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Abstract

Calcium imaging has led to discoveries about neural correlates of behavior in subcortical

neurons, including dopamine (DA) neurons. However, spike inference methods have not

been tested in most populations of subcortical neurons. To address this gap, we simulta-

neously performed calcium imaging and electrophysiology in DA neurons in brain slices and

applied a recently developed spike inference algorithm to the GCaMP fluorescence. This

revealed that individual spikes can be inferred accurately in this population. Next, we

inferred spikes in vivo from calcium imaging from these neurons during Pavlovian condition-

ing, as well as during navigation in virtual reality. In both cases, we quantitatively recapitu-

lated previous in vivo electrophysiological observations. Our work provides a validated

approach to infer spikes from calcium imaging in DA neurons and implies that aspects of

both tonic and phasic spike patterns can be recovered.

Introduction

The use of genetically encoded calcium indicators like GCaMP has made it possible to record

neural activity from large populations of neurons with cell-type-specificity [1–3]. These

advances have spurred development of spike inference methods to estimate the underlying

spikes from the imaged calcium [4–14], but to date their application has been largely limited to

cortical and hippocampal neurons [15–21]. Thus, it is unclear how well these algorithms per-

form on other cell types, particularly those with tonic levels of baseline activity. One popula-

tion of particular interest is midbrain dopamine (DA) neurons, given the shift in recent years

to record from these neurons through calcium imaging [22–27], combined with the lack of

established and validated methods to relate calcium and electrophysiology data in these

neurons.

Two challenges arise when trying to infer spike rates from a new cell type. The first is the

acquisition of ground-truth data (simultaneous imaging and electrophysiology data from the

same neurons), which is needed to validate a spike inference method in a new cell type. The

second is that spike inference algorithms rely on tuning parameters, and it is unclear how to

select them, especially on a new cell type. For example, DA neurons have distinct calcium
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currents [28–30] and buffering properties [31–33] compared to cortical neurons, which may

affect the relationship between calcium fluorescence and spikes.

Because of these challenges, most imaging studies focused on subcortical neurons such as

DA neurons have directly correlated calcium fluorescence to behavioral variables without

accounting for the slow calcium dynamics [22–27, 34, 35]. This approach risks introducing

inaccuracies in characterizing the relationship between neural activity and behavior and makes

it difficult to relate findings from calcium imaging to those arising from electrophysiology.

Thus, to first address the lack of ground-truth data in the case of midbrain DA neurons, we

collected simultaneous GCaMP imaging and cell-attached electrophysiology recordings in
vitro (given the technical limitation of simultaneous in vivo measurements of these two sig-

nals). We then used these data to validate a recently-developed spike inference algorithm in

these neurons [4].

Next, to address the issue of how to select the tuning parameters on new datasets when

ground-truth spikes are not available (which is inevitably the case for subcortical in vivo imag-

ing data), we made use of the fact that this spike inference algorithm depends on only two tun-

ing parameters, both of which have a biophysical interpretation. The first corresponds to the

decay rate of the calcium indicator, which we measured in our in vitro data. The second deter-

mines the average estimated firing rate of the recorded neurons, which we selected based on

mean firing rates previously observed in midbrain DA neurons in vivo [36–39], and which can

be measured by phototagging a new cell type of interest.

Using this straightforward approach to select the tuning parameters, we were able to quan-

titatively recapitulate multiple published properties of DA spiking from in vivo imaging data.

During delivery of unexpected reward, inferred firing rates are of the appropriate magnitude

and duration when compared to in vivo electrophysiology data. During omission of expected

reward, pauses in firing in response to reward omission can be detected. Underscoring the

utility of spike inference, inferred spikes, but not the calcium fluorescence itself, recapitulates

the previously reported relationship between reward delivery and reward omission. In addi-

tion to these fast response properties, slow upward and downward ramps in inferred tonic fir-

ing rate as animals approach rewards can also be detected. On the other hand, inference does

not capture certain features of previously published data, including the reported variability in

tonic firing rates across DA neurons. Thus, we describe strengths as well as limitations of a

simple approach for inferring spikes in DA neurons. We expect this approach to generalize to

other subpopulations of genetically identified subcortical neurons.

Results

Validation of spike inference using simultaneous calcium imaging and

electrophysiology in vitro
To determine the efficacy of spike inference in ventral tegmental area (VTA) DA neurons, we

generated a ground-truth dataset by performing simultaneous calcium imaging and cell-

attached electrophysiological recordings of spontaneously active, burst-firing DA neurons

expressing either GCaMP6f or GCaMP6m (Fig 1A, S1 and S2 Figs; GCaMP6f at 30˚C, n = 12

recordings from 9 total cells; GCaMP6f at 37˚C, n = 24 recordings from 12 total cells;

GCaMP6m at 37˚C, n = 19 recordings from 9 total cells). We performed these simultaneous

measurements in vitro, given that combining these approaches in vivo in the VTA, which is

located deep in the brain, is not currently feasible. In addition to the data presented in Fig 1,

we also recorded from pacemaker cells which had faster GCaMP decay kinetics (S1 Fig).

To estimate spike times on the basis of calcium fluorescence, and to compare to the corre-

sponding ground-truth spike measurements, we leveraged a generative model of the calcium
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Fig 1. Spike inference applied to VTA DA neurons in vitro. a. Example data trace of simultaneous GCaMP6f (top) and raw cell-attached electrophysiology trace

(bottom). b. Generative model of calcium dynamics. Simulated data (left) from this model (right) shows the underlying calcium ct (purple line) decays at rate γ until at

time s there is a spike, so that zs>0 (red vertical lines below). GCaMP observations yt (black dots) are noisy realizations of the underlying calcium concentration. c.

Example of decay estimation using multiple spike-free segments (“Decay segs.”, light blue). Observed GCaMP (black) decays at the same rate between spikes (black vertical

lines below). The rate of exponential decay, γ, was estimated by fitting an exponential decay model to the observed GCaMP in the spike-free segments. d. Estimated decay

rate per timestep at 66.67 Hz for GCaMP6f at 30˚C (median = 0.987, Q1 = 0.983, Q3 = 0.988), GCaMP6f at 37˚C (median = 0.975, Q1 = 0.971, Q3 = 0.980), and

GCaMP6m at 37˚C (median = 0.986, Q1 = 0.983, Q3 = 0.991). e. Decay time (half life, t1/2) for GCaMP6f at 30˚C (median = 0.772 s, Q1 = 0.619 s, Q3 = 0.866 s), GCaMP6f

at 37˚C (median = 0.412 s, Q1 = 0.359 s, Q3 = 0.523 s), and GCaMP6m at 37˚C (median = 0.725 s, Q1 = 0.614 s, Q3 = 1.100 s). f. van Rossum distance for each

experimental condition and for each recording, using the median decay rate across all recordings for that type of GCaMP and temperature, as a function of the difference

between the average inferred firing rate and average observed firing rate. The distance is minimized when the average firing rate between the inferred and observed spikes

is similar. g. van Rossum distance for each experimental condition and for each recording as a function of the decay rate γ when the tuning parameter is selected so that the

inferred firing rate matches the observed firing rate of the recording. The shaded region and vertical dark grey line represent the estimated interquartile ranges and median

values of the decay rate in d. h. Example of correspondence between observed GCaMP (black line, top) and estimated calcium (blue line, top), and observed spikes (black

vertical dashes, bottom) and inferred spikes (blue vertical dashes, bottom) in a single cell expressing GCaMP6f measured at 30˚C. i. Example of correspondence between

observed GCaMP (black line, top) and estimated calcium (green line, top), and observed spikes (black vertical dashes, bottom) and inferred spikes (green vertical dashes,

bottom) in a single cell expressing GCaMP6f measured at 37˚C. j. Example of correspondence between observed GCaMP (black line, top) and estimated calcium (orange

line, top), and observed spikes (black vertical dashes, bottom) and inferred spikes (orange vertical dashes, bottom) in a single cell expressing GCaMP6m measured at 37˚C.

https://doi.org/10.1371/journal.pone.0252345.g001
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dynamics resulting from spikes [8, 14] (Fig 1B). In this model, the fluorescence trace yt at the

tth time step is a noisy observation of the underlying calcium concentration ct, which is

assumed to decay with rate 0<γ<1 unless there is a spike. A spike causes an instantaneous

increase in the calcium concentration (Fig 1B). As previously discussed [5], we fit the model

by minimizing the difference between the observed fluorescence and modeled calcium, while

applying an L0 regularization penalty on the total number of inferred spikes. A recently-devel-

oped dynamic programming approach is used to efficiently solve this non-convex optimiza-

tion problem (Fig 1B; also see Methods).

This spike inference algorithm depends on only two parameters, both of which are easily

interpretable: i) the calcium decay rate γ, and ii) the regularization tuning parameter λ, which

controls the total number of inferred spikes in a recording—in other words, the average

inferred firing rate. The decay rate γ was selected based on fitting an exponential curve to the

GCaMP fluorescence in segments without spikes (Fig 1C–1E; see Methods for curve fitting).

To assess the agreement between the inferred spikes and the true spikes, we calculated the

van Rossum distance metric for the inferred and true spikes for each neuron across a range of

values of the tuning parameter λ (Fig 1F; see Methods) [40, 41]. This distance was smallest

when the inferred average firing rate (computed as the number of inferred spikes divided by

the length of the recording) equaled the true average firing rate, indicating that the true firing

rate provides the optimal choice of λ. Based on this observation, to select λ for each neuron, we

matched the inferred firing rate to the true firing rate of each neuron for our in vitro data.

To determine the sensitivity of spike inference to the decay rate γ, we calculated the van

Rossum distance metric for the inferred and true spikes for each recording across a range of

values of the decay rate, while matching the tuning parameter λ to the observed firing rate (Fig

1G). For most recordings, van Rossum distances were similar across the range of decay rates,

particularly within the measured interquartile range of decay rates for each condition (light

grey shaded regions in Fig 1G correspond to ranges in Fig 1D). This suggests that our spike

inference will generate similar results even when the decay rate parameter does not exactly

match the observed decay rate for that neuron. Based on this observation, we use the median

decay rate of the respective GCaMP type for subsequent in vitro (Fig 1H–1J; S3–S5 Figs) and

in vivo (Figs 2–4) estimations.

Across the population, inferred spike times tended to match true spike times in the in vitro
dataset, during periods of tonic as well as burst activity (Fig 1H–1J, S3–S6 Figs). However,

some patterns of activity were not well-recovered using this approach (S3–S6 Figs). There

were occasional inaccuracies when estimating timing of the final spikes of a burst, or the first

tonic spikes following a burst, when the GCaMP signal is still decaying (as seen in Fig 1J).

Additionally, inferred spikes cannot recreate the timing of recorded spikes at frequencies

above double the sampling frequency (66.67 Hz; see Methods).

In summary, our spike inference method appears well-suited to estimate both tonic and

phasic activity in DA neurons, with some limitations on estimating exact spike placement dur-

ing and immediately after burst activity, and with a limit to the maximum inferred firing rate.

Given the successes and limitations in this in vitro data, we next asked whether our spike infer-

ence method could reproduce previously reported patterns of phasic and tonic activity in iden-

tified DA neurons in vivo.

