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Parkin targets HIF-1α for ubiquitination and
degradation to inhibit breast tumor progression
Juan Liu1, Cen Zhang1, Yuhan Zhao1, Xuetian Yue1, Hao Wu1, Shan Huang1,2, James Chen1, Kyle Tomsky1,

Haiyang Xie3, Christen A. Khella1, Michael L. Gatza1, Dajing Xia4, Jimin Gao2, Eileen White1, Bruce G. Haffty1,

Wenwei Hu1,5 & Zhaohui Feng1,5

Mutations in E3 ubiquitin ligase Parkin have been linked to familial Parkinson’s disease.

Accumulating evidence suggests that Parkin is a tumor suppressor, but the underlying

mechanism is poorly understood. Here we show that Parkin is an E3 ubiquitin ligase for

hypoxia-inducible factor 1α (HIF-1α). Parkin interacts with HIF-1α and promotes HIF-1α
degradation through ubiquitination, which in turn inhibits metastasis of breast cancer cells.

Parkin downregulation in breast cancer cells promotes metastasis, which can be inhibited by

targeting HIF-1α with RNA interference or the small-molecule inhibitor YC-1. We further

identify lysine 477 (K477) of HIF-1α as a major ubiquitination site for Parkin. K477R HIF-1α
mutation and specific cancer-associated Parkin mutations largely abolish the functions of

Parkin to ubiquitinate HIF-1α and inhibit cancer metastasis. Importantly, Parkin expression is

inversely correlated with HIF-1α expression and metastasis in breast cancer. Our results

reveal an important mechanism for Parkin in tumor suppression and HIF-1α regulation.
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Mutations in Parkin (PARK2) cause a familial form of
Parkinson’s disease (PD) known as autosomal recessive
juvenile PD1, 2. Parkin has been reported to play an

important role in regulating mitochondrial homeostasis, anti-
oxidative stress and mitophagy, which have been linked to the
neuroprotective role of Parkin2, 3. Like many other RING finger-
containing proteins, Parkin can function as an E3 ubiquitin ligase
to ubiquitinate and degrade substrate proteins involved in PD

such as CDCrel-1, Pael receptor, α-synuclein and synphilin-14–8.
Parkin also ubiqutinates protein substrates on the mitochondrial
outer membrane following depolarization, triggering mitochon-
drial elimination by mitophagy2. The function of Parkin in
controlling turnover of these substrates has been suggested to
contribute to its role in prevention of PD2, 3.

In addition to its role in PD, accumulating evidence has sug-
gested that Parkin is a tumor suppressor9–12. The human Parkin
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gene is localized on chromosome 6q25-27, a region that under-
goes frequent loss in cancer. Loss of heterozygosity and copy
number loss of Parkin have been observed in human cancers,
including breast cancer9, 13. Parkin expression is frequently
downregulated in many types of cancers, including breast cancer9,
14–16. Mutations of Parkin have been reported in many types of
cancers, although its mutation frequency is relatively low12, 17.
For instance, based on the analysis of data sets from cBioportal
(www.cbioportal.org)18, Parkin is mutated in ~5.6 % of lung
squamous cell cancer, 2.4–5.6 % of colorectal cancer, and ~4.6%
of gastric cancer12. Currently, the mechanism underlying the role
of Parkin in tumor suppression is poorly understood and the
potential Parkin substrates involved in tumorigenesis remain
largely unknown. Cyclin E was reported to be a Parkin sub-
strate19, and Parkin was also reported to interact with Cdc20/
Cdh1 to mediate ubiquitination and degradation of key mitotic
regulators to maintain genomic stability11.

Metastasis is the major cause of cancer death. Hypoxia-
inducible factor 1 (HIF-1) plays a pivotal role in promoting
cancer metastasis20, 21. HIF-1 is a heterodimeric transcription
factor composed of an oxygen-labile α subunit and a constitutive
β subunit. HIF-1 binds to the hypoxia response element (HRE) to
regulate gene expression. Under normoxia, HIF-1α is rapidly
degraded by tumor suppressor von Hippel-Lindau (VHL)
through ubiquitination. Under hypoxia, HIF-1α dissociates from
VHL and rapidly accumulates in cells. HIF-1α frequently accu-
mulates in solid tumors, in which hypoxia is a common char-
acteristic20, 21. It is important to note that HIF-1α is also
regulated by VHL-independent mechanisms in cells. For instance,
hypoxia-associated factor (HAF) and SHARP1 can bind to HIF-
1α and promote its proteasomal degradation independently of
VHL and cellular oxygen tension22, 23.

Interestingly, a recent study using quantitative proteomics to
systematically analyze the Parkin-dependent ubiquitylome in cells
listed HIF-1α as a potential ubiquitination substrate of Parkin24.
Another recent study reported that Parkin expression reduces
HIF-1α levels in glioblastoma cells, however, the mechanism is
unknown25. These two studies suggest a connection between
Parkin and HIF-1α. In this study, we identified HIF-1α as a
substrate of Parkin. We found that Parkin binds to HIF-1α and
promotes HIF-1α degradation through ubiquitination, which in
turn inhibits metastasis of breast cancer cells. Our results reveal
an important mechanism underlying the role of Parkin in tumor
suppression in cells.

Results
HIF-1α is a Parkin-interacting protein. Parkin expression has
been reported to be frequently decreased in cancer, including
breast cancer9, 14, 16. Consistently, we found that Parkin protein
levels were significantly lower in breast cancer samples (n = 120)

compared with non-tumor breast tissues (n = 48) in a tissue
microarray (TMA; TMA-BR2082a from US Biomax) as examined
by immunohistochemistry (IHC) staining (Fig. 1a). Analysis of
breast cancer data sets from The Cancer Genome Atlas (TCGA)
showed that Parkin mRNA levels were significantly decreased in
breast cancer specimens compared with paired adjacent non-
tumor tissues (n = 113; Fig. 1b). The Parkin downregulation was
not linked to any specific breast tumor subtype in terms of ER, PR
or HER2 status (Supplementary Fig. 1a). Compared with normal
breast tissues and normal breast MCF10A cells, Parkin expression
was decreased in various breast cancer cells, including MCF7
(ER + /PR + /HER2−), MDA-MB231 (ER−/PR−/HER2−), T47D
(ER + /PR + /HER2−), SK-BR3 (ER−/PR−/HER2+), and ZR-75-1
(ER + /PR + /HER2+) (Supplementary Fig. 1b). On the basis of
the data sets from cBioportal18, 26, Parkin mutations are observed
in < 1% of breast cancer, suggesting that mutation is not a major
mechanism contributing to the frequent downregulation of Par-
kin in breast cancer (Supplementary Fig. 1c). Results from
Kaplan–Meier plotter, an online survival analysis tool (http://
kmplot.com)27, showed that low Parkin mRNA expression in
breast cancer was significantly associated with poor prognosis of
patients (n = 3951; Fig. 1c). These results suggest an important
role of Parkin in breast cancer.

