or die as per the above deterministic
model will succumb to the same fates, not absolutely but with a
probability of 0.9. To check the validity of the high-dimensional
test, we construct a sharp null of a deterministic potential-
outcome model where no one is responsive to the treatment
(assuming 40% patients are destined to live, and the other 60%
will die, regardless of the treatment).
We assume that the baseline covariates are normally

distributed with a constant variance of one, but with slightly
different means for subjects of different potential-outcome types.
To be precise, the type-specific means are randomly sampled from
a N(0,D2) normal distribution. In the simulation, we consider 3
scenarios for the association between the measured baseline
covariates and the assumed potential-outcome types: (i) weak-to-
moderate association (D2=0.03), (ii) weak association (D2=
0.01), and (iii) ultra-weak association (D2=0.005). The baseline
covariates are assumed to be independent of one another
conditional on the potential-outcome types. We also considered
the cases of weakly and strongly correlated covariates, where the
correlation coefficients between the ith and the jth baseline
covariates are assumed to be 0:5 i�jj j and 0:9 i�jj j;respectively.
We simulate a hypothetical omniscient test to serve as an upper

bound for what a real-world high-dimensional test can achieve.
To be precise, an omniscient trial analyst having the knowledge
regarding the potential-outcome types of all patients and puts this
piece of information into the analysis; he/she creates four
indicator variables, each indicating whether a subject belongs to a
specific potential-outcome type, and then calculates a high-
dimensional test treating these indicator variables as four
“baseline covariates”.
The “operating characteristic” (OC) of a test is its statistical

power averaged over a uniformly distributed a-level between 0
and 1. The OC is a value between 0.5 (no power at all) and 1
(highest power possible). It can be converted to a power at a
specified a-level, if the test statistic is normally distributed: 1�
FðZ1�a=2 � dÞ þFðZa=2 � dÞ; where d ¼ ffiffiffi

2
p � ZOC; and Fð⋅Þ is

the cumulative distribution function, and Zx, the x’th quantile of
the standard normal distribution. In the simulation study, the OC
is estimated as the proportion of the simulations that result in a
test statistic larger than the same statistic under a random
permutation of the data (as described before). If a test statistic
happens to be equal to its permuted counterpart, a 0.5 count is
tallied. A total of 1000 simulations were performed for each
sharp-alternative scenario. To facilitate comparison, we estimat-
ed the OCs of the above omniscient test and the traditional test
(testing the crude null) using the same simulation-permutation
scheme as we used for the high-dimensional test.
3

For each sharp-null scenario, we performed a total of 10,000
simulations to estimate the OC and the type I error rate at a=
0.05 (with 99 permutations to derive the null sampling
distribution in each round of the simulation).
2.3. Real data analysis

We re-analyzed Gene Expression Omnibus dataset (GSE118657)
to illustrate the methodology.[6] The dataset is a Phase II
randomized controlled trial assessing the effect of lactoferrin on
critically ill patients undergoing mechanical ventilation (a total of
61 patients, 32 patients in the lactoferrin group, and the
remaining, the placebo group). Gene expressions with a total of
49,495 genes were measured at the first day of admission for each
patient. The proposed high-dimensional test was used to test the
effect of lactoferrin treatment using all gene expressions as the
baseline covariates (p=49,495). We also examined the effects of
using reduced numbers of genes (p=1, 2, 5, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, 10,000, 20,000, respectively) randomly
sampled from the total 49,495 genes (100 random samples were
taken and the results were averaged for each scenario). A total of
9999 permutations were performed to derive the null sampling
distribution for the high-dimensional test.
2.4. Ethical review

This paper is a methodological study (computer simulation study)
and does not involve the enrollment of patients. The real data used in
this paper is from public domain. Ethical approval is not necessary.
3. Results