Application of spike inference to in vivo imaging data during the

presentation of unexpected reward

While unexpected reward is known to generate widespread phasic responses in DA neurons

based on electrophysiology data [39, 42–45], the extent to which spike inference can
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quantitatively recapitulate the magnitude and duration of the unexpected reward response has

not been determined. Thus, we applied this spike inference algorithm to recently published in
vivo two-photon calcium imaging data from VTA DA neurons during unexpected reward

delivery [22] (Fig 2A–2E), and compared to the firing rates obtained from in vivo electrophysi-

ology recordings from VTA DA neurons in a previously published dataset from other mice

performing a different conditioning task [39]. For these spike estimates, the decay γ was set to

the median decay rate from the in vitro measurements at 37˚C (γ = 0.970 for GCaMP6f 37˚C;

γ = 0.984 for GCaMP6m at 37˚C at 60 Hz sampling frequency; Fig 1D), whereas the tuning

parameter λ was set to correspond to a mean firing rate of 6 Hz, consistent with previous in
vivo measurements of average DA neuron firing rates [36, 38, 39, 46].

We first compared the magnitude of the phasic response to unexpected reward in inferred

spikes with spikes previously measured via electrophysiology in DA neurons in another group

of mice (electrophysiology data from [39]). The unexpected reward response was defined as

the baseline subtracted mean firing rate over a 600 ms window following reward onset (base-

line calculated over a 1s period before reward) [39]. We found that inferred spikes showed a

similar increase in firing rate following reward compared to the Eshel et al. electrophysiology

data (inferred spikes median = 9.8 Hz, Q1 = 6.2 Hz, Q3 = 12.2 Hz; electrophysiology spikes

median = 9.5 Hz, Q1 = 6.3 Hz, Q3 = 12.0 Hz; Fig 2E–2G). The peak amplitude of the unex-

pected reward response based on inferred spikes was also similar to those in the electrophysiol-

ogy dataset (inferred spikes median = 29.0 Hz, Q1 = 23.7 Hz, Q3 = 38.6 Hz; electrophysiology

median = 30.5 Hz, Q1 = 22.6 Hz, Q3 = 40.9 Hz; Fig 2H).

In contrast to the prolonged ΔF/F modulation to unexpected reward (Fig 2C and 2D),

inferred spikes displayed a subsecond, phasic modulation (Fig 2C and 2E). In fact, the duration

of the unexpected reward response was similar between inferred spikes and electrophysiology

spikes (inferred spikes median full duration at half max = 183.9 ms, Q1 = 120.4 ms, Q3 = 272.5

ms; electrophysiology median full duration at half max = 153.5 ms, Q1 = 120.4 ms, Q3 = 272.5

ms; Fig 2I).

However, the electrophysiology population average firing rate displayed a biphasic response

which was not evident in the inferred spikes (Fig 2F). It is unclear if this difference reflects a

limitation of spike inference to detect the time course of a biphasic burst or is instead due to

differences in the experimental design between the calcium imaging and the electrophysiology

datasets. In the calcium imaging experiment, reward size was constant (reward size 8 μL),

whereas for the electrophysiology dataset, reward size varied (ranging from 0.2 to 20 μL).

Fig 2. Spike inference applied to in vivo calcium imaging in VTA DA during presentation of unexpected reward generates firing rate modulations comparable

to those previously reported in other animals via electrophysiology. a. Top: Schematic of the surgical strategy, where GCaMP6 is expressed in VTA DA neurons and

a GRIN lens is implanted for imaging. Bottom: Schematic of recording setup, where the mouse is headfixed and VTA DA neurons are recorded via 2-photon calcium

imaging. b. Schematic of spike estimation approach as applied to the in vivo data, where the observed ΔF/F is used to generate estimated calcium and inferred spikes

using the decay parameter γ from in vitro experiment and a λ selected to target a 6 Hz average estimated firing rate. c. Left: Schematic showing unexpected reward is

delivered after random inter-trial intervals. Middle: Example of an unexpected reward trial from a single cell, showing observed GCaMP (orange) and inferred spikes

(black vertical lines). Right: All unexpected reward trials from an example cell, showing observed GCaMP (top) and inferred spikes (bottom). d. Mean observed

GCaMP from population around presentation of unexpected reward (n = 65 cells). e. Mean population firing rate from inferred spikes from population around

presentation of unexpected reward (n = 65 cells). f. Mean population firing rate from spikes recorded via electrophysiology (from Eshel et al. [39]; n = 40 cells) around

presentation of unexpected reward. g-j. Comparison of inferred and electrophysiology spikes from Eshel et al. [39]. g. Unexpected reward response, where reward

response is the mean firing rate over the first 600 ms following reward presentation, baseline subtracted using the mean firing rate over a 1 s period before reward

presentation (inferred spikes over baseline median = 9.8 Hz, Q1 = 6.2 Hz, Q3 = 12.2 Hz; electrophysiology spikes over baseline median = 9.5 Hz, Q1 = 6.3 Hz,

Q3 = 12.0 Hz). h. Peak reward response amplitude in inferred and electrophysiology spikes, where peak is maximum value of PSTH in the first 600 ms period

following reward presentation (inferred spikes median = 29.0 Hz, Q1 = 23.7 Hz, Q3 = 38.6 Hz; electrophysiology median = 30.5 Hz, Q1 = 22.6 Hz, Q3 = 40.9 Hz). i.

Full duration at half max of reward response peak in inferred and electrophysiology spikes (inferred spikes median full duration at half max = 183.9 ms, Q1 = 163.6 ms,

Q3 = 235.9 ms; electrophysiology median full duration at half max = 153.5 ms, Q1 = 120.4 ms, Q3 = 272.5 ms). j. Mean tonic firing rates prior to presentations of

unexpected reward, where tonic firing rates are calculated as the mean firing rate over a 1 s period prior to reward presentation (inferred spikes tonic firing rate

median = 5.7 Hz, Q1 = 5.3 Hz, Q3 = 6.0 Hz; electrophysiology tonic firing rate median = 5.6 Hz, Q1 = 4.3 Hz, Q3 = 7.5 Hz). Vertical bars are interquartile range (Q1

and Q3). All data is from cells expressing GCaMP6f.

https://doi.org/10.1371/journal.pone.0252345.g002
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Thus, it is possible that the second bump of the reward response is due to receiving a larger-

than-expected reward (10 μL reward, the closest volume to our experiment) [43].

The median tonic firing rate of the inferred spike dataset was similar to that of the electro-

physiology dataset (inferred spike tonic firing rate median = 5.7 Hz, Q1 = 5.3 Hz, Q3 = 6.0 Hz;

Fig 3. Spike inference applied to Pavlovian conditioning in vivo imaging data recapitulates transient cue responses, pauses following reward omission, and

previously reported relationships between expected and unexpected reward responses. a. Top left: Schematic showing expected reward is delivered after a 2 s cue

presentation. Bottom left: Example expected reward trial from a single cell, showing observed GCaMP (purple) and inferred spikes (black vertical lines). Right: All

expected reward trials from the example cell, showing observed GCaMP (top) and inferred spikes (bottom). b. Mean observed GCaMP from population around

presentation of expected reward. c. Mean inferred spikes from population around presentation of expected reward. d. Full duration at half max of cue response in inferred

spikes (median = 189.3 ms, Q1 = 168.3 ms, Q3 = 205.6 ms). Vertical bars are interquartile range (Q1 and Q3). e. Top left: Schematic showing unexpected omission of

reward, where reward is omitted after a 2 s cue presentation that previously predicted reward. Bottom left: Example unexpected omission trial from a single cell, showing

observed GCaMP (green) and inferred spikes (black vertical lines). Right: All unexpected omission trials from example cell, showing observed GCaMP (top) and inferred

spikes (bottom). f. Mean population observed GCaMP around unexpected omission of reward. g. Mean population firing rate from inferred spikes around unexpected

omission of reward. Shaded areas are SEM. h. Mean omission response of inferred spikes, where omission response is mean firing rate over 1,300 ms following onset of

reward omission, baseline subtracted using the mean firing rate over 1 s period before trial start (median = -1.3 Hz, Q1 = -2.3 Hz, Q3 = -0.1 Hz). Neurons that exhibited a

significant decrease in firing following reward omission (22/65 neurons; 33.9% of population) are darker green. Vertical bars are interquartile range (Q1 and Q3). i.

Scatterplot of expected reward response versus unexpected reward response, using inferred firing rate of each neuron, recapitulates correlations in Eshel et al. [39]. j.

Scatterplot of omission response versus unexpected reward response, using inferred firing rate of each neuron, recapitulates correlations in Eshel et al. [39]. Responses in i

and j are baseline subtracted. All data is from cells expressing GCaMP6f.

https://doi.org/10.1371/journal.pone.0252345.g003
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electrophysiology tonic firing rate median = 5.6 Hz, Q1 = 4.3 Hz, Q3 = 7.5 Hz; tonic firing rate

calculated as the mean firing rate over a 1 s window prior to reward; Fig 2J). This implies that

spike inference correctly assigns the total number of inferred spikes (which is dictated by λ) to

phasic versus tonic firing. However, across neurons, the inferred spikes displayed less variabil-

ity than the electrophysiology data in the tonic firing rates, presumably as a result of applying

the same tuning parameter λ for all neurons, when in reality DA neurons exhibit a range of

average in vivo firing rates between 1–10 Hz [36–38].

We found these results were robust to the specific selection of the model parameters. We

repeated the spike inference for values of the tuning parameter selected to approximate 4 Hz

and 8 Hz mean firing rates, both within the range of firing rates observed in dopamine neu-

rons in vivo (S7A–S7E Fig), and found qualitatively similar results across this range. We also

Fig 4. Upward and downward ramps in inferred spikes during reward approach in a virtual reality environment, in agreement with recent reports from

electrophysiology. a. Left: Schematic of neural recording and behavioral setup. The mouse navigates a virtual reality (VR) environment and 2p microscope records

neural data. Right: Schematic of VR T-maze paradigm. The mouse navigates a linear maze and at the end must turn to the side that featured more cues in the Cue

Region to receive reward. b. Example of single trial data from an upward-ramping cell. Both observed GCaMP (green) and inferred spikes ramp upward over time as the

mouse moves down the maze (position trace, yellow). c. Example of a single trial from a downward-ramping cell. Both observed GCaMP (green) and inferred spikes

ramp downward over time as the mouse moves down the maze (position trace, yellow). d. All trials from the example upward-ramping cell in (b) of observed GCaMP by

position. e. All trials from the example upward-ramping cell in (b) showing inferred spikes by position. f. Mean observed GCaMP by position for example upward-

ramping cells. g. Mean inferred firing rate by position for example upward-ramping cells. h. All trials from the example downward-ramping cell in (c) of observed

GCaMP by position. Heatmap color scales constrained to data between 1st and 99th percentile. i. All trials from the example downward-ramping cell in (c) showing

inferred spikes by position. j. Mean observed GCaMP by position for example downward-ramping cells. k. Mean inferred firing rate by position for example downward-

ramping cells. Shaded areas are SEM. l. Scatterplot showing how change in observed GCaMP from beginning to end of maze for each neuron relates to change in

inferred firing rate for that neuron. Each data point represents a single neuron and its mean change in observed GCaMP and inferred firing rate. Red line is linear least-

squares fit; shaded region is 95% confidence of the fit. m. Distribution of inferred spike slopes over time among neurons with significant position modulation with

negative (red; mean slope = -0.12 spikes/s2; n = 72/303 neurons) or positive (blue; mean slope = 0.18 spikes/s2; n = 112/303 neurons) ramps, or with no significant

position modulation (grey; mean slope = 0.02 spikes/s2; n = 119/303 neurons). Significant position modulation determined by a generalized linear model (GLM), where

the inferred spikes were predicted by mouse position, with a factor for individual trials, where neurons were classified as significantly ramping if the coefficient

associated with position was statistically significant at level alpha = 0.01. Data is from a mix of cells expressing either GCaMP6f or GCaMP6m.

https://doi.org/10.1371/journal.pone.0252345.g004
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examined the results of spike inference with decay rates γ selected as the upper and lower

interquartile values from the in vitro experiment rather than the median value, and observed

highly similar results (S8A–S8E Fig).

