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The epidermal growth factor receptor (EGFR, HER1) is a therapeutic tar-

get in head and neck squamous cell carcinoma (HNSCC). After initial

promising results with EGFR-targeted therapies such as cetuximab, thera-

peutic resistance has become a major clinical problem, and new treatment

options are therefore necessary. Moreover, the relationship between HER

receptors, anti-EGFR therapies, and the human papillomavirus (HPV) sta-

tus in HNSCC is not fully understood. In contrast to first-generation EGFR

inhibitors, afatinib irreversibly inhibits multiple HER receptors simultane-

ously. Therefore, treatment with afatinib might result in a more pronounced

therapeutic benefit, even in patients experiencing cetuximab resistance. In

this study, the cytotoxic effect of afatinib as single agent and in combination

with cisplatin was investigated in cetuximab-sensitive, intrinsically cetux-

imab-resistant, and acquired cetuximab-resistant HNSCC cell lines with dif-

ferent HPV status under normoxia and hypoxia. Furthermore, the influence

of cetuximab resistance, HPV, and hypoxia on the expression of HER

receptors was investigated. Our results demonstrated that afatinib was able

to establish cytotoxicity in cetuximab-sensitive, intrinsically cetuximab-resis-

tant, and acquired cetuximab-resistant HNSCC cell lines, independent of

the HPV status. However, cross-resistance between cetuximab and afatinib

might be possible. Treatment with afatinib caused a G0/G1 cell cycle arrest

as well as induction of apoptotic cell death. Additive to antagonistic interac-

tions between afatinib and cisplatin could be observed. Neither cetuximab

resistance nor HPV status significantly influenced the expression of HER

receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2,

and HER3 was significantly altered under hypoxia. Oxygen deficiency is a

common characteristic of HNSCC tumors, and these hypoxic tumor regions

often contain cells that are more resistant to treatment. However, we

observed that afatinib maintained its cytotoxic effect under hypoxia. In con-

clusion, our preclinical data support the hypothesis that afatinib might be a
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promising therapeutic strategy to treat patients with HNSCC experiencing

intrinsic or acquired cetuximab resistance.

1. Introduction

Targeted therapies are at the forefront of personalized

medicine in cancer treatment. Thanks to our rapidly

expanding understanding of the molecular biology of

cancer, an increasing number of patients are currently

considered as candidates for treatment with molecular

targeted pharmaceuticals. Interestingly, the epidermal

growth factor receptor (EGFR, HER1) plays an inte-

gral role in the tumorigenesis and is richly expressed in

a wide range of malignancies, including head and neck

squamous cell carcinoma (HNSCC). Increased or sus-

tained activation of the EGFR signaling pathway can

convert a normal cell to a malignant cell by providing

sustained signals for cell proliferation, anti-apoptotic

signaling, angiogenesis, and metastasis), thus making it

a compelling drug target (Mahipal et al., 2014).

Head and neck squamous cell carcinoma is the sixth

most common cancer in the world, and despite innova-

tions in surgery and radiotherapy, overall 5-year sur-

vival rates remain poor. HNSCCs are known to

express high levels of EGFR, which is associated with

poor prognosis (Mahipal et al., 2014). Therefore, inhi-

bition of aberrant activation of the EGFR signal

transduction pathway has been a focus of research

over the last decades and has led to the development

of tyrosine kinase inhibitors (TKIs), including erlotinib

and gefitinib, as well as monoclonal antibodies (mAbs)

that prevent ligand binding and/or receptor dimeriza-

tion, such as cetuximab and panitumumab (Zhang

et al., 2007). Clinical trials in HNSCC of cetuximab,

gefitinib, or erlotinib, as monotherapies, have yielded

response rates of only 5–15% (Cohen et al., 2009).

Most cancer treatments are combinations of

chemotherapeutic agents and/or radiotherapy. There-

fore, it was expected that EGFR-targeted agents

would achieve their greatest efficacy in combination

with traditional cytotoxic agents or irradiation. Indeed,

cetuximab may enhance the effect of radiotherapy and

platinum-based drugs by (a) inhibiting cell prolifera-

tion, cell repopulation, DNA repair, and tumor oxy-

genation; (b) modulating cell cycle perturbation and

cell accumulation in radiosensitive phases; and (c)

inducing apoptosis and necrosis (Fan et al., 1993;

Skvortsova et al., 2010). In addition, it has already

been observed that irradiation treatment results in an

increase in EGFR expression on cancer cells (Liang

et al., 2003). Furthermore, cetuximab has additional

immune-based mechanisms of activity as it is able to

stimulate antibody-dependent cellular cytotoxicity and

enhance cytotoxic T-lymphocyte cross-priming by den-

dritic cells (Kimura et al., 2007; Yang et al., 2013).