3.1. Simulation study

Figure 1 presents the results when the outcomes follow the
assumed deterministic potential-outcome model. For a small
RCT (n=50), the traditional test (testing the crude null) has a
very low OC of 0.57, whereas the omniscient test can have a very
high OC of 0.93. When the sample size increases to n=250, the
performance of the traditional test improves, though not by very
much (OC=0.78), whereas the omniscient test now functions
impeccably (OC=1.00).
In a real-world RCT, the potential-outcome types of the

patients are, of course, unknown. However, we found that the
performance of the hypothetical omniscient test can be replicated
using a real-world high-dimensional test (Fig. 1). With a large
enough p (more than 10 weak-to-moderate covariates, more than
100 weak covariates, or more than 1000 ultra-weak covariates),
the high-dimensional test outperforms the traditional test. For a
large RCT (such as when n=250) and with a fairly large p (such
as when p>104), the high-dimensional test can also become
impeccable (OC→1).
The high-dimensional test is, as it should be, bounded above by

the omniscient test in terms of its OC, no matter how strong the
association is between the covariates used and the potential-
outcome types, and no matter how many there are (Supplemen-
tary Fig. 1, http://links.lww.com/MD/D302).
Under the sharp null, the high-dimensional test has an OC

close to 0.5 (Table 1) and a type I error rate close to the nominal a
level of 0.05 for all scenarios studied (Table 2).
Figure 2 presents the results when the outcomes follow the

stochastic potential-outcome model. Again, we see that the

http://links.lww.com/MD/D302
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Figure 1. Operating characteristics of the traditional test (dotted horizontal lines), the high-dimensional test (left solid curves: weak-to-moderate covariates; middle
solid curves: weak covariates; right solid curves: ultra-weak covariates), and the omniscient test (dash horizontal lines), under a deterministic potential-outcome
model.
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traditional test performs very poorly (OC=0.55 when n=50;
OC=0.67 when n=250). With the stochasticity introduced, a
perfect knowledge of the potential-outcome types no longer
foretells a subject’s fate exactly (only with an accuracy rate of 0.9
for the assumed model). Yet, the omniscient test still performs
Table 1

Operating characteristics of the high-dimensional test under the sha

Num

Number of subjects (n) and
strength of the covariates 1 2 5 10 20

n=50
weak to moderate 0.5038 0.5008 0.4993 0.4947 0.4990
weak 0.4972 0.5001 0.5064 0.5087 0.5048
ultra weak 0.5014 0.5069 0.4974 0.4961 0.5004

n=250
weak to moderate 0.5005 0.4982 0.4952 0.5017 0.5069
weak 0.5033 0.5000 0.4987 0.5021 0.5043
ultra weak 0.4998 0.5067 0.5078 0.5017 0.4980

4

remarkably better than the traditional test in a small trial (OC=
0.84 when n=50), and can even become impeccable in a large
RCT (OC=1.00 when n=250).
Again, the (real-world) high-dimensional test outperforms the

traditional test with a large enough p (Fig. 2). It can also become
rp null.

ber of baseline covariates (p)

50 100 200 500 1000 2000 5000 10000

0.4977 0.4974 0.4992 0.4943 0.4981 0.5001 0.5024 0.4977
0.5045 0.5016 0.5048 0.5047 0.5057 0.4984 0.4911 0.4918
0.5068 0.4983 0.5058 0.5050 0.5062 0.4985 0.5048 0.5019

0.5158 0.5072 0.5020 0.5017 0.5055 0.5021 0.4877 0.4949
0.4991 0.4967 0.5009 0.4943 0.4990 0.5095 0.4978 0.5000
0.4973 0.4965 0.4962 0.4974 0.4957 0.4906 0.4989 0.4999



Table 2

Type I error rates at a=0.05 of the high-dimensional test under the sharp null.