To further investigate the mechanism underlying the role of
Parkin in tumor suppression, we searched for potential
ubiquitination substrates of Parkin by screening for potential
Parkin-interacting proteins using two sequential rounds of
immunoprecipitation (IP) followed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) assays in MCF7 cells
transduced with a pLPCX-Myc-Parkin vector to express Myc-
Parkin or with the empty vector as a control. HIF-1α was
identified as a potential Parkin-interacting protein by LC-MS/MS
analysis (Supplementary Table 1). Several known Parkin-
interacting proteins, including HSP70, Rpn10, 14-3-3 and
Tubulin28–30, were also among the list of potential Parkin-
interacting proteins identified by the LC-MS/MS assays, validat-
ing our approach (Supplementary Table 1). The interaction
between Parkin and HIF-1α was confirmed by co-IP followed by
western-blot assays in MCF7 cells ectopically expressing
Myc-Parkin and HA-HIF-1α. As shown in Fig. 1d, HA-HIF-1α
was co-precipitated by the anti-Myc antibody, and Myc-Parkin
was co-precipitated by the anti-HA antibody, indicating that
Myc-Parkin interacted with HA-HIF-1α in cells. The interaction
between endogenous Parkin and HIF-1α was also observed in
MCF7 cells (Fig. 1e), T47D and MCF10A cells (Supplementary
Fig. 2) by co-IP followed by western-blot assays.

To identify the domain of Parkin that interacts with HIF-1α,
wild-type (WT) and different Myc-tagged deletion mutants of
Parkin were constructed and co-transfected with vectors expres-
sing HA-HIF-1α into MCF7 cells for co-IP assays. The results in
Fig. 1f showed that the IBR (In-between RING) domain of Parkin

Fig. 1 Parkin interacts with HIF-1α. a Parkin protein expression was significantly decreased in breast cancer specimens compared with non-tumor breast
tissues as analyzed by IHC. Left panel: representative IHC staining images of Parkin in a human breast TMA. Scale bar: 20 μm. Right panel: summary of IHC
staining of Parkin in breast cancer specimens (n= 120) and non-tumor breast tissues (n= 48) in a human breast TMA (TMA-BR2082a; US Biomax). b
Parkin mRNA levels were significantly decreased in human breast cancers compared with matched adjacent non-tumor breast tissues (n= 113). The data
were obtained from TCGA. In a, b, P< 0.001; two-tailed Student’s t test. c Low Parkin expression was associated with poor relapse-free survival in breast
cancer patients. The data were obtained from Kaplan–Meier plotter. Differences between two survival curves were analyzed using the log-rank
(Mantel–Cox) test. d Myc-Parkin interacted with HA-HIF-1α in MCF7 cells. Cells were co-transduced with HA-HIF-1α and Myc-Parkin expression vectors
for co-IP assays using the anti-Myc (left panels) and anti-HA antibodies (right panels), respectively. e Endogenous Parkin interacted with endogenous HIF-
1α in MCF7 cells detected by co-IP assays. Endogenous Parkin was knocked down by shRNA in MCF7 cells as a negative control. f The IBR domain of Parkin
is required for Parkin to interact with HIF-1α. MCF7 cells were transduced with vectors expressing WT or different deletion mutants of Myc-Parkin together
with the HA-HIF-1α vector for co-IP assays. g The ID domain of HIF-1α is required for HIF-1α to interact with Parkin. MCF7 cells were transduced with
vectors expressing WT or different deletion mutants of HA-HIF-1α vectors together with the Myc-Parkin vector for co-IP assays. h The interaction between
Parkin and HIF-1α analyzed by in vitro GST (left) and His (right) pull-down assays, respectively, using purified GST-Parkin and His-Trx-HIF-1α proteins
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is required for Parkin to interact with HIF-1α. We further
mapped the domain of HIF-1α that interacts with Parkin by
co-transfecting Myc-Parkin vectors and vectors expressing
different HA-tagged deletion mutants of HIF-1α into MCF7 cells
using co-IP assays. As shown in Fig. 1g, the ID domain
(Inhibitory domain) of HIF-1α is required for HIF-1α to interact
with Parkin.

To further investigate whether Parkin interacts with HIF-1α,
in vitro GST and His pull-down assays were performed using GST-
Parkin and His-Trx-HIF-1α proteins purified from bacteria. The

results from in vitro GST pull-down assays showed that
GST-Parkin interacted with His-HIF-1α in vitro, which was
disrupted by deletion of the IBR domain of Parkin (ΔIBR Parkin)
(Fig. 1h; left panels). Results from in vitro His pull-down assays
showed that His-Trx-HIF-1α interacted with GST-Parkin in vitro,
which was disrupted by deletion of the ID domain of HIF-1α (ΔID
HIF-1α) (Fig. 1h; right panels). Furthermore, the GST tag did not
interact with His-Trx-HIF-1α (Fig. 1h; left panels), and the His-Trx
tag did not interact with GST-Parkin (Fig. 1h; right panels). Taken
together, these results indicate that Parkin interacts with HIF-1α.
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Parkin downregulates HIF-1α protein levels in cells. To
investigate whether Parkin regulates HIF-1α protein levels in
cells, MCF7 and MDA-MB231 cells were co-transduced with
vectors expressing Myc-Parkin and HA-HIF-1α, respectively.
Ectopic Myc-Parkin expression reduced HA-HIF-1α protein
levels in both cells in a dose-dependent manner (Fig. 2a). Simi-
larly, ectopic Myc-Parkin downregulated endogenous HIF-1α
levels in different breast cancer cells and MCF10A cells (Fig. 2b).
We further examined whether endogenous Parkin negatively
regulates HIF-1α in cells by knocking down endogenous Parkin
using 2 different shRNA vectors in the aforementioned different
breast cells (excluding MDA-MB231 and SK-BR3 cells, which
express low levels of Parkin as shown in Supplementary Fig. 1b).
Parkin knockdown increased endogenous HIF-1α protein levels
in cells (Fig. 2c). HIF-1α protein levels were further examined in
Parkin + /+ and Parkin−/− mouse embryonic fibroblasts (MEFs),
which are widely used in the study of Parkin11, 31, 32. Higher HIF-
1α levels were observed in Parkin−/− MEFs than in Parkin + /+
MEFs (Fig. 2d).

Parkin was reported to regulate mRNA expression of specific
genes33, 34. To investigate whether Parkin downregulates HIF-1α
protein through repression of HIF-1α mRNA in cells, HIF-1α
mRNA levels were examined in breast cells. Neither ectopic Myc-
Parkin expression nor knockdown of endogenous Parkin affected

HIF-1α mRNA levels as analyzed by quantitative Taqman real-
time PCR (Supplementary Fig. 3a–c). Together, these results
indicate that Parkin negatively regulates HIF-1α at the protein
level in cells.

VHL plays an important role in HIF-1α regulation. Under
normoxic conditions, HIF-1α is rapidly degraded by VHL in
cells20, 21. Our results showed that the effect of Parkin on HIF-1α
was independent of oxygen levels unlike VHL (Fig. 2e–g). Myc-
Parkin expression decreased HIF-1α protein levels in MCF7 cells
under both normoxic and hypoxic conditions (Fig. 2e), whereas
Parkin knockdown increased HIF-1α levels in MCF7 cells under
both normoxic and hypoxic conditions (Fig. 2f). Furthermore,
higher HIF-1α protein levels were observed in Parkin−/− MEFs
than Parkin + / +MEFs under both normoxic and hypoxic
conditions (Fig. 2g).

