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a b s t r a c t 

Granular hydrogels, formed by the packing of hydrogel microparticles (microgels), are emerging to support the 

endogenous repair of injured tissues by guiding local cell behavior. In contrast to traditional pre-formed scaffolds 

and bulk hydrogels, granular hydrogels offer exciting features such as injectability, inherent porosity, and the 

potential delivery of biologics. Further, granular hydrogel design allows for the tuning of constituent microgel 

properties and the mixing of discrete microgel populations. This modularity allows the creation of multifunctional 

granular hydrogels that promote cell recruitment, guide extracellular matrix deposition, and stimulate tissue 

growth to drive endogenous repair. 
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rinciples of endogenous tissue repair 

Traditional tissue engineering approaches combine cells, growth fac-

ors, and biomaterials to produce implantable constructs that can re-

lace lost or damaged tissue. These approaches require extensive time,

ffort, and resources to facilitate cell and tissue growth on supportive

caffolds prior to implantation. In comparison, endogenous tissue en-

ineering strategies rely on acellular biomaterials to stimulate innate

ealing mechanisms for tissue repair. Tissue repair through endogenous

echanisms depends on the availability of host cells, including tissue-

esident stem cells. Whereas scar tissue that forms as a natural response

o injury can limit the reparative capacity of these cells, biomaterials can

resent signaling cues and physical microenvironments that mobilize

nd guide cell function to accelerate repair. For example, decellularized

xtracellular matrices (dECMs) are naturally-derived biomaterials that

ossess intrinsic bioactivity and have been used as acellular scaffolds to

romote tissue repair [1] . Acellular scaffolds like dECMs assume the role

f a microenvironmental niche in vivo that recruits cells and manipu-

ates their fate via cell-matrix interactions, growth factor signaling, and

mmunomodulatory mechanisms [2] . However, dECMs may carry risk

f disease transmission owing to their xenogeneic origins, are prone to

aving large batch variability, and offer little control over physicochem-

cal properties, motivating the development of engineered biomaterials.

ngineered hydrogels for endogenous repair 

Hydrogels are water-swollen polymer networks derived from either

atural sources (e.g. hyaluronic acid, collagen) or synthetic routes (e.g.

oly(vinyl alcohol), poly(ethylene glycol)) and are attractive for a vari-

ty of biomedical applications including tissue engineering. Numerous
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aterials have been processed into bulk hydrogels that mimic features

f native tissues, such as mechanics, cell-adhesion, degradability, and

rowth factor presentation. Bulk hydrogels typically exhibit a nano-

orous mesh that prevents the infiltration of cells and blood vessels

ithin its structure without extensive degradation, leaving the entire

ydrogel volume typically devoid of any biological activity and hinder-

ng endogenous healing. Moreover, the majority of bulk hydrogels ex-

ibit homogeneous properties throughout their volume, making it near

mpossible to incorporate diverse signaling cues to stimulate cellular

opulations in vivo. These drawbacks limit the utility of bulk hydrogels

n endogenous tissue repair strategies. 

As an alternative, granular hydrogels overcome many limitations of

ulk hydrogels and build in additional functionalities that make them

articularly well-suited to promote endogenous tissue repair ( Fig. 1 A )

3] . This includes inherent porosity that supports cell and vessel inva-

ion, whereas traditional injectable bulk hydrogels may result in fibrous

ncapsulation without rapid degradation. Granular hydrogels are com-

osed of packed assemblies of hydrogel microparticles (or microgels).

icrogels can be made from the same polymers and with the same

roperties as bulk hydrogels, just processed into the micro-scale using

ethods such as water-in-oil microfluidics, batch emulsions, mechanical

ragmentation of bulk hydrogels, or lithography. These methods either

onvert polymer precursor solutions into micro-scale droplets that are

rosslinked using various chemistries to form microgels, or break down

lready crosslinked bulk hydrogels into micro-scale fragments with the

pplication of mechanical force. Some of these methods (e.g. microflu-

dic emulsions) allow precise tuning of microgel size (few to hundreds

f micrometers), whereas others (e.g. photolithography) permit the gen-

ration of microgels with user-defined shapes and topographies. The

hysicochemical properties of individual microgels (e.g. size, shape,
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Fig. 1. Endogenous tissue repair is acceler- 

ated due to the unique functional proper- 

ties of granular hydrogels. A. Examples of 

granular hydrogel delivery to injured tissues 

where the inherent porosity of granular hydro- 

gels supports cell and vessel invasion, which 

can be hindered by more traditional bulk hy- 

drogels. B. Granular hydrogels are highly tun- 

able, and their properties can be engineered 

for application in endogenous tissue repair, in- 

cluding: Injectability through microgel flow 

within granular hydrogels; Porosity through 

changes in microgel packing density, shape, or 

size; Bioactivity via microgel surface modifi- 

cation with bioactive peptides or encapsulation 

of biologics; Interparticle interactions to con- 

trol granular hydrogel properties through re- 

versible or covalent interactions between mi- 

crogels; Modularity through the combination 

of discrete populations of microgels to create 

multifunctional granular hydrogels. 
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echanics, degradability) impact the macro-scale behavior of granu-

ar hydrogels, allowing for numerous degrees of freedom to achieve

esirable hydrogel characteristics. Microgel packing to obtain granu-

ar hydrogels can be achieved by various means (e.g. centrifugation,

acuum-driven removal of the liquid phase from microgel suspensions,

ravity-assisted sedimentation). 

unctional granular hydrogel properties for endogenous repair 

njectability 

The relatively small size of microgels allows easy injection of granu-

ar hydrogels into tissues via syringe needle or catheter ( Fig. 1 B ). Granu-

ar hydrogels are held together through simple microgel packing, as well

s optional non-covalent interactions (e.g. reversible guest-host bonds,

lectrostatics) between constituent microgels [4] . Under applied stress,

or example during syringe injection, granular hydrogels show viscous

ow behavior, allowing their minimally-invasive injection into tissues.