Number of baseline covariates (p)
Number of subjects (n) and
strength of the covariates 1 2 5 10 20 50 100 200 500 1000 2000 5000 10000

n=50
weak to moderate 0.0451 0.0470 0.0496 0.0498 0.0519 0.0503 0.0518 0.0493 0.0485 0.0495 0.0540 0.0488 0.0488
weak 0.0532 0.0502 0.0488 0.0465 0.0459 0.0475 0.0514 0.0493 0.0543 0.0534 0.0529 0.0485 0.0510
ultra weak 0.0498 0.0485 0.0516 0.0507 0.0490 0.0508 0.0513 0.0524 0.0507 0.0484 0.0506 0.0475 0.0490

n=250
weak to moderate 0.0514 0.0509 0.0498 0.0494 0.0503 0.0518 0.0522 0.0558 0.0536 0.0465 0.0527 0.0461 0.0469
weak 0.0506 0.0464 0.0463 0.0513 0.0495 0.0528 0.0511 0.0481 0.0511 0.0519 0.0506 0.0495 0.0503
ultra weak 0.0477 0.0499 0.0484 0.0489 0.0517 0.0484 0.0456 0.0475 0.0527 0.0484 0.0469 0.0485 0.0502

Lee and Lin Medicine (2019) 98:43 www.md-journal.com
impeccable in a large RCT (n=250) with p>106, or with a
smaller p if the covariates used are more strongly associated with
the potential-outcome types (Supplementary Fig. 2, http://links.
lww.com/MD/D302).
Figure 2. Operating characteristics of the traditional test (dotted horizontal lines), th
solid curves: weak covariates; right solid curves: ultra-weak covariates), and the
model.

5

Table 3 compares the OCs of the high-dimensional test for
independent, weakly correlated, and strongly correlated, baseline
covariates.With thesamenumberofbaselinecovariates, theoperating
characteristic is lower if the baseline covariates are correlatedwithone
e high-dimensional test (left solid curves: weak-to-moderate covariates; middle
omniscient test (dash horizontal lines), under a stochastic potential-outcome
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Table 3

Operating characteristics of the high-dimensional test for independent, weakly correlated, and strongly correlated, baseline covariates
(n=250; strength of the covariates: weak to moderate).

Number of baseline covariates (p)
Correlation between covariates 20 50 100 200 500 1000

Deterministic potential-outcome model
independent 0.595 0.685 0.756 0.826 0.929 0.976
weakly correlated 0.604 0.631 0.686 0.772 0.851 0.920
strongly correlated 0.563 0.577 0.613 0.660 0.710 0.783

Stochastic potential-outcome model
independent 0.556 0.625 0.654 0.728 0.826 0.883
weakly correlated 0.559 0.574 0.606 0.650 0.751 0.826
strongly correlated 0.545 0.543 0.567 0.576 0.636 0.678

Lee and Lin Medicine (2019) 98:43 Medicine
another. Tomakeup for the power loss in using correlated covariates,
one can include more covariates in the high-dimensional test. For all
scenarios studied, OC increases as p increases.
We also performed additional simulations for more complexly

distributed baseline covariates (non-normal covariates, a mixed
panel of binary and continuous variables, and a mixed panel of
signals and noises, see Supplementary Table, http://links.lww.
com/MD/D302), and for a patient population with a different
potential-outcome-type distribution from that assumed in this
study (including ‘monotonicity’ scenarios where the experimental
treatment can do only good and no harm[7]). The basic
conclusions are the same though some scenarios may call for a
larger p to achieve the same OC as in this paper.
However, the high-dimensional test has no power whatsoever

to test the sharp null if none of the baseline covariate collected is a
signal, or if the signal-to-noise ratio tends to zero as p tends to
infinity. The high-dimensional test is also ineffective if the
treatment effect is homogeneous across covariate profiles [e.g., all
patients are of the same stochastic potential-outcome type: they
all have the same survival probabilities of, say, 0.7(0.4), if given
(not given) the treatment].
Figure 3. P values in GEO118657 dataset analysis (high-dimensional test:
solid line; traditional test: dotted horizontal line).
3.2. Real data analysis

Figure 3 presents the P values for the lactoferrin treatment. The
traditional test (testing the crude null) has a P value of .36. As the
number of baseline covariates (genes) increases, the P values of
the high-dimensional test decreases. With 20 genes used, the high-
dimensional test has aPvalueof .32,which is smaller than that of the
traditional test. With all 49,495 genes used, the high-dimensional
test has a P value of .23, though it is still not significant. To achieve
significance (if the sharp null is indeed false for this example), one
could includemorebaseline covariates into thehigh-dimensional test
for the total 61 patients in the trial (as the power of the test is an
increasing function of the number of covariates), and ideally
covariates of diverse types other than the gene expression data
currently used (as the power of the test is compromised for highly
correlated covariates such as gene expressions).