To test whether the downregulation of HIF-1α by Parkin is
VHL-dependent, VHL-deficient renal cell carcinoma cells RCC4
and their isogenic cells with stable ectopic expression of VHL
(RCC4/VHL) were used to investigate the effect of Parkin on
HIF-1α35. Myc-Parkin expression reduced HIF-1α protein levels
in both RCC4 and RCC4/VHL cells (Fig. 2h), while knockdown
of Parkin increased HIF-1α protein levels in both cells (Fig. 2i).
Similar results were observed in MCF7 cells; while knockdown of
VHL increased HIF-1α protein levels in MCF7 cells, knockdown
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of Parkin in MCF7 cells with VHL knockdown further increased
HIF-1α protein levels (Fig. 2j). These results suggest that Parkin
downregulates HIF-1α protein levels in a VHL-independent
manner.

Parkin negatively regulates HIF-1-α transcriptional activity. As
a critical subunit of the HIF-1 transcription factor complex, HIF-
1α binds to HREs in its target genes to regulate their expression20,
21. Here we examined whether Parkin affects the transcriptional
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activity of HIF-1α. First, luciferase reporter assays were per-
formed using a HIF-1α luciferase reporter vector containing the
promoter region of VEGFA, a well-known HIF-1α target gene36.
Expression of Myc-Parkin significantly reduced HIF-1α luci-
ferase reporter activities in both MCF7 and MD-MB231 cells
(Fig. 3a), whereas knockdown of Parkin significantly increased
HIF-1α luciferase reporter activities in MCF7 and MCF10A cells
that have relatively higher endogenous Parkin levels (Fig. 3b).
Similar results were also observed in T47D breast cancer cells
(Supplementary Fig. 4a, b). Furthermore, Parkin inhibited the
HIF-1α luciferase reporter activities under both normoxic and
hypoxic conditions (Supplementary Fig. 4c, d). To confirm that
the inhibitory effect of Parkin on luciferase activity of the
reporter vector is HIF-1α-dependent, HIF-1α was knocked
down by 2 different shRNA vectors. HIF-1α knockdown dra-
matically decreased luciferase activities of the reporter vector.
Notably, the inhibitory effect of Myc-Parkin on luciferase
activity observed in cells with HIF-1α knockdown was much less
pronounced compared with control cells (Fig. 3a; Supplemen-
tary Fig. 4a). Furthermore, HIF-1α knockdown largely abolished
the promoting effect of Parkin knockdown on the HIF-1α
luciferase reporter activity (Fig. 3b and Supplementary Fig. 4b).
These results indicate that Parkin inhibits HIF-1α transcrip-
tional activity.

To confirm that Parkin inhibits HIF-1α transcription activity,
we examined the mRNA levels of several well-known HIF-1α
target genes, including VEGFA, CXCR4 and LOX20, 21, using
Taqman real-time PCR in cells with ectopic Myc-Parkin
expression or Parkin knockdown. Myc-Parkin expression reduced
mRNA levels of these genes in MCF7 and MDA-MB231 cells
(Fig. 3c), whereas Parkin knockdown increased their mRNA
levels in MCF7 and MCF10A cells, which have relatively higher
endogenous Parkin levels (Fig. 3d). Similar results were also
observed in T47D breast cancer cells (Supplementary Fig. 4e, f).
HIF-1α knockdown significantly decreased mRNA levels of these
genes, indicating that these genes are regulated by HIF-1α in
these cells (Fig. 3c, d; Supplementary Fig. 4e, f). Notably,
compared with cells transduced with control shRNA vectors, cells
with HIF-1α knockdown exhibited a much less pronounced
inhibitory effect of Myc-Parkin on these genes, suggesting that
Parkin represses the expression of these genes through down-
regulation of HIF-1α (Fig. 3c; Supplementary Fig. 4e). Further-
more, HIF-1α knockdown largely abolished the promoting effect
of Parkin knockdown on the mRNA levels of these genes (Fig. 3d;
Supplementary Fig. 4f). Collectively, these results indicate that
Parkin inhibits HIF-1α transcriptional activity.

Parkin promotes ubiquitination and degradation of HIF-1α.
To investigate whether Parkin negatively regulates HIF-1α
through ubiquitin-proteasome degradation, MCF7 and MDA-
MB231 cells transduced with the Myc-Parkin vector were treated
with the proteasome inhibitor MG132, and HIF-1α protein levels
were analyzed. MG132 treatment largely abolished the inhibitory
effect of Myc-Parkin on HIF-1α protein levels in cells (Fig. 4a).
To investigate whether Parkin affects protein stability of HIF-1α,
the protein half-life of HIF-1α was analyzed. MCF7 cells with
Myc-Parkin expression and their control cells were transduced
with the HA-HIF-1α expression vector before they were treated
with protein synthesis inhibitor cyclohexamide (CHX) for dif-
ferent time periods. Compared with control cells transduced with
the empty vector, cells transduced with the Myc-Parkin vector
exhibited reduced half-life of HA-HIF-1α protein (Fig. 4b).
Importantly, knockdown of endogenous Parkin increased the
half-life of HA-HIF-1α protein in MCF7 cells (Fig. 4c).

To investigate whether Parkin promotes HIF-1α degradation
through ubiquitination, in vivo ubiquitination assays were
employed. It has been reported that the conserved cysteine
C431 of Parkin is required for ubiquitin ligase activity of Parkin
and C431A mutation compromises ubiquitin ligase activity of
Parkin37, 38. T173A, T240M and P294S, cancer-associated
mutations of Parkin, have been reported to impair ubiquitin
ligase activity of Parkin, which in turn abrogates the tumor
suppressive function of Parkin39. These four mutants were
constructed and used for in vivo ubiquitination assays. MCF7
cells were co-transfected with WT or mutant Myc-Parkin vectors
together with vectors expressing HA-HIF-1α and His-ubiquitin
(His-Ub), respectively. Cells with Myc-Parkin expression dis-
played increased ubiquitination of HA-HIF-1α compared with
cells transfected with the control vector (Fig. 4d). Notably, these
four mutations markedly reduced the ability of Parkin to
ubiquitinate HA-HIF-1α in MCF7 cells. Parkin can ubiquitinate
itself (autoubiquitination), which has been used to reflect
ubiquitin ligase activity of Parkin40, 41. As shown in Fig. 4d,
WT Parkin displayed clear autoubiquitination, and all of these
four Parkin mutations impaired Parkin autoubiquitination.
Furthermore, knockdown of endogenous Parkin decreased HA-
HIF-1α ubiquitination in MCF7 cells (Fig. 4e). CDCrel-1 is a
well-known substrate of Parkin, which can be ubiquitinated and
degraded by Parkin4, 42. Our results showed that ectopic
expression of WT but not C341A mutant Myc-Parkin markedly
promoted ubiquitination and degradation of HA-CDCrel-1 in
MCF7 cells (Supplementary Fig. 5a, b), which validated our
experimental systems.