Both chemotherapy and radiation can also initiate

effective antitumor immunity.

As a result, cetuximab has been approved for the

treatment of HNSCC in combination with either

radiotherapy in the locoregionally advanced disease

setting (leading to an absolute survival gain of 10% at

5 years) or with platinum-based drugs plus 5-fluorour-

acil in the recurrent/metastatic (R/M) disease setting

(leading to a median survival of 10.1 months versus

7.4 months with chemotherapy alone; Bonner et al.,

2006; Vermorken et al., 2008). Although the addition

of targeted therapy improves overall survival, lack of

durable efficacy due to drug resistance is a major clini-

cal problem (Cohen, 2014). To date, no definitive

biomarkers have been identified to predict the efficacy

of EGFR-targeted therapies in patients with HNSCC

(Boeckx et al., 2013; Kim et al., 2017).

Therapeutic resistance may arise from mechanisms

that can compensate for reduced EGFR signaling and/

or mechanisms that can modulate EGFR-dependent

signaling. In literature, activation of HER2 signaling

has been associated with cetuximab resistance as its

signaling occurs through many of the same down-

stream effectors of EGFR (Quesnelle and Grandis,

2011; Yonesaka et al., 2011). Therefore, it has been

suggested that inhibition of both EGFR and HER2

could be an effective strategy to overcome cetuximab

resistance. In HNSCC, increased HER expression has

been linked to poor outcomes, including decreased

overall survival, locoregional relapse, and treatment

failure (Ang et al., 2002; Ganly et al., 2007; Takikita

et al., 2011). Furthermore, Wheeler et al. (2008)

demonstrated that cetuximab-resistant HNSCC cells

manifested strong activation of HER2 and HER3. In

addition, cetuximab resistance could be the result of

constitutive activation of the EGFR pathway caused

by shedding of the HB-EGF ligand after activation of

ADAM by a stimulus, possibly interleukin 8 (Boeckx

et al., 2015a). This HB-EGF ligand binds not only to

EGFR but also to HER4. As a result, inhibitors that

bind multiple HER receptors might counteract cetux-

imab resistance.

Despite the reported intrinsic and acquired resis-

tance to EGFR-targeting agents, interest in targeting
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EGFR for the treatment of HNSCC remains high,

with new strategies, such as inhibitor combinations

and novel irreversible or multitargeting inhibitors, cur-

rently being evaluated. The particular mode of activa-

tion of the HER network, involving ligand-induced

homo- and heterodimerization of the four HER recep-

tors, has prompted a new approach to inhibit this

complex network and prevent premature emergence of

resistance (Boeckx et al., 2013; Shepard et al., 2008).

The simultaneous inhibition of both partners in a

HER dimer, using covalent binders that confer irre-

versible inhibition, represents one of these new para-

digms. In contrast to the first-generation EGFR

inhibitors, afatinib is an irreversible HER family

blocker that inhibits the enzymatic activity of EGFR,

HER2, and HER4 (De Pauw et al., 2016; Li et al.,

2008a; Minkovsky and Berezov, 2008; Solca et al.,

2012). As HER3 is kinase-inactive and requires obli-

gate heterodimerization with other HER family recep-

tors, afatinib also inhibits HER3-mediated signal

transduction. The increased inhibition scope of HER

receptors by afatinib most likely leads to a more

robust blockade of the HER network (Ioannou et al.,

2013). Previous preclinical research demonstrated

effective cytotoxic activity of afatinib in HNSCC cell

lines and xenograft models (Young et al., 2015). Con-

sequently, treatment with afatinib might result in a dis-

tinct and more pronounced therapeutic benefit.

Besides crosstalk among the different HER receptor

tyrosine kinases, therapeutic resistance may also arise

after prolonged exposure of cells to reduced oxygen

levels (hypoxia) (Wouters et al., 2007). Hypoxia-indu-

cible factors (HIFs) are, for instance, able to activate

the EGFR signaling pathway (Wouters et al., 2013).

As HNSCC is often characterized by hypoxic regions

and as there is a link between hypoxia and EGFR sig-

naling, we consider it highly important to investigate

the cytotoxic effect of afatinib under both normal and

reduced oxygen conditions.