4. Discussion

The proposed high-dimensional test is based on testing the sharp
null. The sharp-null formulation in (2) is self-explanatory: the
experimental intervention has no treatment affect whatsoever,
for patients of any covariate profile. However, the sharp-
null formulation in (3) and (4) seems rather peculiar. A simple
6

two-step conditionality argument (Supplementary Note, http://
links.lww.com/MD/D302) may help clarify what this alternative
formulation means: (the first step) it is true that there shall be no
association unconditionally between treatment assignment and
each and every baseline covariate in a dutifully conducted RCT
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(A ? z, where the ? sign indicates ‘independence’ or ‘no
association’), and (the second step) if the sharp null in (2) is
also true (A ? Yjz), then (the result) there shall furthermore be no
association between treatment assignment and each and every
baseline covariate, conditional on the outcome (the alternative
sharp-null formulation, A ? zjY).
Conventional wisdom holds that testing many variables

simultaneously incurs a penalty[8] and many researchers turn
to dimension reduction methods to mitigate the problem.[9–12]

The “p” -based methods developed by previous researchers
approached this multiple-testing problem differently, whereby
the dimensionality is no longer a curse but in fact a blessing. For
examples, Hall et al[13] and Ahn et al[14] studied the geometric
properties of high-dimension and low-sample-size data and
showed that the group memberships of study subjects can be
resolved almost perfectly using their pair-wise distances (in high
dimension), and Lo and Lee[15] constructed a p-based test to
detect weak associations (when p is very large) and Lee[16] further
developed a p-based adjustment method to correct for unmea-
sured confounding biases (again, when p is very large). In this
paper, we extend the applicability of the “p”-based approach to
RCT settings and show that the high-dimensional test can
become very powerful in detecting treatment effects for very large
p, the number of baseline covariates.
The current practice of RCTs follows the “n” -based paradigm;

the power of a test is gauged by n, the number of study subjects.[4]

But this has a limit as the n is bounded above by the world
population. By contrast, in this big-data era[17–19] pushing the p
of a RCT to the billions, trillions or even more may quickly
become possible. The high-dimensional test we proposed in this
paper thus provides a means to break the “n”-barrier and let
ultrahigh dimensional big data generate new knowledge. But one
needs to keep in mind that RCTs often have stringent inclusion
and exclusion criteria. Even if infinite number of baseline
covariates was collected in a RCT, the results of the high-
dimensional test only apply to the (selected) patient population of
that particular RCT and are not directly generalizable to patients
seen in real-world.
For small ormoderatep, say, hundreds, thousandsormillions, the

high-dimensional test by itself may be underpowered and should
best be used in conjunction with the traditional test. A possible
solution is to combine the “p” -based sharp-null test in (7) and the
“n” -based crude-null test in (5):wsharp � T2

sharp þwcrude � T2
crude;

wherewsharp andwcrude are theweights attached, respectively, to the
2 tests. Furtherwork is needed to studyhow to set theweights and to
examine the statistical properties of this combined test. From our
simulation study, the power of the high-dimensional test depends on
many factors: thenumberofbaseline covariates, thenumberof study
subjects, the strength of the association between the baseline
covariates and the potential-outcome types, the nature of the
potential outcomes (deterministic or stochastic), the degree of the
correlation between the baseline covariates, the distribution of the
baseline covariates, the distribution of the potential-outcome types,
etc. Further work is also needed to develop power formula for the
proposed high-dimensional test.
5. Conclusions

In this big-data era, pushing p of a RCT to the millions, billions,
or even trillions may someday become feasible. And the high-
7

dimensional test proposed in this study can become very powerful
in detecting treatment effects.
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