Taken together, our spike inference applied to in vivo DA imaging data closely recapitulates

the median magnitude and duration of phasic activity to unexpected reward, as previously

measured via electrophysiology, as well as the median level of tonic activity. However, the

approach did not reproduce cross-neuron variability in tonic firing rates, and there may also

be limitations to detecting a biphasic reward response.

Application of spike inference to in vivo imaging data during Pavlovian

conditioning

We next inferred spikes from VTA DA calcium imaging data taken during Pavlovian condi-

tioning (Fig 3A; 2 s tone presentation followed immediately by reward delivery). This is one of

the most commonly utilized behavioral paradigms to study VTA DA neuron activity [43, 44,

47–49]. Our goal was to determine whether spike inference recapitulates the previously

reported features of DA firing activity during Pavlovian conditioning, including the transient,

phasic response to a cue that predicts reward [50], the pause resulting from the omission of an

expected reward [39, 44, 51], and finally, the previously established relationships across neu-

rons in response to expected, unexpected, and omitted rewards [39, 51]. Because we did not

have electrophysiology data from the same Pavlovian task as our imaging data, we were not

able to make direct comparisons to electrophysiology for these data.

Inferred spike rates displayed a transient phasic burst to the cue onset (median full duration

at half max = 189.3 ms, Q1 = 168.3 ms, Q3 = 205.6 ms), consistent with previous electrophysi-

ology reports (Fig 3A–3D; S9 Fig) [50]. This fast, phasic response contrasted with GCaMP

fluorescence, which remained elevated throughout the 2 s duration of the cue that predicted

reward (Fig 3A and 3B).

We next examined whether spike inference was able to recover the decrease in tonic firing

that occurs following reward omission (sometimes called “pause”, Fig 3E–3H) [39, 44, 51].

Inferred spike rates in 33.9% of neurons (22/65) displayed a significant decrease in response to

reward omission (Fig 3E for example neuron; Fig 3G and 3H and S10 Fig for population sum-

maries; median omission response = -1.3 Hz, Q1 = -2.3 Hz, Q3 = -0.1 Hz; n = 65 neurons).

Though a direct comparison has limitations, electrophysiology data from a Pavlovian experi-

ment from Eshel et al. [39] following odor-reward pairings revealed that 41.9% of neurons (13/

31) exhibited significant decreases in firing rate in response to reward omission (median omis-

sion response = -1.5 Hz; S11 Fig; 7 trials per cell were analyzed in order to match the available

trial number in the imaging dataset). Spike inference with alternate values of the tuning

parameter resulted in a slightly larger or smaller magnitude of pause response, but similar pro-

portions of neurons with significant pause responses (S7H and S7I Fig). Spike inference with

alternate decay rates, taken as estimated interquartile values from the in vitro estimates, gener-

ated highly similar results to inference performed using the median decay (S8H and S8I Fig).

Thus, spike inference is able to recover pauses to reward omission in a similar proportion to

that observed with electrophysiology, even over a range of model parameters.

Finally, it has previously been reported that across DA neurons, responses to unexpected

reward are positively correlated with responses to expected reward, while unexpected reward

responses are negatively correlated with responses to reward omission [39, 51]. We recovered

both of these relationships on the basis of inferred spikes (Fig 3I and 3J), even when using

alternate tuning parameters (S12 Fig) or decay rates (S13 Fig). These relationships were not

reliably recovered directly from GCaMP fluorescence without applying spike inference (S14
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Fig). This is because, as mentioned above, the fluorescence in response to the cue has not

returned to baseline at the time of the reward or omission (Fig 3B and 3F). Therefore, account-

ing for this baseline offset through spike inference avoids inaccuracies in response estimates at

the time of reward.

Application of spike inference to in vivo DA calcium imaging data collected

during a task in virtual reality

In addition to the phasic modulation of DA activity in response to reward or reward-predict-

ing cues, there are an increasing number of reports suggesting that activity may “ramp” as ani-

mals approach a reward in space [22, 52–56]. Most of these studies were based on calcium

imaging [22, 56], or on measures of downstream DA release [52, 53, 55], but more recently evi-

dence has emerged from in vivo electrophysiology of ramps in the tonic firing of VTA DA neu-

rons during reward approach [54].

Thus, a key question is whether spike inference recovers the recently observed upward and

downward ramps in tonic DA neuron firing. To our knowledge, spike inference has not previ-

ously been validated in the context of tonic firing rate modulations in any cell type.

To this end, we applied our spike inference procedure to a recent virtual reality T-maze

study with 2-photon imaging of DA neurons (Fig 4A) [22]. Again, for these spike estimates,

the decayγ was set to the median decay rate from the in vitro measurements at 37˚C (γ = 0.970

for GCaMP6f at 37˚C; γ = 0.984 for GCaMP6m at 37˚C at 60 Hz sampling frequency), and the

tuning parameter λ was set to correspond to a mean firing rate of 6 Hz for each neuron.

Ramps in both GCaMP fluorescence and inferred spikes were often evident on single trials

(Fig 4B–4I). Example neurons with prominent downward or upward ramps in GCaMP fluo-

rescence showed corresponding ramps in inferred firing rates consistent with modulation of

tonic activity (where tonic activity is defined as a firing rate between 1–10 Hz; Fig 4F–4K).

Across the population of 303 neurons, there was a strong correlation in the extent (and direc-

tion) of change in the fluorescence signal and the inferred spike rates across the maze (correla-

tion coefficient R = 0.832; p = 6.9x1079; Fig 4L), with a change in ΔF/F of 0.25 from the

beginning to the end of the maze associated with a change in firing rate of ~1.4 Hz (Fig 4L).

Neurons with significantly positive ramps in inferred firing rates increased in firing by an aver-

age of 0.18 spikes/s2 (n = 119/303 neurons; Fig 4M), whereas those with significant negative

ramps decreased in firing by an average of 0.12 spikes/s2 (n = 72/303 neurons; Fig 4M). The

proportions of ramping neurons and ramp magnitudes were similar across a range of tuning

parameters and decay rates (S15 and S16 Figs). These changes in firing rate across time are

comparable in magnitude and distribution to those observed in a recent study that used

electrophysiology to record from VTA DA neurons during a different reward-approach task

in virtual reality [54].

Altogether, our spike inference method predicts that the ramps in the calcium fluorescence

signals during our reward-approach task in VR are mediated by modest ramps in the tonic fir-

ing rates of these neurons. The ramps in our inferred firing rates are well predicted by the mag-

nitude of the calcium ramps, and are consistent with those measured in a recent study that

performed electrophysiology recordings during a similar task [54]. Thus, we show that spike

inference can produce the subtle, slow-timescale changes in tonic firing rates that have been

reported in DA neurons as animals approach rewards.

Discussion

Here, we establish and validate procedures to infer spikes from calcium imaging in DA neu-

rons, making use of a recently developed spike inference algorithm [4] that depends on only
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two tuning parameters, which can be selected based on knowledge of basic biophysical proper-

ties of the cell type of interest. We first validate this approach for spike inference on a new

ground-truth dataset that we have collected, which consists of simultaneous calcium imaging

and electrophysiology recordings in DA neurons in vitro. We then apply this same approach to

recently published in vivo DA calcium imaging data during Pavlovian conditioning and virtual

reality-based navigation. We find that spike inference successfully recapitulates various features

of spiking in DA neurons that were previously reported based on electrophysiological measure-

ments, including the magnitude of the phasic unexpected reward response, average tonic firing

rates, the relationship between expected and unexpected reward responses during Pavlovian

conditioning, pauses during the omission of expected reward, and the recently reported magni-

tude of upward and downward ramping tonic activity during VR-based navigation.

Limitations of spike inference in VTA DA neurons

Despite these successes, we also noted limitations to DA spike inference in vivo and in vitro. In
vitro, there were some missed or mis-timed spikes. In vivo, we did not recapitulate the

observed variability in tonic firing rates, nor the smaller second peak in response to unex-

pected reward that has been previously reported. Since we did not have a true ground-truth

dataset for the in vivo data, it is impossible to know whether the subtle differences we noted

relative to previously published work should be attributed to shortcomings of spike inference,

differences in behavioral paradigms in our imaging study versus the previous electrophysiol-

ogy study, or some other factor.

One source of discrepancy between spike inference and true spikes is that we are limited to

inferring spikes at double the imaging sampling frequency (60 Hz for in vivo data, 66.67 Hz for

in vitro data; see Methods). While average DA neuron phasic firing rates in response to reward

are typically <60 Hz (Fig 2H), firing rates can momentarily exceed this value. This may be less

relevant for our in vivo analyses, which involved averaging firing rates across trials for a given

neuron.

Another source of discrepancy could be caused by limitations in the signal-to-noise of the

imaging data. While single-spike events are often visually detectable in the fluorescence trace

by eye in the in vitro data, in vivo recordings tend to have lower signal-to-noise ratios that may

preclude reliable detection of single-spike events [57]. Since we only considered trial-averaged

properties, and since phasic DA neuron responses even to very small rewards consist of two or

more spikes [39, 58], these issues may be less relevant in our data.

The fact that we did not tune the two free parameters for the spike inference algorithm per

neuron in the in vivo data could also produce discrepancies. This might be particularly relevant

for λ, given that we assumed a target firing rate of 6 Hz, whereas in reality VTA DA neuron

average firing rates may range between 1–10 Hz [36–39, 46]. While we found that our spike

inference results were robust to varying the tuning parameter within a reasonable range of tar-

get firing rates (S13 and S14 Figs), examining robustness of any conclusions across a range of λ
is recommended in future applications of this method.

In this paper, we have considered a very simple model relating the observed fluorescence to

the unobserved calcium and spike times. Like all models, ours is misspecified: in particular,

our assumption that the calcium increases instantaneously due to the presence of a spike is

unrealistic, as is the assumption that the error terms are independent over time. Nonetheless,

this approach leads to accurate estimates of spike times. While we could fit a more complex

model that avoids these two sources of misspecification, this would result in a reduction in

bias at the expense of a potentially substantial increase in variance, and thus we suspect that

such an approach would not lead to improved spike time estimation.
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Relationship to recent validation of spike inference in cortical neurons

Until recently, systematic comparisons of neural correlates derived from electrophysiology

data and imaging data were lacking. Recent work has begun to address this gap, by comparing

neural tuning properties derived from calcium imaging versus electrophysiology data in cortex

[59, 60].

Siegle et al. [59] reported discrepancies in visual cortex between neural correlates based on

calcium imaging versus electrophysiology, with a larger fraction of responsive neurons from

electrophysiology and higher stimulus selectivity in calcium imaging, even after spike infer-

ence (using the same spike inference algorithm we apply in this paper). A forward spike-to-cal-

cium model could not account for these discrepancies, suggesting that it was not due to the

efficacy of spike inference. Instead, the discrepancy seemed to be caused by a recording bias

with electrophysiology towards highly active neurons, and also inaccuracies of spike sorting.