The ubiquitination of HIF-1α by Parkin was confirmed by
in vitro ubiquitination assays using purified GST-Parkin and His-
Trx-HIF-1α proteins. WT GST-Parkin promoted His-Trx-HIF-
1α ubiquitination and displayed GST-Parkin autoubiquitination
in the presence of recombinant E1, E2, ubiquitin and PINK1
proteins in vitro (Fig. 4f). The C431A mutation markedly reduced
GST-Parkin autoubiquitination and His-Trx-HIF-1α ubiquitina-
tion in vitro (Fig. 4f). The IBR domain of Parkin was shown to be
required for the Parkin–HIF-1α interaction (Fig. 1h), and was
recently reported to be important for ubiquitin ligase activity of
Parkin43. Deletion of the IBR domain of Parkin (ΔIBR) largely
abolished His-Trx-HIF-1α ubiquitination and Parkin autoubi-
quitination in vitro (Fig. 4f). Our results also showed that WT but
not the C431A GST-Parkin protein led to ubiquitination of His-
Trx-CDCrel-1 protein in vitro (Supplementary Fig. 5c), which
validated our in vitro experimental systems. PINK1 was added to
the in vitro ubiquitination reactions since PINK1 has been
reported to activate Parkin through phosphorylation of the
ubiquitin-like (UBL) domain of Parkin and ubiquitin as well,
which is required for Parkin activity44–46. Consistent with these
reports44–46, our results from in vivo ubiquitination assays
showed that knockdown of endogenous PINK1 by 2 different
siRNA oligos reduced the ubiquitination of HIF-1α by Parkin in
MCF7 cells (Supplementary Fig. 6). Our results from in vitro
ubiquitination assays further showed that while GST-Parkin
ubiquitinated His-Trx-HIF-1α in the presence of phosphorylated
ubiquitin, phosphorylation-deficient ubiquitin S65A, a mutant
that cannot be phosphorylated by PINK146, largely abolished the
function of Parkin to ubiquitinate HIF-1α (Fig. 4g).

We further examined whether above-mentioned four Parkin
mutants can impair Parkin’s ability to degrade HIF-1α in cells. As
shown in Fig. 4h, these four mutations largely abolished the
ability of Parkin to degrade HA-HIF-1α in MCF7 and
MDA-MB231 cells. Taken together, these results indicate that
Parkin downregulates HIF-1α through ubiquitination and
proteasomal degradation.
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Ubiquitination of HIF-1α at lysine 477 by Parkin. To identify
the ubiquitination sites of HIF-1α for Parkin, LC-MS/MS ana-
lysis was performed using HA-HIF-1α immunoprecipitated from
MCF7 cells co-transfected with vectors expressing Myc-Parkin,
HA-HIF-1α and His-Ub, respectively. K477, K547 and K538
were identified as the top three putative ubiquitination sites for
Parkin (Fig. 5a). To investigate whether these three sites are
major ubiquitination sites for Parkin, different vectors expressing
HA-HIF-1α containing single (K477R, K547R, or K538R), dou-
ble (K538R/K547R) or triple (K477R/K538R/K547R) mutations

were constructed. The results from in vivo ubiquitination assays
in MCF7 cells showed that compared with WT HA-HIF-1α,
K477R mutation largely abolished the ability of Myc-Parkin to
ubiquitinate HA-HIF-1α, whereas K547R, K538R, or K538R/
K547R mutations did not clearly reduce the ability of Myc-
Parkin to ubiquitinate HA-HIF-1α. Compared with K477R
mutation, K477R/K538R/K547R mutations did not further
inhibit the ubiquitination of HA-HIF-1α by Parkin, suggesting
that K477 of HA-HIF-1α is the major ubiquitination site for
Parkin (Fig. 5b).
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HIF-1α was reported to be ubiquitinated by VHL at K532,
K538 and K54747, 48. Our results from in vivo ubiquitination
assays in MCF7 cells showed that VHL efficiently ubiquitinated
both WT and K477R HA-HIF-1α but not K532R/K538R/K547R
mutant HA-HIF-1α (Fig. 5c). In contrast, Parkin efficiently
ubiquitinated K532R/K538R/K547R HA-HIF-1α, indicating that
Parkin and VHL ubiquitinate HIF-1α at different sites (Fig. 5d).
Furthermore, K477R mutation did not affect the interaction
between Myc-Parkin and HA-HIF-1α in MCF7 cells, indicating
that the inability of Myc-Parkin to ubiquitinate K477R HA-HIF-
1α is not due to the disruption of Parkin–HIF-1α interaction
caused by K477R mutation (Supplementary Fig. 7).

Consistent with its effect on HA-HIF-1α ubiquitination, K477R
mutation largely abolished the promoting effect of Myc-Parkin on
HA-HIF-1α degradation in both MCF7 and MDA-MB231 cells
(Fig. 5e). Compared with WT HA-HIF-1α (Fig. 4b), K477R
mutant HA-HIF-1α displayed a longer protein half-life (Fig. 5f).
Furthermore, Myc-Parkin expression reduced the half-life of WT
HA-HIF-1α (Fig. 4b), but not the half-life of K477R HA-HIF-1α
in MCF7 cells (Fig. 5f).

We further investigated whether K477R mutation can largely
abolish the inhibitory effect of Parkin on HIF-1α luciferase
reporter activity in cells. MCF7 and MDA-MB231 cells were
transduced with shRNA vectors to knock down endogenous HIF-
1α, and then transduced with vectors expressing WT or K477R
HA-HIF-1α resistant to HIF-1α shRNA (HA-rHIF-1α) (Fig. 5g;
left panels). These cells were then used for HIF-1α luciferase
reporter assays. K477R mutation largely abolished the inhibitory
effect of Parkin on HIF-1α luciferase reporter activity in cells
(Fig. 5g; right panel). Collectively, these results indicate that K477
of HIF-1α is a major ubiquitination site for Parkin.

Parkin inhibits cell migration and invasion through HIF-1α.
HIF-1α plays a critical role in cancer metastasis21, 49. Our results
show that Parkin ubiquitinates and degrades HIF-1α, suggesting
that Parkin may play a critical role in inhibiting cancer metastasis
through its downregulation of HIF-1α. Therefore, we investigated
the effects of Parkin on the migration and invasion of various
breast cancer cells and normal breast MCF10A cells using
transwell assays. Cells were seeded into the upper chamber con-
taining serum-free medium without or with matrigel for migra-
tion and invasion assays, respectively. Serum-free medium was
used in the upper chamber to minimize the effect of Parkin on
cell proliferation in transwell assays. Compared with cells trans-
duced with control vectors, cells transduced with the Myc-Parkin
vector showed a significantly reduced ability to migrate and
invade (Fig. 6a, b). Furthermore, knockdown of Parkin sig-
nificantly promoted migration and invasion of various cells
(Fig. 6c). Similarly, Parkin−/− MEFs exhibited a significantly
higher ability to migrate and invade than Parkin+ /+MEFs
(Fig. 6d). The inhibitory effect of Parkin on migration of breast

cancer cells was further confirmed by scratch assays (Supple-
mentary Fig. 8a, b).

We then investigated whether Parkin inhibits migration and
invasion of human breast cancer cells through its downregulation
of HIF-1α. Whereas knockdown of HIF-1α reduced migration
and invasion of various breast cancer and MCF10A cells,
knockdown of Parkin had a significantly less pronounced
promoting effect on migration and invasion in cells with HIF-
1α knockdown (Fig. 6e). To confirm this result, endogenous HIF-
1α in MCF7 and MDA-MB231 cells was replaced with WT or
K477R HA-rHIF-1α (Fig. 5g) and used for transwell assays
(Fig. 6f). Whereas Myc-Parkin expression significantly inhibited
migration and invasion of cells expressing WT HA-rHIF-1α,
Myc-Parkin expression did not clearly affect migration or
invasion of cells expressing K477R HA-rHIF-1α (Fig. 6f).
Notably, C431A, T173A, T240M and P294S mutations of Parkin
that inhibit Parkin’s E3 ligase activity for HIF-1α (Fig. 4d, h)
significantly impaired the ability of Parkin to inhibit migration
and invasion of breast cancer cells (Fig. 6g). Collectively, these
results indicate that Parkin inhibits migration and invasion of
breast cancer cells, and the negative regulation of HIF-1α
contributes to this function of Parkin.