Recent observations show that the human papillo-

mavirus (HPV) is a diagnostic marker for a separate

entity of HNSCC with enhanced overall and disease-

free survival, but its use as a predictive marker has not

been proven yet (Marur et al., 2010). Although there

is a great geographical variation in incidence of HPV-

associated tumors, 2013 global statistics demonstrated

a 36% overall prevalence of HPV in HNSCC (Liu

et al., 2013), thereby representing a substantial propor-

tion of patients with HNSCC, which seems to further

increase over time (Mehanna et al., 2013). HPV onco-

genes have not been demonstrated to influence anti-

EGFR antibody response, and therefore, cetuximab

treatment should be administered independently of

HPV status (Nagel et al., 2013; Pogorzelski et al.,

2014). Nevertheless, recent molecular phenotyping

demonstrated EGFR-independent signaling in HPV-

related HNSCC, suggesting that HPV-positive patients

with HNSCC could be less responsive to EGFR inhibi-

tors (Machiels et al., 2015; Seiwert et al., 2015). Seiwert

et al. (2015) demonstrated that the mutational land-

scape of HPV-positive and HPV-negative HNSCC dif-

fers significantly, which may explain the distinct clinical

behavior and prognosis. As a result, further studies are

needed to investigate the clinical implications of the

observed mutations, with respect to sensitivity to tar-

geted therapies, radiation, and chemotherapy. Research

has also demonstrated that the expression of HER2 and

HER3 is significantly elevated in HPV-positive HNSCC

in comparison with HPV-negative HNSCC (Pollock

et al., 2015). Furthermore, expression of these HER2

and HER3 receptors has previously been associated

with resistance to EGFR inhibitors in HNSCC (Erjala

et al., 2006). Consequently, agents targeting multiple

HER receptors may have the potential to effectively

treat both HPV-positive and HPV-negative tumors

and may be able to overcome intrinsic and/or

acquired cetuximab resistance in HNSCC (Pollock

et al., 2015).

The present study aims to provide preclinical data

concerning the efficacy of afatinib in monotherapy as

well as in combination with cisplatin in HNSCC cell

lines with different sensitivity to cetuximab. As the

possible association between HPV status and efficacy

of EGFR inhibition is still unclear, both HPV-negative

and HPV-positive cell lines were included. Further-

more, variations in expression of HER family mem-

bers between cell lines according to cetuximab

resistance status, oxygen condition, and HPV status

were investigated. In addition, the molecular mecha-

nisms underlying the cytotoxic effect of afatinib were

assessed.

2. Materials and methods

2.1. Cell culture

Eleven human HNSCC cancer cell lines with different

cetuximab sensitivity and HPV status were included in

this study. Cal-27 and UM-SCC-104 were obtained

from American Type Culture Collection (ATCC,

Rockville, MD, USA) and Merck Millipore (SA/NV,

Overijse, Belgium), respectively. SC263 and SQD9

were kindly provided by Sandra Nuyts (University

Hospital Leuven, Leuven, Belgium), and LICR-HN1

and SCC22b were kindly provided by Olivier De

Wever (Laboratory of Experimental Cancer Research,
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Ghent University Hospital, Ghent, Belgium). 93-

VU147-T was provided by Josephine Dorsman (VU

University Medical Center, Amsterdam, the Nether-

lands). All cell lines were HPV negative, with the

exception of 93-VU147-T and UM-SCC-104. All cell

lines were cultured in Dulbecco’s modified Eagle’s

medium, supplemented with 10% fetal bovine serum,

1% penicillin/streptomycin, and 1% L-glutamine (Life

Technologies, Merelbeke, Belgium). Cells were grown

as monolayers and maintained in exponential growth

in 5% CO2/95% air in a humidified incubator at

37 °C. All cell lines were confirmed free of myco-

plasma infection through regular testing (MycoAlert

Mycoplasma Detection Kit, Lonza, Verviers, Bel-

gium).

2.2. Oxygen conditions

Hypoxia (1% O2) was achieved in a Bactron IV anaer-

obic chamber (Shel Lab, Cornelius, OR, USA), as

described previously (Wouters et al., 2009). After over-

night incubation to allow attachment of cells, hypoxic

conditions were initiated immediately after addition of

the drug.