This conclusion was based on the fact that by biasing the imaging data towards highly active

neurons, and also by using stricter cell sorting criteria, the discrepancies could be largely elimi-

nated. By contrast, Wei et al. [60] found that the discrepancies they observed in tuning proper-

ties in anterolateral motor cortex between imaging and electrophysiology could only be

partially accounted for by spike inference, but could be accounted for by a forward spike-to-

calcium model. This may suggest limitations in the application of their spike inference algo-

rithms to their data.

In our case of VTA DA neuron data, as discussed above, we only noticed minor discrepan-

cies between inferred spikes from in vivo imaging and previously reported electrophysiology

data. The conclusions from the Siegle paper that discrepancies may be due primarily to record-

ing biases and poorly isolated units in electrophysiology data may explain our success, as these

issues may be less applicable for our data. In particular, our focus on a genetically identified

cell type would help eliminate recording biases, while the phototagging used for the electro-

physiology data collection requires well-isolated units. Finally, the challenge of correctly select-

ing the tuning parameters for spike inference, which may have been an issue for Wei et al., is

less likely a problem with our spike inference algorithm, which has only two free parameters

that are likely to be relatively consistent within a genetically-identified population.

In summary, we present and validate a simple and successful method to infer spikes from

VTA DA neurons. We expect this straightforward approach to generalize to other subpopula-

tions of genetically identified subcortical neurons.

Methods

Animals and surgery

All experimental procedures were conducted in accordance with the National Institutes of

Health guidelines and were reviewed by the Princeton University Institutional Animal Care

and Use Committee (IACUC). A total of 41 mice were used across all experiments. We used

either DAT::IRES-Cre mice (n = 17, The Jackson Laboratory strain 006660; extensively charac-

terized in [61]) or mice resulting from the cross of DATIREScre mice and the GCaMP6f reporter

line Ai148 mice [62] (n = 24, Ai148xDAT::cre, The Jackson Laboratory strain 030328).

For the slice recording experiments, we used male and female Ai148xDAT::cre mice

(n = 10) and DAT::IRES-Cre mice (n = 3). For the Pavlovian conditioning experiments, male

and female Ai148xDAT::cre mice (n = 8) were used. For the virtual reality experiments, male

DAT::IRES-Cre mice (n = 14) and male Ai148xDAT::cre mice (n = 6) were used.

Mice were maintained on a 12-hour light on– 12-hour light off schedule. All procedures

were conducted during their light off period. Mice were 2–6 months old.
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For Pavlovian and virtual reality experiments, mice between 8–12 weeks underwent sterile

stereotaxic surgery under isoflurane anesthesia (3–4% for induction, 0.75–1.5% for mainte-

nance). The skull was exposed and the periosteum removed using a delicate bone scraper

(Fine Science Tools). The edges of the skin were affixed to the skull using a small amount of

Vetbond (3M). We injected 800 nL of a viral combination of AAV5-CAG-FLEX-GCaMP6m-

WPRE-SV40 (n = 12) or AAV5-CAG-FLEX-GCaMP6f-WPRE-SV40 (n = 2; UPenn Vector

Core) with 1.6x1012/mL titer and AAV9-CB7-CI-mCherry-WPRE-rBG (UPenn Vector Core)

with 2.3x1012/mL titer. Two such injections were made at stereotactic coordinates: 0.5 mm lat-

eral, 2.6 or 3.8 mm posterior, 4.7 mm in depth (relative to bregma). After the injections, we

implanted a 0.6 mm diameter GRIN lens (GLP-0673, Inscopix or NEM-060-25-10-920-S-1.5p,

GrinTech) in the VTA using a 3D printed custom lens holder. After implantation, a small

amount of diluted metabond cement (Parkell) was applied to affix the lens to the skull using a

1 ml syringe and 18 gauge needle. After 20 minutes, the lens holder grip on the lens was loos-

ened while the lens was observed through the microscope used for surgery to ascertain there

was no movement of the lens. Then, a previously described titanium headplate was positioned

over the skull using a custom tool and aligned parallel to the stereotax using an angle meter

[2]. The headplate was then affixed to the skull using metabond. A titanium ring was then

glued to the headplate using dental cement blackened with carbon. Imaging data was collected

beginning 3–4 weeks after virus injection surgeries.

For ex vivo recordings of GCaMP6m, mice between 6–7 weeks underwent stereotaxic sur-

gery under isoflurane anesthesia (3–4% for induction, .75–1.5% for maintenance). The skull

was exposed and the periosteum removed using a delicate bone scraper (Fine Science Tools).

The edges of the skin were affixed to the skull using a small amount of Vetbond (3M). We

injected 500 nL of AAV5-CAG-FLEX-GCaMP6m-WPRE-SV40 (n = 3) with 1.6x1012/mL

titer. Injections were made at stereotactic coordinates: 0.5 mm lateral, 3.2 mm posterior, 4.75

mm in depth (relative to bregma).

Virtual-reality behavioral system

To enable a navigation-based decision-making task under head-fixed conditions, we used a

virtual-reality system similar to that previously described [22, 63, 64] (Fig 4A). Mice were held

head-fixed under a two-photon microscope using two custom headplate holders and ran on an

air-supported, Styrofoam spherical treadmill that was 8 inches (20.3 cm) in diameter. The

sphere’s movement were measured using an optical flow sensor (ADNS3080) located under-

neath the sphere and controlled by an Arduino Due; this information was sent to the virtual-

reality computer, running the ViRMEn software engine [65] (https://pni.princeton.edu/pni-

software-tools/virmen) under MATLAB, which displayed and controlled the virtual-reality

environment.

The display was projected using a DLP projector (Mitsubishi HD4000) running at 85 Hz

onto a custom toroidal screen with a 270˚ horizontal field of view. Reward delivery was accom-

plished by sending by a TTL pulse from the virtual-reality computer to a solenoid valve (NRe-

search), which released a drop of a water to a lick tube located slightly in front and below the

mice’s mouth. The tone signifying trial failure was played through conventional computer

speakers (Logitech). The setup was enclosed in a custom-designed cabinet built from optical

rails (Thorlabs) and lined with sound-absorbing foam sheeting (McMaster-Carr).

In vivo optical imaging and data acquisition

Imaging was performed using a custom- built, virtual-reality-compatible two-photon micro-

scope [64]. The microscope was equipped with a pulsed Ti:sapphire laser (Chameleon Vision,
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Coherent) tuned to 920 nm. The scanning unit used a 5-mm galvanometer and an 8-kHz reso-

nant scanning mirror (Cambridge Technologies). The collected photons were split into two

channels by a dichroic mirror (FF562-Di03, Semrock). The light for the respective green and

red channels was filtered using bandpass filters (FF01-520/60 and FF01-607/70, Semrock), and

then detected using GaAsP photomultiplier tubes (1077PA-40, Hamamatsu). The signal from

the photomultiplier tubes was amplified using a high-speed current amplifier (59–179,

Edmund). Black rubber tubing was attached to the objective (Zeiss 20×, 0.5 NA) as a light

shield covering the space from the objective to the titanium ring surrounding the GRIN lens.

Double-distilled water was used as the immersion medium. The microscope could be rotated

along the mediolateral axis of the mice, allowing alignment of the optical axes of the micro-

scope objective and GRIN lens as previously described for microprism imaging [64]. Control

of the microscope and image acquisition was performed using the ScanImage software (Vidrio

Technologies) that was run on a separate (scanning) computer. Images were acquired at 30 Hz

at a resolution of 512 × 512 pixels. Average beam power measured at the front of the objective

was 40–60 mW. Synchronization between the behavioral logs and acquired images was

achieved by sending behavioral information each time the virtual-reality environment was

refreshed from the virtual-reality computer to the scanning computer via an I2C serial bus;

behavioral information was then stored in the header of the image files.

Behavioral training

Seven days after the surgery, mice were started on a water restriction protocol that was

reviewed and approved by the Princeton University IACUC. All mice received a daily allot-

ment of water of 1–1.5 mL. Mice received water as rewards during the behavioral session. If a

mouse did not receive at least 1 mL in the session, at the end of the day the mouse was given

water to complete the 1 mL/day allotment. Mice received at least 1 mL of water per day but

could receive up to a maximum of 1.5 mL of water per day based on performance during the

T-maze task. Mice were monitored for signs of dehydration, distress, or reductions in body

mass below 80% of the initial value. If any of these conditions occurred, mice were given ad

libitum access to water until recovery. All mice had reduced body mass but remained above

85% of their baseline weight. Two mice showed signs of dehydration and were removed from

the study. Both of these mice recovered. No mice showed signs of distress as a result of water

restriction. No mice died due to water restriction. The animals were handled daily from the

start of water restriction. Five days after starting water restriction and handling, mice began

training in the behavioral setup. Training consisted of a shaping procedure with nine levels of

T-mazes with progressively longer stem length and cognitive difficulty. After shaping con-

cluded, in each session the first few trials (5–30) were warm-up trials drawn from mazes 5–8,

and then trials from the final maze (#9) were used for the remainder of the session. Warm-up

trials were excluded from all analyses presented in the paper. The mice typically received their

daily allotment of water during task performance; if not, the remainder was provided to them

at the end of the day.

Details of the virtual reality behavioral task

At the beginning of each trial, mice were presented with the start of a virtual T-maze. After 30

cm (start region; -30 cm to 0 cm in Fig 4) the cue region began, in which cues randomly

appeared on either side of the corridor. The portion of the maze where cues were presented

(cue region) was 220 cm long (0 cm to 220 cm in Fig 4), and after it the stem of the T-maze

continued for another 80 cm in which no cues were presented (delay region; 220 cm to 300 cm

in Fig 4). At the end of the T-maze, the mouse had to enter one of the arms. Turning into the
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correct (more cues) side would elicit a water reward (6.4 μL), whereas an incorrect choice elic-

ited a tone (pulsing 6–12 kHz tone for 1 s). At the time of reward or tone delivery, the visual

environment froze for 1 s, and then disappeared for 2 s (after a successful trial) or 5 s (after a

failed trial) before another trial was started. Cue distribution is described in detail in our previ-

ous methods [22].

Pavlovian conditioning and unexpected reward behavioral paradigm

After water restriction and handling, mice were habituated to head fixation for 2–3 sessions.

Training consisted of 5 sessions (1 session per day); each session consisted of 50 reward deliv-

eries (8 μL of water reward). During training, each reward was preceded by a 2 s tone that

ended at the time of reward delivery. The time between a reward and the next tone delivery

was sampled from an exponential distribution with a mean of 40 s. The tone consisted of a

sum of multiple sine waves with frequencies of 2, 4, 6, 8 and 16 kHz, and an amplitude of 70

dB. All of the mice exhibited anticipatory licking by the end of the five days (increase in lick

rate after tone presentation but before reward delivery). Some of the mice were previously

trained for several days in a similar protocol in which the tone amplitude was 60 dB and the

time between reward and subsequent tone was sampled from a uniform distribution between

5 and 15 s; these mice did not exhibit anticipatory licking until trained in the final protocol.

After training, mice underwent a single test session that consisted of 64 trials; 50 of those trials

were identical to the training trials (tone followed by reward), 7 trials were unexpected reward

trials (reward delivery with no preceding tone) and 7 trials were unexpected omissions (tone

not followed by reward). In all cases, the intertrial interval was sampled from an exponential

distribution with a mean of 40 s. Trial identity was sampled randomly with the following

exceptions: (1) the first five trials were standard trials (tone plus reward); (2) the first two non-

standard trials were unexpected reward trials.