pon removal of this stress, granular hydrogels show almost complete

ecovery of their mechanical properties. Injectability not only allows

ranular hydrogels to be used for filling arbitrarily-shaped volumetric

efects, but also expands their applicability to dense tissues such as

he myocardium where minimally-invasive interventions are desirable.

ang et al. recently reported that the intramyocardial injection of acel-

ular drug-carrying granular hydrogels after ischemia-reperfusion injury

mproved cell infiltration, angiogenesis, and tissue function [5] . 

orosity 

A central tenet of endogenous tissue repair is the recruitment of cells

o a repair site, including into a scaffold microenvironment that presents

ppropriate signals to modulate cell behavior. Unlike traditional bulk

ydrogels, granular hydrogels are better suited for cell recruitment and

nvasion due to their microporous structure. Porosity has been a central

esign feature of biomaterial scaffolds and its critical role is illustrated
2 
n injuries such as bone osteotomy defects and volumetric muscle loss,

here the application of rigid non-porous hydrogels physically inhibits

efect bridging and wound closure, whereas porous hydrogels guide cell

nvasion, matrix deposition, and growth of new tissue. Granular hydro-

els exhibit an interconnected microporous structure owing to the inter-

titial pores that are formed when microgels are packed together. Pore

eometry and overall hydrogel porosity can be altered through the use

f microgels of different shapes (e.g. high aspect ratio rods, polygonal

ragments) and sizes, by incorporating a degradable microgel popula-

ion that creates space over time, or by varying the packing density

 Fig. 1 B ) [6] . The microporous structure of granular hydrogels results

n numerous paths for surrounding cells to infiltrate, migrate, spread,

nd proliferate within the hydrogel structure for tissue repair. Hsu et al.

ecently reported that granular hydrogels with interconnected porosity

arkedly enhanced axonal outgrowth, leading to defect bridging and

unctional repair in peripheral nerve defects when compared to non-

orous control gels [7] . Bulk hydrogels can also be programmed to allow

ell infiltration for example by incorporating enzymatically-degradable

rosslinkers, but this is usually at the expense of slow cellularization and

ompromised mechanical properties as the bulk matrix degrades. In con-

rast, granular hydrogels allow decoupling of porosity from degradabil-

ty such that the invasion of cells and blood vessels does not challenge

verall structural integrity [8] . 

ioactivity 

The bioactivity of acellular biomaterials plays a significant role in

riving endogenous tissue repair and the introduction of a bioactive

atrix can improve structural and functional outcomes [9] . There are a

umber of ways in which granular hydrogels can stimulate endogenous

ells to adopt a regenerative phenotype. Bioactivity can be derived from

he delivery of therapeutic molecules and drugs, from the recognition

f peptide ligands and similar bioactive cues presented on the microgel

urface, or from the sensing of physicochemical properties of individ-

al microgels ( Fig. 1 B ). When microgels are prepared from naturally-
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erived polymers (e.g. hyaluronic acid), by-products of in vivo polymer

egradation can also be recognized by endogenous cells to elicit a bio-

ogical response. Griffin et al. recently demonstrated that the degrada-

ion behavior of granular hydrogels can evoke a pro-healing adaptive

mmune response, resulting in accelerated and complete regeneration

f skin wounds [10] . 

nterparticle interactions 

The application of granular hydrogels in mechanically active tissues

uch as myocardium and skeletal muscle may cause microgel disper-

ion and structural disintegration at the site of injury. Although free-

tanding granular hydrogels can be held together by physical interac-

ions, additional interparticle interactions can be used to form crosslinks

etween adjacent microgels to enhance stabilization under mechan-

cal loads. This may be accomplished through the reaction of func-

ional groups present on microgels that facilitate either covalent or non-

ovalent crosslinking ( Fig. 1 B ). Besides imparting structural integrity,

nterparticle crosslinking can modulate the rate of infiltration of bio-

ogical structures such as blood vessels and restrict excessive deposition

f ECM by invading cells such as activated myofibroblasts. In other in-

ury contexts, it may be sensible to disperse functional microgels within

arge defects to maximize endogenous cell response over large volumes.

hus, the ability to control these properties of granular hydrogels helps

o evoke the appropriate host response. 

odularity and multifunctionality 

Advances in single cell profiling have revealed the previously un-

erappreciated cellular diversity that exists in tissues, highlighting the

omplex mechanisms of tissue repair that involve the coordinated ac-

ion of multiple cell types. In this regard, multifunctional biomaterials

hat can appropriately stimulate diverse cells may be advantageous. In

ontrast to traditional bulk hydrogels, the modularity of granular hydro-

els makes it possible to mix multiple microgel populations into a single

njectable hydrogel ( Fig. 1 B ). This provides exciting prospects towards

imultaneously targeting various biological processes (e.g. via delivery

f multiple drugs) and cell types (e.g. via presenting cell-type specific

ignaling cues). 

ummary 

There is compelling evidence to indicate that acellular granular hy-

rogels can stimulate endogenous repair in tissues with diverse heal-

ng mechanisms including myocardium, peripheral nerve, and skin. The
3 
odular nature of granular hydrogels in combination with their in-

ectability and tunable structural characteristics presents virtually limit-

ess permutations in which they can support tissue repair. We anticipate

hat upcoming years will show efficacy of granular hydrogels in larger

nimal models, that new applications for granular hydrogels will be re-

ealed, and that complementary advances in microfluidic technologies

ill enable the scale-up of microgel production to pave a path to their

ventual translation to the clinics. 
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