2.3. Cytotoxicity assays

Cell survival was assessed using the colorimetric sul-

forhodamine B (SRB) assay, as previously described

(Limame et al., 2012; Pauwels et al., 2003). This assay

assesses the number of viable cells after treatment, as

it is not possible to make a distinction with this assay

between inhibition of proliferation (cytostatic effect)

and cell death (cytotoxic effect). Optimal seeding den-

sities for each cell line were determined to ensure expo-

nential growth during the whole duration of the assay.

Cells were counted automatically with a Scepter 2.0

device (Merck Millipore SA/NV). After overnight

incubation, cells were treated with cetuximab (0–
50 nM, 168 h), afatinib (0–10 lM, 72 h), or afatinib in

combination with cisplatin (0–10 lM, 24 h). Two

sequential combination schedules were tested:

1 Afatinib for 72 h immediately followed by cisplatin

for 24 h;

2 Cisplatin for 24 h immediately followed by afatinib

for 72 h.

The pharmaceuticals, that is, cetuximab (anti-EGFR

mAb, Merck, Darmstadt, Germany) and cisplatin (Sel-

leck Chemicals, Houston, TX, USA), were diluted in

sterile PBS. Afatinib (EGFR-TKI, Selleck Chemicals)

was diluted in DMSO (Merck Millipore SA/NV), and

further dilutions were made in cell culture medium.

IC50 values (i.e., drug concentration causing 50%

growth inhibition) were calculated using WINNONLIN

software (Pharsight, Mountain View, CA, USA). Pos-

sible synergism between afatinib and cisplatin was

determined by calculation of the combination index

(CI) using the additive model as described by others

(Deben et al., 2016; Jonsson et al., 1998; Valeriote and

Lin, 1975). CI < 0.8, CI = 1.0 � 0.2, and CI > 1.2

indicated synergism, additivity, and antagonism,

respectively.

2.4. Generation of resistant cell clones

Generation of resistant cell clones was performed as

described previously (Boeckx et al., 2015a). Cetux-

imab-resistant variants were derived from the original

cetuximab-sensitive parental SC263 and SCC22b cell

lines by continuous exposure to cetuximab, starting

with the IC50 concentration of cetuximab. In parallel,

controlled parental cells were exposed to the vehicle

control (suffix PBS). After 10 dose doublings, dose–re-
sponse studies were determined for each resistant cell

line (suffix R). To examine whether acquired resistance

was a transient or permanent effect, dose–response
curves of cetuximab were re-assessed in the resistant

cell lines after 6 weeks in culture without cetuximab.

2.5. Expression analysis of HER family members

The cellular membrane expression level of EGFR,

HER2, HER3, and HER4 under both normoxia and

hypoxia was assessed using flow cytometry. Cells were

fixed in 4% formaldehyde (10 min) under normoxia or

hypoxia after EGFR, HER2, HER3, and HER4 PE-

conjugated antibody incubation (10 lL/106 cells, 25 lg
antibody in 1 mL, R&D Systems, Minneapolis, MN,

USA). These receptor-specific antibodies recognize and

bind to the extracellular domain of the receptor. Corre-

sponding isotype controls (respectively, rat IgG2A,

mouse IgG2B, mouse IgG1 and mouse IgG2A, 10 lL/
106 cells, 50 lg antibody in 2 mL; R&D Systems) were

included for all samples and served as negative con-

trols. Dead cells were excluded from the analysis by

staining with Live/Dead Fixable Far-Red Dead Cell

Stain Kit (Thermo Fisher Scientific, Merelbeke, Bel-

gium). All samples were measured on a FACScan flow

cytometer (BD Biosciences, Erembodegem, Belgium).

Flow cytometric data were analyzed using FLOWJO

v10.1 (TreeStar Inc., Ashland, OR, USA). The percent-

age of EGFR-, HER2-, HER3- and HER4-positive

cells (overton) was determined in comparison with the

corresponding isotype control. Furthermore, the signal

for aspecific binding was subtracted from the mean
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fluorescence intensities (=DMFI). This parameter indi-

cates the amount of cellular membrane expression of

EGFR, HER2, HER3, and HER4 on individual cells.

2.6. Assays for apoptosis and cell cycle

distribution

After overnight incubation, cells were treated for 72 h

with afatinib. As the sensitivity to afatinib strongly var-

ied between the cell lines, afatinib concentrations were

based on the outcome of the monotherapy experiments

and corresponded with the IC20, IC40, and IC60 values

specific for each cell line under normoxia and hypoxia.