Unexpected reward paradigm from Eshel et al.

We used previously collected in vivo electrophysiology data as a comparison to our inferred

spike data during unexpected delivery of reward [39]. After >1 week of recovery from stereo-

tactic surgery involving implantation of a headplate and microdrive containing optrodes, mice

were water-restricted. Weight was maintained above 90% of baseline body weight. Animals

were head-restrained and habituated for 1–2 d before training. Mice underwent a variable-

reward task, where mice received either water reward that was either predicted by odor deliv-

ery (“trial type 1”; 45% of all trials), or where water rewards of various sizes were delivered

without any odor (“trial type 2”; 45% of all trials). For both experiments, reward sizes were

chosen pseudorandomly from the following set: 0.1, 0.3, 1.2, 2.5, 5, 10, or 20 μL. For our com-

parison, we only looked at unexpected delivery of 10 μL rewards. We used these trials because

they most closely matched the conditions of our unexpected reward trials (where unexpected

8 μL water rewards were delivered in a similar head-fixed protocol). We used electrophysiol-

ogy recorded extracellularly from VTA during this task. Electrophysiology methods were pre-

viously described in detail [39].

Motion correction procedure for in vivo fluorescence data

Deep brain imaging can be associated with spatially non-uniform fast motion (frame to

frame), as well as spatially non-uniform slow drift of the field of view (over several minutes).

To perform accurate motion correction despite the spatial non-uniformity, we divided the

video into small regions (“patches”) that had relatively uniform motion, and separately cor-

rected the motion within each patch, as described below. Motion correction was performed on
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the red channel of the recording when available, otherwise it was performed on the green

channel (n = 9).

As described previously [22], before dividing the video into patches, we first performed rigid

motion correction using a standard normalized cross-correlation method, to eliminate any spa-

tially uniform motion (‘matchTemplate’ function in the openCV package in Python). This cor-

rection was performed on non-overlapping 50 s video clips to eliminate concerns that slow drift

over the course of minutes would degrade performance. The template for the cross-correlation

was calculated by dividing each clip into non-overlapping sections of 100 frames, calculating the

mean image of each section and obtaining the median of the mean images. Before these motion

correction steps, the video was pre-processed as follows: (i) thresholded by subtracting a constant

number and setting negative values to 0, such that the lower roughly 50% of pixels was 0; (ii)

using the openCV function ‘erode’ (with a scalar ‘1’ kernel); and (iii) convolved with a Gaussian

(s.d. = 2 pixels). Motion correction and template calculation were performed iteratively ten

times or until all absolute shifts were less than one pixel in both axes. Finally, the 50 s clips had to

be aligned to each other. This required generating a ‘master template’ for the entire video, and

then using the same normalized cross-correlation procedure as before (‘matchTemplate’ func-

tion). The master template was calculated by taking the median of the templates of all clips.

The next step of motion correction involved compensating for spatially non-uniform, slow

drift by estimating the drift in local patches. Patches were defined manually around neurons of

interest to contain objects that drifted coherently (patch width 80–160 pixels). To estimate the

drift of each patch over time, we used a non-rigid image registration algorithm (demons algo-

rithm, ‘imregdemons’ function in MATLAB). This algorithm outputs a pixel-by-pixel correc-

tion. However, direct application of this correction risks distorting the shape of the neurons or

the amplitude of the signals. Therefore, we applied a uniform correction for each patch, based

on the average shift of all pixels in the patch (based on the demons output). We implemented

the demons algorithm on the templates from the 50 s clips described in the previous para-

graph, again using the median of these templates as the master template. The registration and

master templates were computed iteratively 20 times, or until the increase in the average corre-

lation between each corrected template and the overall template was less than the s.e.m. of

these correlations. We found that the performance of the non-rigid registration improved if

the templates were first processed through a local normalization procedure [66].

Finally, we performed standard rigid motion correction using the normalized cross-correla-

tion method on each patch and clip. We then repeated the rigid motion correction after taking

a rolling mean of every two frames and downsampling the video by a factor of two. This

increased the signal strength; we used this downsampled video for subsequent analysis. After

correcting for motion within clips, we had to correct across clips. To this end, we performed

rigid motion correction on the clip templates. The motion correction code can be found in:

https://github.com/benengx/Deep-Brain-Motion-Corr.

In vitro recordings to compare GCaMP6 fluorescence with

electrophysiology in DA neurons

In order to compare GCaMP6f and GCaMP6m fluorescence with spike times in DA neurons,

we performed ex vivo slice imaging and electrophysiological recordings in Ai148xDAT::Cre

mice or DAT::IRES-Cre mice virally expressing GCaMP6m. Mice were anesthetized with an i.

p. injection of Euthasol (0.06ml/30g) and decapitated. After extraction, the brain was

immersed in ice-cold carbogenated NMDG ACSF (92 mM NMDG, 2.5 mM KCl, 1.25 mM

NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-

ascorbate, 3 mM Na-pyruvate, 0.5 mM CaCl2�4H2O, 10 mM MgSO4�7H2O, and 12 mM
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N-Acetyl-L-cysteine) for 2 minutes. The pH was adjusted to 7.3–7.4. Afterwards coronal slices

(300um) were sectioned using a vibratome (VT1200s, Leica) and then incubated in NMDG

ACSF at 34˚C for 15 minutes. Slices were then transferred into a holding solution of HEPES

ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES,

25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 2 mM CaCl2�4H2O,

2 mM MgSO4�7H2O and 12 mM N-Acetyl-l-cysteine, bubbled at room temperature with 95%

02/ 5% CO2) for at least 45 mins until recordings were performed.

During cell-attached recordings, slices were perfused with a recording ACSF solution (120

mM NaCl, 3.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.3 mM MgCl2, 2 mM CaCl2

and 11 mM D-(+)-glucose, continuously bubbled with 95% O2/5% CO2) held at either 30˚C

or 37˚C. Picrotoxin (100 μM) was added to the recording solution to block tonic inhibition

and promote spontaneous activity. Cell-attached recordings were performed using a Multi-

clamp 700B (Molecular Devices, Sunnyvale, CA) using pipettes with a resistance of 4–6

MOhm filled with a solution identical to the recording ACSF. Infrared differential interference

contrast–enhanced visual guidance was used to select neurons that were 3–4 cell layers below

the surface of the slices, which were held at room temperature while the recording solution

was delivered to slices via superfusion driven by a peristaltic pump. Cell-attached recordings

were collected once a seal (>50 MOhm to ~1 GOhm) between the recording pipette and the

cell membrane was obtained. Action potential currents were recorded in voltage-clamp mode

with voltage clamped at 0 mV. Cell-attached currents were low-pass filtered at 1 kHz and digi-

tized and stored at 10 kHz (Clampex 9; MDS Analytical Technologies). All experiments were

completed within 4 hours after slicing the brain. Fluorescence was imaged using a CMOS cam-

era (ORCA-Flash 2.8, Hamamatsu) at 33.333 Hz (30 ms exposure windows) using a GFP filter

cube set (exciter ET470/40x, dichroic T495LP, emitter ET525/50m).

Motion correction procedure for in vitro data

On our in vitro imaging data, we performed rigid motion correction using a standard normal-

ized cross-correlation method, to eliminate any spatially uniform motion (‘matchTemplate’

function in the openCV package in Python). The template for the cross-correlation was hand-

selected as a frame near the middle of the recording when cell fluorescence was relatively bright.

Since these recordings were usually around 2 mins in length, we performed motion correction

on the entire recording rather than sectioning the recording into individual “patches.”

ROI selection and calculation of raw GCaMP for in vivo and in vitro data

As previously described [22], to determine ROIs for fluorescence measurement, we used the

mean (in vivo only) or S.D. (in vivo and in vitro) projection of the recording to generate a clear

outline of the cell body. ROIs were defined manually using this S.D. projection. An initial auto-

matic annulus was generated by enlarging the borders of the ROI twice (by 5 μm and 10 μm);

the annulus was the shape contained between the two enlarged borders, where we expect that

observed activity would be due to the neuropil but not the cell itself. Next, we manually

reshaped the annulus region to avoid any visible dendrites, processes or cell bodies, while

approximately maintaining its original area.

To correct for neuropil contamination in the in vivo and in vitro imaging data, we subtracted

a scaled version of the annulus fluorescence from the raw trace: Fcorr(t) = Fraw(t) − Y�Fannulus(t),
in which Fraw(t) is the mean fluorescence in the ROI of each neuron at time t; Fannulus(t) is the

mean fluorescence in the corresponding annulus ROI at time t; and Y is the correction factor

[1, 67]. The correction factor is intended to reflect the fraction of the z-section that is generated

by the neuropil versus the cell that is being imaged. The correction factor used was 0.58 for the
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in vivo data and 1 for the in vitro data. For the in vitro data, spike time estimates and decay rate

estimates were similar whether a correction factor of 1 or 0.7 was used.

In vitro data organization

The in vitro data consist of 12 recordings of GCaMP6f at 30˚C; 24 recordings of GCaMP6f at

37˚C; and 21 recordings of GCaMP6m at 37˚C. Each recording consists of a time series of fluo-

rescence intensities obtained via calcium imaging at 33.33 Hz as well as a set of ground-truth

spike times obtained via an electrode. We defined bursting as a series of at least 3 spikes with a

maximum inter-spike interval of 100 ms. Because we anticipated burst activity in the in vivo
experiments, we focused our analysis on recordings where the fraction of spikes within a burst

was> = 10%. Recordings where the fraction of spikes within a burst was <10% were deemed

pacemaker cells and were excluded from analysis.

In vitro data preprocessing

We performed data preprocessing to calculate ΔF/F and to further adjust for changes in base-

line fluorescence.

First, we shifted and scaled the fluorescence Ft by the baseline fluorescence F0
t to produce a

normalized trace, Gt ¼ DFt=F̂0
t ¼ ðFt � F̂0

t ÞÞ=F̂
0
t , where F̂0

t is an estimate of the baseline fluo-

rescence at t. We estimated F̂0
t by the 8% percentile of Ft−L, Ft−(L−1),. . .,Ft where

L=60s×33.33Hz, corresponding to a 60 second lag.

To further remove linear trends that may occur over the course of an entire fluorescence

recording, we computed the residuals from a robust linear regression of Gt onto time with

Gaussian mixture errors, as in Theis et al. [18].Then, we subtracted the 1st percentile from

these residuals, and divided by the difference between the 80th and 1st percentiles. We let G~
t

denote the resulting scaled and shifted residuals.

Next, to allow for the possibility that more than one spike occurs within a (1/33.33)s win-

dow, we resampled the data G~
t from 33.33 Hz to 66.67 Hz using the scipy.signal.resample func-

tion in python. We call this time series the fluorescence trace, or the GCaMP ΔF/F, and denote

it by yt for t = 1,. . .,T time steps, where now the length of each time step is 1/66.67 seconds.

In vitro data analysis

Statistical model. In order to infer spike times on the basis of the calcium imaging data,

we consider a model for calcium dynamics proposed by [14] and [8]. We view the fluorescence

trace yt at the tth time step as a noisy observation of the underlying calcium concentration ct,
which is assumed to decay with rate 0<γ<1, unless there is a spike. A spike causes an instanta-

neous increase in the calcium concentration. The full model is

yt ¼ ct þ �t; �t�
iidN ð0; s2Þ; t ¼ 1; . . . ;T;

ct ¼ gct� 1 þ zt; t ¼ 2; . . . ;T;

where zt = 0 unless there is a spike at the tth timepoint, in which case zt>0.