Parkin inhibits cancer metastasis through HIF-1α regulation.
The lung is one of most common metastatic sites for breast
cancer50. Therefore, we investigated the effect of Parkin on lung
metastasis in vivo by employing both the tail vein injection and
mammary fat pad implantation of breast cancer cells in mice.
First, MDA-MB231 cells with Myc-Parkin expression and their
control cells were transduced with luciferase-expressing lentiviral
vectors and injected into female BALB/c athymic nude mice via
the tail vein. The metastasis of cells to the lung was monitored by
in vivo bioluminescence imaging. Bioluminescence imaging
results showed that Myc-Parkin expression significantly inhibited
lung metastasis of MDA-MB231 cells (Fig. 7a), which was con-
firmed by histological analysis of the lung (Fig. 7b). Furthermore,
Myc-Parkin expression decreased HIF-1α protein levels in the
metastases as verified by the IHC staining (Fig. 7b, right panel).
We then investigated whether knockdown of endogenous Parkin
in cells promotes lung metastasis using MCF7 cells that express
relatively high endogenous Parkin compared with other breast
cancer cell lines (Supplementary Fig. 1b). Parkin was knocked
down by 2 different shRNA vectors in MCF7 cells, and cells were
employed for lung metastasis analysis in mice via tail vein
injections. Parkin knockdown significantly promoted lung
metastasis of MCF7 cells as analyzed by in vivo imaging and
histological analysis, respectively (Fig. 7c, d).

We then investigated whether negative regulation of HIF-1α
mediates Parkin’s function in suppressing lung metastasis of
breast cancer cells in vivo. To this end, endogenous HIF-1α was
knocked down by 2 different shRNA vectors in MCF7 cells with

Fig. 6 Parkin inhibits migration and invasion of human breast cancer cells through negative regulation of HIF-1α. a, b Myc-Parkin expression inhibited the
migration (a) and invasion (b) of different human breast cells as determined by transwell assays. Left panels of a, b: representative images of migrating (a)
or invading (b) MDA-MB231 cells transduced with control (Con) or Myc-Parkin vectors. Scale bars: 200 μm. Right panels of a, b: quantification of average
number of migrating or invading cells per field. c Knockdown of endogenous Parkin by shRNA vectors promoted the migration and invasion of different
human breast cells. d Parkin−/− MEFs displayed enhanced abilities of migration and invasion compared with Parkin + / +MEFs. Left panel: representative
images of migrating or invading cells. Scale bars: 500 μm; Right panel: quantification of average number of migrating or invading cells per field. e
Knockdown of HIF-1α largely abolished the promoting effect of Parkin knockdown on migration (upper panel) and invasion (lower panel) of cells as
measured by transwell assays. Cells with HIF-1α knockdown were further transduced with control or Parkin shRNA vectors for transwell assays. f
Expression of K477R HA-rHIF-1α largely abolished the inhibitory effect of Myc-Parkin on cell migration (upper panel) and invasion (lower panel) in MCF7
and MDA-MB231 cells. Endogenous HIF-1α in cells was replaced with WT or K477R HA-rHIF-1α (shown in Fig. 5g), and cells were then transduced with
Myc-Parkin for transwell assays. g C431A, T173A, T240M and P294S mutations of Parkin compromised the inhibitory effects of Parkin on cell migration
(left panel) and invasion (right panel). In a–g, the data present mean± SD (n= 6). #: P< 0.05; *P< 0.01; **P< 0.001; two-tailed Student’s t test
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Fig. 7 Parkin inhibits lung metastasis of human breast cancer cells in vivo. a, b Myc-Parkin expression inhibited lung metastasis of breast cancer cells
injected via the tail vein. MDA-MB231 cells with Myc-Parkin expression were transduced with lentiviral vectors expressing luciferase for tail vein injections.
In a, left panel: representative bioluminescent images at indicated time points; right panel: normalized photon flux of lung metastases. In b, left panel:
representative H&E-stained lung sections from mice at 12 weeks after injections. Arrows indicate metastatic nodules. Scale bar: 200 μm. Middle panel:
quantification of lung metastatic nodules. Right panel: IHC staining of Parkin and HIF-1α in lung metastases. Scale bar: 20 μm. c, d Knockdown of Parkin
promoted lung metastasis of MCF7 cells injected via the tail vein. e HIF-1α knockdown largely abolished the promoting effects of Parkin knockdown on lung
metastasis of MCF7 cells after tail vein injections. Two different Parkin shRNA vectors were used and similar results were observed. f K477R HA-rHIF-1α
expression reduced the inhibitory effect of Myc-Parkin expression on lung metastasis of MDA-MB231 cells injected via the tail vein. Endogenous HIF-1α in
cells was replaced with WT or K477R HA-rHIF-1α. g The HIF-1α inhibitor YC-1 largely abolished the promoting effect of Parkin knockdown on lung
metastasis. Mice were treated with YC-1 (30mg kg−1 per day; i.p.) for 5 days after the tail vein injection of MCF7 cells. h Myc-Parkin expression inhibited
lung metastasis of MDA-MB231 cells implanted into mammary fat pads of mice. i K477R HA-rHIF-1α expression reduced the inhibitory effect of Myc-
Parkin on lung metastasis of MDA-MB231 cells implanted into mammary fat pads. In h, i, primary tumors were surgically removed when they reached a
volume of ~200mm3. Left panels in h, i: representative H&E-stained lung sections at 8 weeks after primary tumor removal. Right panels in h, i:
quantification of lung metastatic nodules at 8 weeks after primary tumor removal. n= 6 mice per group in a–d, f; n= 8 mice per group in e, g–i. The data
present mean± S.D. *P< 0.01; **P< 0.001; ANOVA followed by two-tailed Student’s t tests in a, c, and two-tailed Student’s t tests in the remaining panels
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or without Parkin knockdown. HIF-1α knockdown significantly
reduced lung metastasis of MCF7 cells (Fig. 7e). Notably, a
significantly less pronounced promoting effect of Parkin knock-
down on lung metastasis was observed in MCF7 cells with HIF-
1α knockdown (Fig. 7e). To further test this hypothesis, MDA-
MB231 cells in which endogenous HIF-1α was replaced with WT
or K477R HA-rHIF-1α as described in Fig. 5g were employed for
tail vein injections. Myc-Parkin expression significantly inhibited
lung metastasis of MDA-MB231 cells expressing WT HA-rHIF-
1α, but did not clearly inhibit lung metastasis of MDA-MB231

cells expressing K477R HA-rHIF-1α (Fig. 7f). YC-1 is a widely
used small-molecule HIF-1α inhibitor51, 52. To further test
whether HIF-1α mediates the inhibitory effect of Parkin on
metastasis, mice were treated daily with YC-1 (i.p.) for 5 days
after tail vein injections of MCF7 cells. YC-1 treatment
significantly inhibited the promoting effect of Parkin knockdown
on lung metastasis of MCF7 cells (Fig. 7g).