Cell cycle distribution was determined immediately after

72 h of treatment with afatinib under both normoxia

and hypoxia, using a CycleTESTTM PLUS DNA reagent

kit (BD Biosciences). Induction of apoptotic cell death

was investigated flow cytometrically using the annexin

V-FITC (AnnV)/propidium iodide (PI) assay (BD Bio-

sciences). Both assays were performed on a FACScan

flow cytometer and analyzed with FLOWJO v10.1.

Alternatively, the induction of apoptotic cell death

was examined by real-time measurements of caspase-3/

7 activity using the IncuCyte ZOOM live-cell analysis

instrument (Essen BioScience, Ann Arbor, MI, USA).

After overnight incubation, cells were treated with afa-

tinib. The IncuCyte caspase-3/7 green apoptosis

reagent (Essen BioScience) was added at the start of

treatment at a final concentration of 2.5 lM. This cas-

pase-3/7 apoptosis reagent is cleaved by activated cas-

pase-3/7, which results in the release of a DNA dye

and green fluorescent staining of nuclear DNA. Images

were taken every 2 h from the start of treatment.

Kinetic activation of caspase-3/7 was monitored mor-

phologically using live-cell imaging and quantified

using the IncuCyte basic analyzer (Essen BioScience).

2.7. Statistical analysis

We performed all experiments at least three times inde-

pendently, unless otherwise stated. In cytotoxicity

experiments and IncuCyte Caspase-3/7 Green Apopto-

sis Assays, each condition was tested in triplicate in

each of the three experiments. Flow cytometry experi-

ments were independently performed three times with

one sample for each condition. Results are presented

as mean � standard deviation. The effects of various

conditions and treatments were studied using linear

regression or linear mixed models in case of noninde-

pendent observations. All models were fitted using a

stepwise backward strategy, starting from a model

with all fixed effects and their interaction. If the inter-

action term was not significant, a model with only the

main was fitted. If one of these terms was significant,

effect sizes were estimated. If the treatment effect was

significant, a post hoc analysis with Tukey’s correction

for multiple testing was performed.

Effects of oxygen and resistance status on the expres-

sion of HER family members and afatinib’s cytotoxic

effect were modeled using a linear mixed model with

oxygen status, resistance status, and their interaction as

fixed effects. A random intercept for cell line was added

to account for the dependence between observations

within the same cell line. Furthermore, a separate anal-

ysis was performed to test for differences in HER sta-

tus between HPV-positive and HPV-negative HNSCC

cell lines. Linear regression models were fitted to study

the effect of treatment, oxygen condition, and their

interaction on the percentage of G0/G1 cells as well as

AnnV+/PI� and AnnV+/PI+ cells. Regarding the com-

bination experiments, differences in IC50 values were

tested for significance with the Mann–Whitney U-test.

GRAPHPAD PRISM 7 (Graphpad Software, La Jolla,

CA, USA) was used for data comparison and artwork.

All statistical analyses were performed in R version

3.3.2 (The R Foundation for Statistical Computing,

Vienna, Austria). P-values below 0.050 were consid-

ered significant.

3. Results

3.1. Identification of HNSCC cell lines with

intrinsic cetuximab resistance and generation of

cell lines with acquired cetuximab resistance

We previously identified intrinsic resistance to cetux-

imab in several HNSCC cell lines such as LICR-HN1

and Cal-27 (Boeckx et al., 2014). A resistant daughter

cell line was already generated from the cetuximab-

sensitive SC263 cell line, in order to establish acquired

resistance to cetuximab (Boeckx et al., 2015a). Simi-

larly, sensitivity to cetuximab therapy was investigated

in an additional panel of HNSCC cell lines. The dose–
response curves of the HNSCC cell lines for cetuximab

are shown in Fig. 1. Based on these dose–response
curves and the corresponding IC50 values, five of seven

HNSCC cell lines (i.e., LICR-HN1, Cal-27, SQD9, 93-

VU-147T, and UM-SCC-104) were considered as

intrinsically resistant to cetuximab as the percentage of

viable cells in these cell lines did not decrease below

50%. SC263 and SCC22b were identified as cetuximab

sensitive (IC50 values of 0.12 � 0.04 nM and

0.41 � 0.23 nM, respectively).