As previously discussed [4, 5], a natural estimate of the spike times, i.e. the times s such that

zs>0, is obtained by solving the non-convex optimization problem

minimize
c1 ;...;cT

1

2

XT

t¼1

ðyt � ctÞ
2
þ l

XT

t¼2

1ðct 6¼gct� 1Þ

( )

subject to ct � gct� 1:
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Here, λ is a tuning parameter that controls the trade-off between the goodness of fit to the

data—as measured by the residual sum of squares between estimated calcium and the observed

fluorescence—and the number of inferred spikes. This optimization problem is non-convex

but can be solved for the global optimum using a dynamic programming strategy laid out in

Jewell et al. [4]. We say that we have inferred a spike if ẑ s ¼ ĉs � gĉs� 1 > 0. Smaller values of λ
result in more inferred spikes and thus a higher inferred firing rate (number of inferred spikes

/ length of recording), whereas larger values of λ result in fewer inferred spikes, and thus a

smaller inferred firing rate.

This model assumes that a spike leads to an instantaneous increase in the calcium; in reality,

the calcium increase due to a spike is not instantaneous. Therefore, after fitting the model, we

shift the inferred spike times by 4 time steps (�0.06s). To fit this model, we must specify the

decay rate γ and a value of the tuning parameter λ.

Estimating the decay rate γ. According to the statistical model for calcium decay, the rate

of calcium decay γ is constant across multiple inter-spike regions. Thus, given knowledge of

the spiking events from the ground-truth data, we can estimate the decay rate from multiple

inter-spike segments.

More precisely, given n spike indices (i.e., the times where there is at least one spike) t1,

t2,. . .,tn, we defined �mðiÞ as the index between ti and ti+1 with maximal fluorescence value,

�mðiÞ ¼ argmax
ti�j�tiþ1

fyjg. Similarly, we let m ðiÞ ¼ argmin
ti�j�tiþ1

fyjg be the index with minimal fluores-

cence value. These indices segment the fluorescence trace from peak-to-trough between spikes.

Of these, we considered segments whose peak-to-trough distance is at least K= 10 time steps,

I ¼ [
fi¼1;...;n� 1j �mðiÞ� mðiÞ>Kg

�mðiÞ;mðiÞð Þ:

Then we estimated the decay rate by finding the value of γ that minimizes the residual sum

of squares of the best exponential curve to each of these segments,

ĝ 2 argmin
g

X

ða;bÞ2I

min
c0

Xb

t¼a

ðyt � g
t� ac0Þ

2

( )8
<

:

9
=

;
:

This process is illustrated in Fig 1D. Here, values of the fluorescence trace whose indices are

contained in I are colored blue. Using these points, ĝ is the value that gives the lowest total

residual sum of squares obtained by fitting exponential curves to each set of points. For each

segment, the best exponential fit with decay rate ĝ is plotted in red.

For plots showing group estimated decay rates for GCaMP sensors and temperatures (Fig

1D and 1E), we display estimated decay rates for individual neurons. In instances where we

used multiple recordings from the same neuron, we calculated the neuron decay rate by taking

the mean of the estimated decay rates from those individual recordings.

Estimating the tuning parameter λ. The tuning parameter λ controls the tradeoff

between goodness of fit to the data and the number of inferred spikes. A smaller value of λ
leads to a higher inferred firing rate, and a larger value leads to a lower inferred firing rate.

On the in vitro data, we set λ so that the inferred firing rate equals the true firing rate. In

greater detail, we defined λ� to be the value that minimizes the difference between the number

of inferred spikes and the number of time bins (of duration (1 / 66.67)s) with at least one

spike,

l
?
2 argmin

l

fj#fs j ẑ sðlÞ > 0g � njg;
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where the inferred spikes fs j ẑ sðlÞ > 0g were obtained by solving the optimization problem

with the tuning parameter λ and setting ẑ sðlÞ ¼ ĉs � gĉs� 1, and where n is the number of time

bins with at least one ground-truth spike. We efficiently computed λ� using binary search.

Assessing model performance

To assess whether the inferred spikes agree with the ground-truth spikes, we used the van Ros-

sum distance metric [40, 41]. This metric measures the distance between two discrete vectors

of spike times u = (u1,. . .,un) and v = (v1,. . .,vn0) by first mapping each to a continuous space

and then using the usual Euclidean distance between two functions. Specifically, a discrete vec-

tor u is mapped to a continuous function, f ðt; ðuÞ ¼
Xn

i¼1
hðt � uiÞ, where h is the kernel

hðtÞ ¼
0; t < 0

e� t=t; t � 0

(

and where τ>0 is a time-scale parameter. The van Rossum distance d(u, v; τ) between two

spike trains u and v is given as the distance between the induced functions f(t; u) and f(t; v),

dðu; v; tÞ
2
¼

1

t

R1
0
ðf ðt; uÞ � f ðt; vÞÞ2dt:

In vivo data analysis

Fluorescence data preprocessing. The same data preprocessing pipeline described above

in the In vitro data preprocessing section was used to de-trend using a robust linear regression,

subtract the 1st percentile, scale by the difference between the 80th and 1st percentiles, and

then upsample from 30 Hz to 60 Hz.

Decay rate determination. We used the decay rates estimated from the in vitro experi-

ment (Fig 1D) for the in vivo analysis. In particular, we calculated a group median decay rate

across neurons for each GCaMP indicator and temperature based on the in vitro data. In

instances where we used multiple recordings from a single neuron, we first calculated the

mean decay rate across recordings for that neuron and used that mean decay rate in the group

median calculation. We adjusted these median decay rates to account for the difference in

recording frequency between the in vitro and in vivo data (the latter was recorded at 60 Hz),

decay rate at 60 Hz ¼ 1 � ð66:67=60:00Þ�ð1 � decay rate at 66:67 HzÞ:

The adjusted median decay rate for the appropriate GCaMP indicator (γ = 0.970 for

GCaMP6f at 37˚C; γ = 0.984 for GCaMP6m at 37˚C) is used for all in vivo analysis.

Tuning parameter determination. We use binary search to identify a value of the tuning

parameter λ that results in a set of inferred spikes with a target average firing rate r. In particu-

lar, we solve

l
?
2 argmin

l

fj#fs j ẑ sðlÞ > 0g � r � T=60jg

where T denotes the length of the recording in time steps. For the in vivo analysis, our target

firing rate was 6 Hz [36–39, 46].

Analysis of firing rate data in unexpected reward and Pavlovian conditioning experi-

ment. For the unexpected reward and Pavlovian conditioning data (Figs 2C, 3E and 3H),

peristimulus time histograms (PSTHs) were constructed using electrophysiology and inferred

spike times. For a given cell and trial type, we found all spikes that occurred within some win-

dow (-4 s to 4 s) of the behavioral event. Electrophysiology spike times were organized into 1
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ms time bins, whereas inferred spike times were rounded to the nearest 1 ms. For each neuron,

and for each trial type, the mean instantaneous firing rate at each time bin was calculated by

summing the number of spikes occurring within that 1 ms time bin across trials, and dividing

by the product of the number of trials and the bin width (1/1000 ms). We then convolved this

mean firing rate with a Gaussian kernel (width = 200 ms, SD = 40 ms; normalized such that

the sum of the kernel equaled 1), producing a smooth PSTH for each neuron. The population

firing rate PSTHs (Figs 2E–2F, 3C and 3G), was calculated as the average of the individual

cells’ smooth PSTHs.

For a given cell, mean firing rates for a given period were calculated by taking the total

number of spikes in some time window, and dividing by the product of the width of that win-

dow and the number of relevant trials. We calculated the baseline firing rate over a 1 s period

immediately before reward delivery (for unexpected reward trials) or cue onset (for expected

reward and reward omission trials). Cue, reward, and omission responses were baseline-sub-

tracted using the baseline firing rates calculated across those respective trials. The time win-

dows for cue, reward, and reward omission responses were selected for consistency with the

Eshel et al. experiments [39]. The responses to unexpected and expected reward were calcu-

lated by finding the mean firing rate over a 600 ms window after reward onset. The response

to cue presentation was calculated by finding the mean firing rate a 500 ms window beginning

150 ms after cue onset. The response to reward omission was calculated by finding the mean

firing rate over a 1,300 ms window after reward omission onset. Peak amplitudes of cue and

reward responses were calculated as the largest peak of that cell’s smooth PSTH in the respec-

tive response window. Full duration at half max of cue and reward responses were calculated

using the width of the largest peak, as measured at half the max value, of the smooth PSTH in

the response window.

To detect significant changes in response to reward omission for a given neuron, for each

trial we calculated the firing rate in a 1 s window prior to cue onset and the firing rate in a

1,300 ms window following omission onset. We performed a paired t-test to determine

whether the firing rates during the omission window were significantly different from baseline,

and categorized a neuron as having a significant omission response if the t-test rejected the

null hypothesis at level p = 0.05 and the mean omission response was < 0 Hz.

Analyzing GCaMP fluorescence and inferred spike rates by maze position in the VR

task. In Fig 4, we plotted GCaMP fluorescence and inferred spike rates as a function of posi-

tion. To smooth this data for visualization (Fig 4G and 4K), for a given cell we calculated mov-

ing averages of GCaMP fluorescence and inferred spike rate using a 10 cm window moved at 1

cm intervals along the maze. To compute the inferred spiking rate by position, we divided the

number of inferred spikes within a given 10 cm window by the amount of time spent in that

window. We then averaged GCaMP and inferred spike rates across trials to generate cell aver-

ages (Fig 4G and 4K).

Quantifying ramps in VR task using GCaMP fluorescence and inferred spikes. To

describe linear ramps by position in each neuron (Fig 4L), we performed a linear regression of

the observed GCaMP fluorescence or the inferred spike rates onto the mouse’s position. We

calculated the mean inferred spike rates and GCaMP fluorescence over maze positions using

the same procedure for Fig 4G and 4K, except that we used non-overlapping 10 cm position

bins (with edges at maze positions -30 and 290 cm), where the positional value was the center

of that bin. For Fig 4L, we calculated the linear change in GCaMP or inferred spike rate for

each neuron by multiplying the position coefficient of its respective linear model by the length

of the maze (290 cm).

We determined whether a neuron had a significant position-related ramp by determining

whether that neuron’s estimated probability of spiking significantly increased or decreased as
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the mouse progressed down the maze. To do this, we fit a logistic generalized linear model

(GLM), where the inferred spikes were predicted by mouse position, with a factor for individ-

ual trials:

log
p

1 � p

� �

¼ b0 þ b1 � positionþ
Xj

i¼1
bi1ðith trialÞ

where p is the probability that a neuron spikes at a particular timestep, and j is the number of

trials.

We classified neurons as significantly ramping if their position significantly modulated like-

lihood to fire (i.e. if the coefficient associated with position is statistically significant, at level

alpha = 0.01). To determine what proportion of neurons had significant positive or negative

ramps, we took neurons with significant position modulation and grouped them based on the

sign of the position coefficient in the logistic regression model described above.