We further investigated the effect of Parkin on lung metastasis
of breast cancer cells using the mammary fat pad spontaneous
metastasis model. MDA-MB231 cells with Myc-Parkin expression
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Fig. 8 Low Parkin expression is correlated with increased HIF-1α levels and poor distant metastasis-free survival in human breast cancer. a, b Low Parkin
expression was significantly correlated with increased HIF-1α levels in human breast cancer specimens analyzed by IHC staining. Upper panel in a:
representative IHC staining images in TMA-RCINJ (n= 200, from the RCINJ). Scale bar: 20 µm. Lower panel in a: summary of IHC staining results of
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= 120 in TMA-BR2082a; n= 220 in TMA-BR2281 from US Biomax). c, d Low Parkin expression was significantly associated with poor distant metastasis-
free survival in human breast cancer. In c, low Parkin expression was significantly associated with poor distant metastasis-free survival in TMA-RCINJ. In d,
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metastasis by Parkin-mediated HIF-1α ubiquitination and degradation
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and their control cells were injected into the mammary fat pad for
spontaneous lung metastasis (Fig. 7h). To eliminate the effect of
primary tumor size on metastasis occurrence, primary tumors
were surgically removed after reaching a volume of ~200 mm3 as
described53. Myc-Parkin expression significantly inhibited lung
metastasis of MDA-MB231 cells (Fig. 7h). To investigate whether
Parkin inhibits metastasis of MDA-MB231 cells through
ubiquitination and degradation of HIF-1α, we employed MDA-
MB231 cells in which the endogenous HIF-1α was replaced with
either WT or K477R HA-rHIF-1α (Fig. 5g) for spontaneous lung
metastasis assays. Myc-Parkin expression significantly inhibited
lung metastasis of cells expressing WT HA-rHIF-1α, but did not
clearly inhibit lung metastasis of cells expressing K477R HA-
rHIF-1α (Fig. 7i). Taken together, these results indicate that
Parkin plays a critical role in suppressing breast cancer metastasis
in vivo through ubiquitination and negative regulation of HIF-1α.

Parkin expression correlates with breast cancer metastasis. The
correlation between the Parkin expression and HIF-1α levels was
investigated in three different cohorts of human breast cancer
specimens in three TMAs, including TMA-RCINJ from the
Rutgers Cancer Institute of New Jersey (RCINJ), and TMA-
BR2082a and TMA-BR2281 from US Biomax. The levels of
Parkin and HIF-1α proteins were determined by IHC staining.
Low Parkin expression was significantly correlated with high
HIF-1α levels in these three cohorts of breast cancer (Fig. 8a, b).
Furthermore, Parkin expression was not linked to any specific
breast tumor subtype in terms of ER, PR or HER2 status (Sup-
plementary Fig. 9).

To evaluate the clinical importance of Parkin in breast cancer
metastasis, we analyzed the correlation between Parkin expres-
sion levels and distant metastasis-free survival. Low Parkin
expression was significantly correlated with poor distant
metastasis-free survival in the cohort of human breast cancer
patients from the RCINJ (Fig. 8c). Similar results were obtained
from four different cohorts of breast cancer patients from the
publicly available Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo) (Fig. 8d). TMA-BR2082a and
TMA-BR2281 were not used for analysis due to lack of clinical
outcome information. These results demonstrate that Parkin
expression levels are inversely correlated with HIF-1α levels and
metastasis in breast cancer. In summary, our results demonstrate
that Parkin is an important E3 ubiquitin ligase for HIF-1α, which
inhibits breast cancer metastasis through ubiquitination and
degradation of HIF-1α (Fig. 8e).

Discussion
A growing body of evidence has suggested that Parkin is a tumor
suppressor. For instance, Parkin knockdown promotes the pro-
liferation of cancer cells both in vitro and in vivo, whereas ectopic
expression of Parkin inhibits their proliferation16, 54. In mouse
models, Parkin−/− mice are more susceptible to IR-induced
tumorigenesis than Parkin + / +mice31, and Parkin + /−, APC
min/ + mice showed increased development of intestinal adeno-
mas than Parkin + / + , APC min/ + mice13. Parkin expression is
frequently downregulated in cancer, including breast cancer9, 14–
16, which was also confirmed in this study (Fig. 1a, b). In addition
to loss of heterozygosity and copy number loss9, 13, promoter
hypermethylation has been reported as a mechanism for Parkin
downregulation in certain types of cancer, such as colorectal
cancer13. Based on analysis of data from cBioportal, the mutation
rate of Parkin is relatively low in different types of cancers,
suggesting that Parkin mutations are not a major mechanism
contributing to frequent Parkin downregulation in cancer12.

Currently, the mechanism underlying Parkin’s function in
tumor suppression is not well-defined. The substrates of Parkin
involved in tumorigenesis remain largely unknown. In this study,
we identified HIF-1α as a substrate of Parkin involved in
tumorigenesis. A recent study reported that Parkin expression
reduced HIF-1α protein levels in cultured glioblastoma cells,
however, its mechanism remains unknown25. Based on our
results in this study, the ubiquitination of HIF-1α could be an
important mechanism whereby Parkin downregulates HIF-1α in
glioblastoma cells, which can be tested in future. Considering the
role of Parkin in downregulation of HIF-1α, our results suggest
that the frequent Parkin downregulation in breast cancer con-
tributes to HIF-1α overexpression in cancer. Indeed, our results
showed that low Parkin expression is significantly associated with
high HIF-1α expression in breast cancer (Fig. 8a, b). HIF-1α plays
a critical role in cancer metastasis20, 21, 49. Our results in this
study demonstrate that Parkin inhibits migration, invasion and
metastasis of breast cancer cells through its ubiquitination and
degradation of HIF-1α. Furthermore, Parkin expression is sig-
nificantly correlated with the poor distant metastasis-free survival
in breast cancer (Fig. 8c, d). Thus, our results provide evidence
that Parkin inhibits breast cancer metastasis through down-
regulation of HIF-1α. These results also suggest that targeting
HIF-1α could be a feasible therapeutic strategy for breast cancer
with Parkin downregulation.

HIF-1α is a key regulator of a broad range of cellular processes
in addition to metastasis20, 21. HIF-1α transcriptionally regulates
many downstream target genes which are involved in cell pro-
liferation, survival, metabolic adaptation, angiogenesis and
metastasis, and thus plays an important role in different steps of
cancer progression20, 21. In this study, we examined the effect of
Parkin on the expression of three well-known HIF-1α target
genes involved in metastasis and/or angiogenesis, including
VEGFA, CXCR4 and LOX, and found that Parkin repressed their
expression in a HIF-1α-dependent manner in different breast cell
lines (Fig. 3c, d; Supplementary Fig. 4e, f). Currently, it remains
unclear: 1) which downstream genes of HIF-1α in addition to
VEGFA, CXCR4 and LOX are regulated by Parkin to mediate
Parkin’s function in suppression of metastasis of breast cancer
cells; 2) whether Parkin can regulate different steps of cancer
progression in addition to metastasis, such as cell survival,
metabolic reprogramming and angiogenesis, through regulation
of HIF-1α and its downstream genes; 3) whether Parkin can
regulate HIF-1α signaling in other types of cancer in addition to
breast cancer. It will be of interest to systemically investigate the
impact of Parkin on HIF-1α levels and expression of HIF-1α
downstream genes in different types of tissues and cancers. These
questions should be addressed by future experiments, which
could shed further light on the role and mechanism of Parkin in
tumor suppression.