As mentioned above, one acquired cetuximab-resis-

tant daughter HNSCC cell line was already generated

during previous research (Boeckx et al., 2015a). An
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additional HNSCC cell line with acquired cetuximab

resistance was developed from the human SCC22b

HNSCC cell line, shown to be initially cetuximab sen-

sitive. Resistant cells were characterized by performing

cell proliferation assays upon exposure to cetuximab

(Fig. 1B). A higher proliferation potential was

observed in the acquired cetuximab-resistant SCC22b-

R cells when treated with cetuximab compared to sen-

sitive SCC22b-PBS cells. Furthermore, the stability of

cetuximab resistance was confirmed, as SC263-R

(Boeckx et al., 2015a) and SCC22b-R (Fig. 1C)

remained cetuximab resistant, even after culturing in

drug-free medium for 6 weeks.

3.2. Expression level of HER family members in a

panel of HNSCC cell lines with different

sensitivity to cetuximab

As afatinib inhibits multiple members of the HER

receptor family, we examined the basal cellular mem-

brane protein expression level of these HER family

members under normoxic and hypoxic conditions in

our panel of HNSCC cell lines with different sensitiv-

ity to cetuximab and HPV status.

The majority of HNSCC cell lines showed high per-

centages of EGFR-, HER2-, and HER3-positive cells

(Fig. 2A,C,E). Furthermore, these receptor-positive

cells demonstrated high expression of EGFR, HER2,

and HER3 (Fig. 2B,D,F). In contrast, HER4 expres-

sion was barely observed in any of the HNSCC cell

lines tested, and when detected, HER4 expression

levels were very low (data not shown). Remarkably,

LICR-HN1 demonstrated lower levels of EGFR

expression in comparison with other HNSCC cell lines.

Nevertheless, EGFR, HER2, and HER3 were highly

expressed in all other HNSCC cell lines with DMFI

above 346.7 � 101.0, 326.3 � 122.8, and 586.7 � 54.1,

respectively. Interestingly, the intrinsically cetuximab-

resistant cell lines 93-VU-147T and SQD9 demon-

strated huge levels of, respectively, HER2 (DMFI =
1792.3 � 125.6) and HER3 expression (DMFI =
4229.7 � 1068.2) compared to the other HNSCC cell

lines.

No significant differences in the percentages of

EGFR-, HER2-, HER3-, and HER4-positive cells

(P ≥ 0.143) and the DMFI of receptor-positive cells

(P ≥ 0.170) were observed between cetuximab-sensi-

tive, intrinsically cetuximab-resistant, and acquired
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Fig. 1. Dose–response curves of cetuximab (168 h) evaluated using the SRB assay. (A) Dose–response curves for HPV-positive and HPV-

negative HNSCC cell lines. Five of seven HNSCC cell lines (i.e., LICR-HN1, Cal-27, SQD9, 93-VU-147T, and UM-SCC104) were considered

as intrinsically resistant to cetuximab versus SC263 and SCC22b, which were cetuximab sensitive. (B) Dose–response curves for isogenic

cetuximab-resistant (SCC22b-R) and cetuximab-sensitive (SCC22b-PBS) HNSCC cell lines. (C) Dose–response curve for the cetuximab-

resistant cell line SCC22b-R after 6 weeks of culture in drug-free medium, followed by cetuximab treatment for 168 h. This graph

represents one experiment executed in threefold.

835Molecular Oncology 12 (2018) 830–854 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

I. De Pauw et al. Afatinib overcomes cetuximab resistance in HNSCC



A

C

B

D

E F

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4

SC26
3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

20

40

60

80

100

Overton EGFR
Po

si
tiv

e 
ce

lls
 (%

)

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4

SC26
3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

20

40

60

80

100

Overton HER2

Po
si

tiv
e 

ce
lls

 (%
)

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4
SC26

3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

20

40

60

80

100

Po
si

tiv
e 

ce
lls

 (%
)

Overton HER

Normoxia Hypoxia

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4

SC26
3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

1000

2000

3000

4000

M
FI

EGFR Expression

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4

SC26
3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

1000

2000

3000

4000
M

FI

HER2 Expression

LIC
R-H

N1
SQD9

CAL-27

93
-V

U-14
7T

UM-S
CC-10

4
SC26

3

SC26
3-P

BS

SC26
3-R

SCC22
b

SCC22
b-P

BS

SCC22
b-R

0

1000

2000
4000

5000

6000

7000

M
FI

HER3 Expression

Fig. 2. Protein levels of HER receptors under normoxic and hypoxic conditions in a panel of HNSCC cell lines with different sensitivity to

cetuximab. The percentage of EGFR-, HER2-, and HER3-positive cells (overton) are presented in A, C, and E, respectively. The expression

levels of EGFR, HER2, and HER3 on the corresponding receptor-positive cells (DMFI) are presented in B, D, and F, respectively. Protein

levels were measured with the FACScan flow cytometer.