Supporting information

S1 Fig. Identification of pacemaker cells by absence of phasic activity, and decay statistics

for pacemaker cells. a. Percent of spikes that occurred within a burst in a previously collected

in vivo electrophysiology dataset (Eshel et al. [39]). A burst was defined by a series of at least 3

spikes with< = 100 ms between each spike. All in vivo electrophysiology cells had >10% of

spikes within a burst. This was chosen as the cut-off for inclusion in in vitro analysis. b. Percent

of spikes that occurred within a burst for all recordings in the GCaMP6f at 30˚C, GCaMP6f at

37˚C, and GCaMP6m at 37˚C groups. Cells with<10% of spikes occurring within a burst

were excluded from group analysis, since they featured little or no phasic activity. c. Left: Esti-

mated decay rates for pacemaker cells for GCaMP6f at 30˚C (n = 3 cells; median decay rate =

0.974, Q1 = 0.968, Q3 = 0.981), GCaMP6f at 37˚C (n = 7 cells; median decay rate = 0.969,

Q1 = 0.963, Q3 = 0.982), and GCaMP6m at 37˚C (n = 1 cell; decay rate = 0.986). Right: Half

decay time for pacemaker cells for GCaMP6f at 30˚C (median = 0.398 s, Q1 = 0.323 s,

Q3 = 0.577 s), GCaMP6f at 37˚C (median = 0.332 s, Q1 = 0.278 s, Q3 = 0.566 s) and

GCaMP6m at 37˚C (0.722 s).

(TIF)

S2 Fig. Mean firing frequency in bursty cells during in vitro recordings. Mean spike fre-

quency during the simultaneous calcium imaging and electrophysiology in vitro experiment

(GCaMP6f at 30˚C, n = 12 recordings from 9 total cells, cell median firing rate = 4.3 Hz,

Q1 = 3.2 Hz, Q3 = 4.8 Hz; GCaMP6f at 37˚C, n = 9 recordings from 12 total cells, cell median

firing rate = 6.4 Hz, Q1 = 6.0 Hz, Q3 = 9.3 Hz; GCaMP6m at 37˚C, n = 19 recordings from 9

total cells, cell median firing rate = 4.2 Hz, Q1 = 3.6 Hz, Q3 = 6.0 Hz). Vertical bars are inter-

quartile range (Q1 and Q3).

(TIF)

S3 Fig. Example traces from each neuron in the GCaMP6f 30˚C group. Examples of corre-

spondence between observed GCaMP (black line, top) and estimated calcium (blue line, top),

and observed spikes (black dashes, bottom) and inferred spikes (blue dashes, bottom) for each

recording in the GCaMP6f 30˚C group. Traces are 20 s long. Scale bars are 1 ΔF/F and 5 s.

(TIF)

S4 Fig. Example traces from each neuron in the GCaMP6f 37˚C group. Examples of corre-

spondence between observed GCaMP (black line, top) and estimated calcium (green line, top),

and observed spikes (black dashes, bottom) and inferred spikes (green dashes, bottom) for

each recording in the GCaMP6f 37˚C group. Traces are 20 s long. Scale bars are 1 ΔF/F
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and 5 s.

(TIF)

S5 Fig. Example traces from each neuron in the GCaMP6m 37˚C group. Examples of corre-

spondence between observed GCaMP (black line, top) and estimated calcium (orange line,

top), and observed spikes (black dashes, bottom) and inferred spikes (orange dashes, bottom)

for each recording in the GCaMP6m 37˚C group. Traces are 20 s long. Scale bars are 1 ΔF/F

and 5 s.

(TIF)

S6 Fig. Example traces of inference results with large van Rossum distances resulting from

misestimation of observed firing rate. a-c. Examples of spike inference when tuning parame-

ters are selected to underestimate (a), match (b), or overestimate (c) the observed firing rate of

a neuron expressing GCaMP6f. d-f. Examples of spike inference when tuning parameters are

selected to underestimate (d), match (e), or overestimate (f) the observed firing rate of a neu-

ron expressing GCaMP6m. In both GCaMP6f and GCaMP6m examples, the van Rossum dis-

tance is lowest when the tuning parameter is selected to match the firing rate, but under- and

overestimates appear to capture both tonic and phasic activity patterns.

(TIF)

S7 Fig. Tuning rate comparison for Pavlovian experiment. a. Mean population firing rates

from inferred spikes around presentation of unexpected reward when λ is selected to target a

4, 6, or 8 Hz average estimated firing rate (n = 65 cells). b-e. Comparison of inferred spikes

over a range of λ values and electrophysiology spikes from Eshel et al. [39]. b. Unexpected

reward response, where reward response is the mean firing rate over the first 600 ms following

reward presentation, baseline subtracted using the mean firing rate over a 1 s period before

reward presentation (inferred spikes over baseline median = 6.5 Hz, Q1 = 3.9 Hz, Q3 = 8.2 Hz

for λ target 4 Hz; median = 9.8 Hz, Q1 = 6.2 Hz, Q3 = 12.2 Hz, for λ target 6 Hz; median = 11.5

Hz, Q1 = 7.1 Hz, Q3 = 14.0 Hz, for λ target 8 Hz; electrophysiology spikes over baseline

median = 9.5 Hz, Q1 = 6.3 Hz, Q3 = 12.0 Hz). c. Peak reward response amplitude in inferred

and electrophysiology spikes, where peak is maximum value of PSTH in the first 600 ms period

following reward presentation (inferred spikes median = 19.7 Hz, Q1 = 15.0 Hz, Q3 = 27.2 Hz,

for λ target 4 Hz; median = 29.0 Hz, Q1 = 23.7 Hz, Q3 = 38.6 Hz, for λ target 6 Hz; median =

34.4 Hz, Q1 = 28.1 Hz, Q3 = 44.3 Hz, for λ target 8 Hz; electrophysiology median = 30.5 Hz,

Q1 = 22.6 Hz, Q3 = 40.9 Hz). d. Full duration at half max of reward response peak in inferred

and electrophysiology spikes (inferred spikes median full duration at half max = 173.4 ms,

Q1 = 156.8 ms, Q3 = 226.8 ms for λ target 4 Hz; median = 183.9 ms, Q1 = 163.6 ms, Q3 =

235.9 ms for λ target 6 Hz; median = 196.2 ms, Q1 = 175.8 ms, Q3 = 242.0 ms for λ target

8 Hz; electrophysiology median full duration at half max = 153.5 ms, Q1 = 120.4 ms,

Q3 = 272.5 ms). e. Mean tonic firing rates prior to presentations of unexpected reward, where

tonic firing rates are calculated as the mean firing rate over a 1 s period prior to reward presen-

tation (inferred spikes tonic firing rate median = 3.9 Hz, Q1 = 3.4 Hz, Q3 = 4.1 Hz, for λ target

4 Hz; median = 5.7 Hz, Q1 = 5.3 Hz, Q3 = 6.0 Hz, for λ target 6 Hz; median = 7.6 Hz, Q1 = 7.0

Hz, Q3 = 8.3 Hz, for λ target 8 Hz; electrophysiology tonic firing rate median = 5.6 Hz,

Q1 = 4.3 Hz, Q3 = 7.5 Hz). Vertical bars are interquartile range (Q1 and Q3). f. Mean inferred

spikes from population around presentation of expected reward. g. Full duration at half max of

cue response in inferred spikes (median = 182.3 ms, Q1 = 168.4 ms, Q3 = 203.2 ms for λ target

4 Hz; median = 189.3 ms, Q1 = 168.3 ms, Q3 = 205.6 ms for λ target 6 Hz; median = 197.2 ms,

Q1 = 174.9 ms, Q3 = 220.5 ms for λ target 8 Hz). Vertical bars are interquartile range (Q1 and

Q3). h. Mean population firing rate from inferred spikes around unexpected omission of
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reward. Shaded areas are SEM. i. Mean omission response of inferred spikes, where omission

response is mean firing rate over 1,300 ms following onset of reward omission, baseline sub-

tracted using the mean firing rate over 1 s period before trial start (median = -0.7 Hz, Q1 =

-1.8 Hz, Q3 = -0.1 Hz, for λ target 4 Hz; median = -1.3 Hz, Q1 = -2.3 Hz, Q3 = -0.1 Hz, for λ
target 6 Hz; median = -1.5 Hz, Q1 = -3.4 Hz, Q3 = -0.4 Hz, for λ target 8 Hz). Neurons that

exhibited a significant decrease in firing following reward omission (21/65 neurons, 32.3% of

population for λ target 4 Hz; 22/65 neurons, 33.6% of population for λ target 6 Hz; 21/65 neu-

rons, 32.3% of population for λ target 8 Hz) are darker green. Vertical bars are interquartile

range (Q1 and Q3). All imaging data is of cells expressing GCaMP6f.

(TIF)

S8 Fig. Decay rate comparison for Pavlovian experiment. a. Mean population firing rates

(n = 65 cells) from inferred spikes around presentation of unexpected reward when λ is

selected to target a 6 Hz average estimated firing rate and the decay rate γ is selected as the

25th percentile (low gamma), median, or 75th percentile (high gamma) estimated decay rate

from the in vitro experiment. b-e. Comparison of inferred spikes over a range of γ values and

electrophysiology spikes from Eshel et al. [39]. b. Unexpected reward response, where reward

response is the mean firing rate over the first 600 ms following reward presentation, baseline

subtracted using the mean firing rate over a 1 s period before reward presentation (inferred

spikes over baseline median = 9.8 Hz, Q1 = 6.2 Hz, Q3 = 12.0 Hz for low gamma; median = 9.8

Hz, Q1 = 6.2 Hz, Q3 = 12.2 Hz, for median gamma; median = 10.3 Hz, Q1 = 6.0 Hz, Q3 = 12.0

Hz, for high gamma; electrophysiology spikes over baseline median = 9.5 Hz, Q1 = 6.3 Hz,

Q3 = 12.0 Hz). c. Peak reward response amplitude in inferred and electrophysiology spikes,

where peak is maximum value of PSTH in the first 600 ms period following reward presenta-

tion (inferred spikes median = 27.5 Hz, Q1 = 22.5 Hz, Q3 = 36.9 Hz for low gamma; median =

29.0 Hz, Q1 = 23.7 Hz, Q3 = 38.6 Hz for median gamma; median = 31.3 Hz, Q1 = 24.8 Hz,

Q3 = 41.9 Hz for high gamma; electrophysiology median = 30.5 Hz, Q1 = 22.6 Hz, Q3 = 40.9

Hz). d. Full duration at half max of reward response peak in inferred and electrophysiology

spikes (inferred spikes median full duration at half max = 190.6 ms, Q1 = 164.8 ms, Q3 = 220.3

ms for low gamma; median = 183.9 ms, Q1 = 163.6 ms, Q3 = 235.9 ms for median gamma;

median = 187.6 ms, Q1 = 160.5 ms, Q3 = 223.3 ms for high gamma; electrophysiology median

full duration at half max = 153.5 ms, Q1 = 120.4 ms, Q3 = 272.5 ms). e. Mean tonic firing rates

prior to presentations of unexpected reward, where tonic firing rates are calculated as the

mean firing rate over a 1 s period prior to reward presentation (inferred spikes tonic firing rate

median = 5.6 Hz, Q1 = 5.1 Hz, Q3 = 6.0 Hz, for low gamma; median = 5.7 Hz, Q1 = 5.3 Hz,

Q3 = 6.0 Hz for median gamma; median = 5.9 Hz, Q1 = 5.3 Hz, Q3 = 6.1 Hz for high gamma;

electrophysiology tonic firing rate median = 5.6 Hz, Q1 = 4.3 Hz, Q3 = 7.5 Hz). Vertical bars

are interquartile range (Q1 and Q3). f. Mean inferred spikes from population around presenta-

tion of expected reward. g. Full duration at half max of cue response in inferred spikes

(median = 195.1 ms, Q1 = 171.9 ms, Q3 = 209.5 ms for low gamma; median = 189.3 ms, Q1 =

168.3 ms, Q3 = 205.6 ms for median gamma; median = 185.8 ms, Q1 = 165.0 ms, Q3 = 202.3

ms for high gamma). Vertical bars are interquartile range (Q1 and Q3). h. Mean population

firing rate from inferred spikes around unexpected omission of reward. Shaded areas are SEM.

i. Mean omission response of inferred spikes, where omission response is mean firing rate

over 1,300 ms following onset of reward omission, baseline subtracted using the mean firing

rate over 1 s period before trial start (median = -1.1 Hz, Q1 = -2.1 Hz, Q3 = -0.3 Hz, for low

gamma; median = -1.3 Hz, Q1 = -2.3 Hz, Q3 = -0.1 Hz, for median gamma; median = -1.7 Hz,

Q1 = -3.4 Hz, Q3 = -0.6 Hz, for high gamma). Neurons that exhibited a significant decrease in

firing following reward omission (24/65 neurons, 36.9% of population for low gamma; 22/65
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neurons, 33.6% of population for median gamma; 25/65 neurons, 38.5% of population for

high gamma) are darker green. Vertical bars are interquartile range (Q1 and Q3). All imaging

data is from cells expressing GCaMP6f.