VHL plays an important role in the regulation of HIF-1α,
which has been extensively studied20, 21. Accumulating evidence
has shown that the VHL-independent mechanism also con-
tributes to HIF-1α regulation22, 23, which is not well-understood.
In this study, we found that Parkin downregulated HIF-1α pro-
tein levels in VHL-deficient RCC4 cells and MCF7 cells with VHL
knockdown (Fig. 2h–j). Furthermore, Parkin downregulated HIF-
1α under both normaxic and hypoxic conditions (Fig. 2e–g).
While K532, K538 and K547 of HIF-1α are the major ubiquiti-
nation sites for VHL47, 48, K477 of HIF-1α was identified as the
major ubiquitination site for Parkin in this study (Fig. 5c, d).
These results indicate that Parkin can ubiquitinate HIF-1α in
VHL and hypoxia-independent manners. Thus, Parkin provides
an additional layer of regulation for HIF-1α in cells.

In summary, our study identified Parkin as an E3 ubiquitin
ligase for HIF-1α. Through negative regulation of HIF-1α, Parkin
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inhibits cancer metastasis, which is an important mechanism for
Parkin in tumor suppression. These results also reveal an addi-
tional mechanism for HIF-1α regulation in cells, and suggest that
the frequent Parkin downregulation in breast cancer contributes
to the increased HIF-1α expression in cancer.

Methods
Cell culture and vectors. MCF7, MDA-MB231, ZR-75-1, SK-BR3, T47D and
MCF10A cells were obtained from ATCC. RCC4 and RCC4/VHL cells were
generous gifts from Dr. William G. Kaelin (Harvard University). All cell lines were
authenticated by short tandem repeat profiling. Cells were regularly tested for
mycoplasma using Lookout Mycoplasma PCR detection kit (MP0035, Sigma) and
only used when negative. The retroviral vectors expressing Myc-tagged Parkin
(pLPCX-Myc-Parkin), HA-tagged HIF-1α (pLHCX-HA-HIF-1α), their deletion
mutants and Flag-tagged VHL (pLPCX-VHL-Flag) were constructed by PCR
amplification. pLPCX-Myc-Parkin vectors with C431A, T173A, T240M or P294S
mutations, pLHCX-HA-HIF-1α vectors with different lysine residue mutations,
and the WT and K477R pLHCX-HA-HIF-1α vectors resistant to HIF-1α shRNA
#1 were constructed by site-directed mutagenesis using QuikChange II XL Site-
Directed Mutagenesis Kit (Agilent Technologies). Detailed information on the
primer sequences for site-directed mutagenesis is listed in Supplementary Table 2.
Two lentiviral shRNA vectors against Parkin (#1: V3LHS_327550 and #2:
V3LHS_327555), against HIF-1α (#1: V3LHS_374856, and #2: V3LHS_374854)
and control shRNA vectors were obtained from Open Biosystems (Huntsville, AL).
The shRNA vectors against VHL were constructed by inserting the following
sequences for human VHL siRNA into the GIPZ lentiviral shRNA vector55. For
VHL #1: 5′-AAGCCTGAGAATTACAGGAGA-3′; for VHL #2: 5′-ACA-
CAGGAGCGCATTGCACAT-3′. Two PINK1 siRNAs were purchased from
Ambion (siRNA-1: #1294; siRNA-2: #1199).

LC-MS/MS analysis. To identify potential Parkin-binding proteins, MCF7 cells
transduced with pLPCX-Myc-Parkin and MCF7 cells transduced with the empty
vector were treated with MG132 (10 μM) for 8 h before being collected for assays.
Myc-Parkin was pulled down by co-IP using anti-Myc beads and eluted with the
Myc peptide. The elutes were then used for a second round of co-IP using an anti-
Parkin antibody. To identify the ubiquitination site(s) of HIF-1α for Parkin, MCF7
cells co-transfected with vectors expressing Myc-Parkin, HA-HIF-1α and His-Ub,
respectively, were treated with MG132 (10 μM) for 8 h before being harvested for
assays. HA-HIF-1α was pulled down by co-IP with an anti-HA antibody and was
used for LC-MS/MS analysis. LC-MS/MS analysis was performed at the Biological
Mass Spectrometry facility of Rutgers University.

Co-IP assays. Co-IP assays were performed according to standard protocols55, 56.
For the co-IP of Myc-Parkin and HA-HIF-1α proteins, anti-Myc (9E10, Santa
Cruz) and anti-HA (A2095, Sigma) agarose beads (20 µl) were used to pull down
Myc-Parkin and HA-HIF-1α, respectively. For the co-IP of endogenous Parkin and
HIF-1α, the anti-Parkin antibody (#4211, Cell signaling, 5 µg) and anti-HIF-1α
antibody (sc-10790, Santa Cruz, 5 µg) were used, respectively. The mouse purified
IgG was used as a negative control.

Western-blot assays. Standard western-blot assays were used to analyze protein
expression in cells. The following antibodies were used for assays: anti-Flag-M2
(F1804, Sigma, 1:10000), anti-β-Actin (A5441, Sigma, 1:10000), anti-Myc (9E10,
Santa Cruz, 1:1000), anti-HA (#2367, Cell Signaling, 1:1000), anti-Parkin (4211,
Cell Signaling, 1:500), anti-HIF-1α (ab51608, Abcam, 1:500), anti-VHL (#2738,
Cell Signaling, 1:500), anti-ubiquitin antibody (sc-8017, Santa Cruz,1:2000), anti-
PINK1 (ab23707, Abcam, 1:1000), anti-GST antibody (sc-138, Santa Cruz, 1:5000),
and anti-His antibody (sc-803, Santa Cruz, 1:1000). The band intensity was
quantified using Image J software (NIH, Bethesda). Uncropped scans of western
blots presented in the main figures are provided in Supplementary Figs. 10-15.

Protein purification and in vitro pull-down assays. Human Parkin cDNA was
cloned into the GST-fusion vector pGEX-4T-1, and human HIF-1α and CDCrel-1
were cloned into the His-Trx-fusion vector pET-32a. E. coli (BL21 DE3 strain)
transformed with various GST- or His-tagged constructs were induced for 16 h at
16 °C with 0.4 mM IPTG to express GST or His fusion proteins. To prepare GST-
fusion proteins, cells were lysed by sonication in the following buffer: 25 mM Tris-
HCl (PH 7.5), 100 mM NaCl, 1 mM DTT, 0.5% Triton-X-100, 10% glycerol, and
protease inhibitors. GST fusions were affinity purified using Glutathione-Sepharose
beads (Sigma) and bound proteins were eluted with GSH elution Buffer (20 mM
reduced glutathione, 120 mM NaCl, 2 mM DTT, 20 mM Tris-HCl, PH 7.5)41, 57.
To prepare His-tagged proteins, cells were lysed by sonication in the following
buffer: 20 mM Tris-HCl, PH 7.5, 400 mM NaCl, 10 mM imidazole, 0.1% Triton X-
100, 10% glycerol, 1 mM DTT, and protease inhibitors. His-tagged proteins were
affinity purified using Ni-NTA agarose (Qiagen) and bound proteins were eluted
with elution buffer (20 mM Tris-HCl, PH 7.5, 200 mM NaCl, 0.1% Triton-X-100,
10% glycerol, 1 mM DTT and 250 mM imidazole)58, 59. Purified proteins were used

for in vitro GST pull-down and in vitro His pull-down assays41, 57–59. In brief,
equal amounts of purified GST-Parkin proteins were immobilized on Glutathione-
Sepharose beads, which were then incubated with purified 200 ng of His-tagged
proteins or His alone. Alternatively, equal amounts of purified His-tagged proteins
were immobilized on Ni-NTA agarose, which were then incubated with 200 ng of
GST-fusion proteins or GST alone. After washing, the proteins bound to the beads
were analyzed by western-blot with anti-His (sc-803, Santa Cruz, 1:1000) or anti-
GST (sc-138, Santa Cruz, 1:5000) antibodies, respectively.