836 Molecular Oncology 12 (2018) 830–854 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Afatinib overcomes cetuximab resistance in HNSCC I. De Pauw et al.



cetuximab-resistant HNSCC cell lines. In addition, no

significant effect of HPV status was detected for the

percentage of EGFR-, HER2-, HER3-, and HER4-

positive cells (P ≥ 0.302) as well as DMFI of receptor-

positive cells (P ≥ 0.110). Hence, the percentage

EGFR-, HER2-, HER3-, and HER4-positive cells and

DMFI of receptor-positive cells seems to be cell line

specific and independent of HPV status.

Next, the effect of reduced oxygen levels on the

expression of EGFR, HER2, HER3, and HER4 was

evaluated. No significant interaction between oxygen

condition and cetuximab resistance status on EGFR,

HER2, HER3, and HER4 expression was found.

When looking at the effect of oxygen availability, there

was a significant increase in the percentage of EGFR-

positive cells (P = 0.006) and DMFI of EGFR-positive

cells (P < 0.001) under hypoxic conditions in all

HNSCC cell lines (Table 1). The significant increase in

overton for EGFR under hypoxia was mainly

observed in acquired cetuximab-resistant HNSCC cell

lines (P = 0.016) (Fig. 3A). The significant increase in

DMFI of EGFR-positive cells under hypoxia was

detected in cetuximab-sensitive and intrinsically cetux-

imab-resistant as well as acquired cetuximab-resistant

and PBS-treated HNSCC cell lines (P ≤ 0.018)

(Fig. 3B). Regarding HER2, the percentage of HER2-

positive cells increased under hypoxic conditions in all

HNSCC cell lines (P = 0.065) (Table 1), especially in

intrinsically cetuximab-resistant HNSCC cell lines

(P = 0.024) (Fig. 3A). Moreover, DMFI of HER2-

positive cells was significantly raised under hypoxic

conditions in all HNSCC cell lines (P < 0.001). This

significant increase under hypoxia was mainly noticed

in intrinsically cetuximab-resistant as well as acquired

cetuximab-resistant and PBS-treated control HNSCC

cell lines (P ≤ 0.050) (Fig. 3B). In contrast, for HER3,

the percentage of positive cells was significantly

decreased under hypoxia in all HNSCC cell lines

(P < 0.001) (Table 1). Overall, no significant change in

DMFI of HER3-positive cells was observed under

reduced oxygen levels (P = 0.425). However, taking

the difference in cetuximab resistance status between

cell lines into account, a significant decrease in DMFI

under hypoxia was observed for HER3 in acquired

cetuximab-resistant and PBS-treated control HNSCC

cell lines (P ≤ 0.010) (Fig. 3B). Lastly, HER4 expres-

sion was not altered under hypoxic conditions

(P ≥ 0.300) (data not shown).

Overall, these results demonstrated that HNSCC cell

lines with different sensitivity to cetuximab contain a

high percentage of EGFR-, HER2-, and HER3-posi-

tive cells and that these receptors are generally highly

expressed on these positive cells. Furthermore, hypoxia

significantly affected the expression of these receptors.

In contrast, cetuximab resistance and HPV status had

no significant influence on the expression of HER

receptors. This means that the HNSCC cell lines used

in this study are a valid target candidate for treatment

with afatinib, according to the target expression of

EGFR and HER2.

3.3. Afatinib is able to overcome intrinsic and

acquired cetuximab resistance in a panel of

HNSCC cell lines under normal and reduced

oxygen conditions

The cytotoxic effect of the irreversible HER family

blocker afatinib was studied in cetuximab-sensitive,

intrinsically cetuximab-resistant as well as acquired

cetuximab-resistant and PBS-treated control HNSCC

cell lines under both normoxia and hypoxia. A clear

concentration-dependent cytotoxic effect of afatinib

(0–5000 nM) after 72 h of treatment was observed in

all HNSCC cell lines (Fig. 4). The IC50 values for afa-

tinib under normoxic conditions ranged from

19 � 15 nM to 4040 � 70 nM (Table 2). Neither

Table 1. Effect sizes with standard errors for the influence of oxygen condition on the expression levels of EGFR, HER2, HER3, and HER4

in all HNSCC cell lines. The effect size is only reported if there was a significant difference in overton and DMFI of HER receptors between

normoxia and hypoxia (P-value ‘effect oxygen’). The effect size represents the difference in mean overton and DMFI between normoxia and

hypoxia. Positive and negative effect sizes, respectively, indicate an increase and decrease under hypoxia compared to normoxia. The P-

value shows the significance, testing the null hypothesis that the effect size equals zero. P-values ≤0.05 are indicated in bold. /, effect size

was not shown in case there was no significant effect of oxygen condition on the outcome.