(TIF)

S9 Fig. Mean cue and expected reward responses in inferred spikes. a. Mean cue response,

where cue response is the mean firing rate in a 500 ms period beginning 150 ms after cue

onset, baseline subtracted using the mean firing rate over a 1 s period before cue (median = 7.2

Hz, Q1 = 4.9 Hz, Q3 = 10.0 Hz). b. Mean expected reward response, where reward response is

the mean firing rate over the first 600 ms following reward presentation, baseline subtracted

using the mean firing rate over a 1 s period before cue (median = 3.8 Hz, Q1 = 2.7 Hz, Q3 =

5.6 Hz). c. Peak cue response amplitude in inferred spikes, where peak is maximum value of

PSTH in the 500 ms cue period (median = 27.0 Hz, Q1 = 19.3 Hz, Q3 = 33.5 Hz). d. Peak

expected reward response amplitude in inferred spikes, where peak is maximum value of

PSTH in the first 600 ms period following reward presentation (median = 17.1 Hz, Q1 = 12.8

Hz, Q3 = 19.3 Hz). e. Full duration at half max of cue response in inferred spikes (median =

189.3 ms, Q1 = 168.3 ms, Q3 = 205.6 ms). f. Full duration at half max of expected reward

response in inferred spikes (median = 162.0 ms, Q1 = 150.0 ms, Q3 = 199.2 ms). Vertical bars

are interquartile range (Q1 and Q3). All data from cells expressing GCaMP6f.

(TIF)

S10 Fig. Mean cue and omission responses in inferred spikes during omission trials. a.

Mean cue response during omission trials, where cue response is the mean firing rate over first

500 ms following cue presentation, baseline subtracted using the mean firing rate over a 1 s

period before cue (median = 6.4 Hz, Q1 = 3.5 Hz, Q3 = 9.5 Hz). b. Peak cue response ampli-

tude in inferred spikes during omission trials, where peak is maximum value of PSTH in the

first 500 ms period following cue presentation (median = 26.3 Hz, Q1 = 19.5 Hz, Q3 = 33.0

Hz). c. Full duration at half max of cue response in inferred spikes during omission trials

(median = 192.5 ms, Q1 = 176.7 ms, Q3 = 240.5 ms). d. Mean firing rate in inferred spikes

over 1,300 ms period following onset of reward omission (median = 5.1 Hz, Q1 = 4.0 Hz,

Q3 = 5.6 Hz). Vertical bars are interquartile range (Q1 and Q3).

(TIF)

S11 Fig. Omission response as measured by electrophysiology during an odor cue Pavlov-

ian task. a. Mean population firing rate from electrophysiology spikes around unexpected

omission of reward following presentation reward-predictive odor cue. Shaded areas are SEM.

h. Mean omission response of electrophysiology spikes, where omission response is mean fir-

ing rate over 1,300 ms following onset of reward omission, baseline subtracted using the mean

firing rate over 1 s period before trial start (median = -1.45 Hz, Q1 = -1.98 Hz, Q3 = -0.87 Hz).

Neurons that exhibited a significant decrease in firing following reward omission (13/31 neu-

rons; 41.9% of population) are darker grey. Vertical bars are interquartile range (Q1 and Q3).

Only the first 7 trials for each neuron were used for determination of significant omission

response to correspond to the inferred spike data. Note that this data is not used to directly

compare to inferred spike modalities because of differences in behavioral paradigms, including

differences in reward-predictive cue modality. Data from Eshel et al. [39].

(TIF)

S12 Fig. Reward and omission response correlations over range of tuning parameters. a.

Scatterplot of expected reward response versus unexpected reward response recapitulates cor-

relations in Eshel et al. [39] when using tuning parameters for a range of inferred firing rate. b.

Scatterplots of omission response versus unexpected reward response recapitulates
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correlations in Eshel et al. [39] when using tuning parameters for a range of inferred firing

rates. Responses in a and b are baseline subtracted.

(TIF)

S13 Fig. Reward and omission response correlations over range of decay rates. a. Scatterplot of

expected reward response versus unexpected reward response recapitulates correlations in Eshel

et al. [39] when λ is selected to target a 6 Hz average estimated firing rate and the decay rate γ is

selected as the 25th percentile (low gamma), median, or 75th percentile (high gamma) estimated

decay rate from the in vitro experiment (Fig 1D). b. Scatterplots of omission response versus unex-

pected reward response recapitulates correlations in Eshel et al. [39] when using tuning parame-

ters for a range of inferred firing rates. Responses in a and b are baseline subtracted.

(TIF)

S14 Fig. Reward and omission response correlations using GCaMP. a. Scatterplot of

expected reward response versus unexpected reward response. Responses are calculated by

finding mean ΔF/F value over a 600 ms window following reward presentation and baseline

subtracting the mean ΔF/F value over a 1 s window before trial start (1 s before cue for

expected reward; 1 s before reward for unexpected reward). b. Scatterplot of omission response

versus unexpected reward response. Omission response is calculated by finding the mean

ΔF/F value over a 1,300 ms window following reward omission and baseline subtracting the

mean ΔF/F value over a 1 s window before cue.

(TIF)

S15 Fig. Upward and downward ramps in inferred spikes during reward approach in a vir-

tual reality environment are detectable over a range of tuning parameters. Results of spike

inference during the virtual reality T-maze task in Fig 4 when tuning parameters approximating

mean firing rates of 4, 6, or 8 Hz are used. a. Mean inferred firing rate by position for example

upward-ramping cells over a range of tuning parameters. b. Mean inferred firing rate by posi-

tion for example downward-ramping cells over a range of tuning parameters. c. For each tuning

parameter, scatterplots showing how change in observed GCaMP from beginning to end of

maze for each neuron relates to change in inferred firing rate for that neuron. Each data point

represents a single neuron and its mean change in observed GCaMP and inferred firing rate.

Red line is linear least-squares fit; dotted region is 95% confidence of the fit. d. For each tuning

parameter, histograms of changes of inferred firing rate for each neuron, color coded by

whether a neuron’s probability of firing significantly decreased (red), increased (blue), or did

not change (grey) with increases in maze position. e. For each tuning parameter, histograms of

changes of the inferred firing rate slope for each neuron, color coded by whether a neuron’s

probability of firing significantly decreased (red; mean slope = -0.09 spikes/s2, n = 67/303 neu-

rons for 4 Hz target; mean slope = -0.12 spikes/s2, n = 72/303 neurons for 6 Hz target; mean

slope = -0.15 spikes/s2, n = 77/303 neurons for 8 Hz target), increased (blue; mean slope = 0.13

spikes/s2, n = 102/303 neurons for 4 Hz target; mean slope = 0.18 spikes/s2; n = 112/303 neurons

for 6 Hz target; mean slope = 0.22 spikes/s2, n = 119/303 neurons for 8 Hz target), or did not

change (grey; mean slope = 0.01 spikes/s2, n = 134/303 neurons for 4 Hz target; mean

slope = 0.02 spikes/s2; n = 119/303 neurons for 6 Hz target; mean slope = 0.02 spikes/s2,

n = 107/303 neurons for 8 Hz target) with increases in maze position. Significant position mod-

ulation determined by a generalized linear model (GLM), where the inferred spikes were pre-

dicted by mouse position, with a factor for individual trials, where neurons were classified as

significantly ramping if the coefficient associated with position was statistically significant at

level alpha = 0.01. Data includes cells expressing GCaMP6m and GCaMP6f.

(TIF)
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S16 Fig. Upward and downward ramps in inferred spikes during reward approach in a vir-

tual reality environment are detectable over a range of decay rates. Results of spike infer-

ence during the virtual reality T-maze task in Fig 4 when λ is selected to target a 6 Hz average

estimated firing rate and the decay rate γ is selected as the 25th percentile (low gamma),

median, or 75th percentile (high gamma) estimated decay rate from the in vitro experiment

(Fig 1D). a. Mean inferred firing rate by position for example upward-ramping cells over a

range of decay rates. b. Mean inferred firing rate by position for example downward-ramping

cells over a range of decay rates. c. For each decay rate, scatterplots showing how change in

observed GCaMP from beginning to end of maze for each neuron relates to change in inferred

firing rate for that neuron. Each data point represents a single neuron and its mean change in

observed GCaMP and inferred firing rate. Red line is linear least-squares fit; dotted region is

95% confidence of the fit. d. For each decay rate, histograms of changes of inferred firing rate

for each neuron, color coded by whether a neuron’s probability of firing significantly

decreased (red), increased (blue), or did not change (grey) with increases in maze position. e.

For each decay rate, histograms of changes of the inferred firing rate slope for each neuron,

color coded by whether a neuron’s probability of firing significantly decreased (red; mean

slope = -0.12 spikes/s2, n = 70/303 neurons for low gamma; mean slope = -0.12 spikes/s2,

n = 72/303 neurons for median gamma; mean slope = -0.14 spikes/s2, n = 74/303 neurons for

high gamma), increased (blue; mean slope = 0.18 spikes/s2, n = 111/303 neurons for low

gamma; mean slope = 0.18 spikes/s2; n = 112/303 neurons for median gamma; mean

slope = 0.18 spikes/s2, n = 117/303 neurons for high gamma), or did not change (grey; mean

slope = 0.02 spikes/s2, n = 122/303 neurons for low gamma; mean slope = 0.02 spikes/s2;

n = 119/303 neurons for median gamma; mean slope = 0.01 spikes/s2, n = 112/303 neurons for

high gamma) with increases in maze position. Significant position modulation determined by

a generalized linear model (GLM), where the inferred spikes were predicted by mouse posi-

tion, with a factor for individual trials, where neurons were classified as significantly ramping

if the coefficient associated with position was statistically significant at level alpha = 0.01. Data

includes cells expressing GCaMP6m and GCaMP6f.

(TIF)
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