In vivo ubiquitination assays. For in vivo ubiquitination assays, cells were
transfected with vectors, including vectors expressing Myc-Parkin, HA-HIF-1α and
His-Ub, respectively, for 24 h. Cells were then treated with MG132 (10 μM) for 8 h,
and the levels of HA-HIF-1α ubiquitination was determined by IP with an anti-HA
antibody followed by western-blot assays with an anti-Ub antibody (sc-8017, Santa
Cruz,1:2000)55.

In vitro ubiquitination assays. For in vitro ubiquitination assays, reaction mix-
tures (50 μl) consisted of buffer (5 mM MgCl2, 50 mM Tris, pH 7.4, 1 mM DTT, 2
mM ATP), 0.5 µg E1 (Boston Biochem), 0.5 µg E2 (UbcH7; Boston Biochem), 5 µg
Ub (Boston Biochem), 0.5 µg PINK1 (Boston Biochem), 0.4 μg purified His-Trx-
HIF-1α protein and 0.5 µg of purified GST-Parkin60. After incubation for 3 h at 37
°C, post-reaction mixtures were used for western-blot assays with an anti-Ub
antibody (sc-8017, Santa Cruz, 1:2000).

Luciferase reporter assays. For HIF-1α luciferase activity assays, cells with
ectopic Myc-Parkin expression or endogenous Parkin knockdown and their con-
trols cells were transfected with the HIF-1α luciferase reporter vector for 12 h36, 61.
Cells were then treated with or without hypoxia (1% O2) for 16 h before being
harvested for assays. Luciferase reporter assays were performed using the dual
luciferase assay kit (Promega). The pRL-null vector expressing renilla luciferase
(Promega) was used as an internal control to normalize the transfection efficiency.

Quantitative real-time PCR assays. Quantitative real-time PCR was performed
with TaqMan PCR mixture (Applied Biosystems) according to standard proto-
cols55. The expression of genes was normalized to the expression of the Actin gene.

Cell migration and invasion assays. The transwell system (8 μM pore size, BD
Biosciences) was employed for cell migration and invasion assays56, 62. In brief,
cells in serum-free medium were seeded into the upper chambers for migration
assays. For invasion assays, the upper chambers were coated with matrigel. Cells on
the lower surface were fixed, stained and counted at 24–48 h after seeding. Scratch
assays were also performed to examine cell migration ability63. Cells were scratched
with 20 μl pipette tips and then cultured in serum-free medium for 24 h. Scratched
wound was monitored and pictures were taken at the indicated time points. The
distances between the two edges of the scratched wound were measured using
Image J software.

Lung metastasis assays. In vivo lung metastasis assays were performed by the tail
vein injection and orthotopic implantation of breast cancer cells in mice, respec-
tively. For tail vein injection, MDA-MB231 and MCF7 cells (1 × 106 and 2 × 106

cells, respectively) transduced with lentiviral vectors expressing luciferase were
injected into 2-month-old female BALB/c nude mice via the tail vein (n = 6 or 8
mice per group)56, 64. Lung metastatic colonization was monitored once every
2 weeks using bioluminescence imaging by IVIS Spectrum in vivo imaging system
(PerkinElmer), and validated at the endpoint by routine histopathological analysis.
For orthotopic implantation of tumor cells, MDA-MB231 cells (5 × 106 in a 50:50
mix of DMEM: Matrigel) were injected into the mammary fat pad of female mice
as described previously (n = 8 mice per group)65. Primary tumors were surgically
removed when they reached a volume of ~200 mm3 to eliminate the effect of
primary tumor size on metastasis occurrence53. Mice were killed at 8 weeks after
primary tumor removal, and lung metastasis was examined by routine histo-
pathological analysis. All mouse experiments were approved by the University
Institutional Animal Care and Use Committee.

Human breast cancer TMAs. The TMA-RCINJ (from the RCINJ) composed of
200 primary breast tumors were processed on this Rutgers institutional review
board approved study66, 67. Annotated de-identified clinical data were entered into
a database. All patients in the study were treated with breast conserving surgery
followed by radiation therapy to the intact breast. Systemic therapy was adminis-
tered as clinically indicated in accordance with standard clinical practice. Distant
metastases were defined as clinical evidence of distant disease based on clinical and/
or radiographic findings. Two other TMAs, TMA-BR2082a and TMA-BR2281,
were obtained from US Biomax. TMA-BR2082a contains 120 human breast tumor
tissues and 48 non-tumor breast tissues, and TMA-BR2281 contains 220 human
breast tumor tissues. TMA-BR2082a and TMA-BR2281 do not include information
on clinical outcomes.
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Immunohistochemistry assays. IHC staining of human breast cancer samples in
TMAs was performed using anti-Parkin (NB100-91921, Novus, 1:100) and anti-
HIF-1α antibodies (sc-10790, Santa Cruz, 1:50), respectively55, 62. Signals in tumor
cells were visually quantified using a scoring system from 0 to 9. The scores were
obtained by multiplying the intensity of signals with the percentage of positive cells
(signal: 0 = no signal, 1 =weak signal, 2 = intermediate signal, and 3 = strong signal;
percentage: 0 = 0%, 1 ≤ 25%, 2 = 25-50%, and 3 ≥ 50%). Low and high expression
were defined as scores of< 6 and ≥ 6, respectively55, 68.

Statistical analysis. No statistical methods were used to predetermine sample size.
For experiments, a minimum of three samples were chosen as a sample size to
ensure adequate power. The experiments were not randomized. The investigators
were not blinded to allocation during experiments and outcome assessment. The
differences in tumor growth among groups were analyzed for statistical significance
by analysis of variance (ANOVA), followed by two-tailed Student’s t test using
GraphPad Prism software. The differences between two Kaplan–Meier survival
curves were analyzed by the log-rank (Mantel–Cox) test using GraphPad Prism
software. P values < 0.05 were considered statistically significant and set as follows:
#P< 0.05; *P< 0.01; **P< 0.001.

Data availability. Parkin expression and alterations data were obtained from the
public TCGA portal (https://tcga-data.nci.nih.gov/tcga/) and from Cbioportal
(http://www.cbioportal.org/), respectively. The relapse-free survival data and the
metastasis-free survival data were obtained from Kaplan–Meier plotter (http://
kmplot.com/analysis/), and from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), respectively. All other remaining data are
available in the article and Supplementary Files, or available from the authors upon
request.
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