% Positive cells (overton) Expression level (DMFI)

P-value

effect oxygen Effect size (%)

P-value

effect size

P-value

effect oxygen Effect size (DMFI)

P-value

effect size

EGFR 0.006 5.95 � 2.03 0.003 < 0.001 463.35 � 64.65 < 0.001

HER2 0.065 / / < 0.001 483.62 � 80.93 < 0.001

HER3 < 0.001 �12.95 � 1.95 < 0.001 0.425 / /

HER4 0.377 / / 0.300 / /
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cetuximab resistance (P = 0.750) nor the HPV status

(P = 0.800) seems to influence the inhibitory potential

of afatinib. However, certain intrinsically cetuximab-

resistant and acquired cetuximab-resistant HNSCC cell

lines demonstrated higher IC50 values compared to

other intrinsically cetuximab-resistant and acquired

cetuximab-resistant HNSCC cell lines used in this

study. For instance, the intrinsically cetuximab-resis-

tant HNSCC cell lines Cal27 and UM-SCC-104

demonstrated considerably lower IC50 values com-

pared to LICR-HN1 and 93-VU-147T. Despite that

statistical analysis did not reveal a significant influence

of cetuximab resistance on the cytotoxicity of afatinib,

these results indicate the possibility of cross-resistance

between cetuximab and afatinib.

The cytotoxic effect of afatinib was maintained

under reduced oxygen conditions (Table 2). Cetuximab

resistance (P = 0.450) and HPV status (P = 0.630)

were not associated with afatinib’s cytotoxicity under

hypoxic conditions. However, statistical analysis

showed a significant interaction between resistance sta-

tus and oxygen condition (P < 0.001). This implies

that the difference in IC50 value for afatinib between

the normoxia and hypoxia group varies across the dif-

ferent resistance statuses. As such, we analyzed the dif-

ference in IC50 value of afatinib between normoxia

and hypoxia for cetuximab-sensitive, intrinsically

cetuximab-resistant, and acquired cetuximab-resistant

HNSCC cell lines. The estimated effect sizes, showing

the difference in mean log(IC50) between normoxia

and hypoxia, are displayed in Fig. 4D. Significantly

higher average log(IC50) values were observed under

normoxia compared to log(IC50) values under hypoxia

in cetuximab-sensitive, intrinsically cetuximab-resis-

tant, and acquired cetuximab-resistant HNSCC cell

lines (P < 0.001). This means that afatinib demon-

strated an increased cytotoxicity under hypoxic condi-

tions. However, this effect of hypoxia on afatinib’s

cytotoxic activity was less pronounced in intrinsically

cetuximab-resistant cell lines.

Overall, afatinib showed a clear concentration-

dependent cytotoxic effect in cetuximab-sensitive,

intrinsically cetuximab-resistant, and acquired cetux-

imab-resistant HNSCC cell lines. Furthermore, our

results demonstrate that therapeutic resistance to afa-

tinib is not associated with HPV infection or pro-

longed exposure to hypoxia in our panel of HNSCC

cell lines with different sensitivities to cetuximab.

3.4. Molecular mechanisms underlying the

cytotoxic effect of afatinib

3.4.1. Treatment with afatinib results in a G0/G1 cell

cycle arrest

As presented in Fig. 5, treatment with afatinib under

both normoxia and hypoxia led to an increase in the

percentage of G0/G1 cells, accompanied by a decrease

in the percentage of cells in the S and G2/M phases, in

the majority of the HNSCC cell lines, irrespective of

their sensitivity to cetuximab.

The effects of treatment and oxygen condition as

well as their interaction on the percentage of G0/G1

cells were analyzed using linear regression analyses

(Table 3). A significant interaction indicates that the

effect of afatinib treatment on the percentage of G0/G1

cells is different under normoxia versus hypoxia.
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Moreover, it also implies that the effect of oxygen con-

dition on the percentage of G0/G1 cells varies after

treatment with different afatinib concentrations. The

interaction between treatment and oxygen status was

found to be significant in half of the HNSCC cell lines

used in this study, indicating a cell line-specific effect

(Table 3). If the interaction was not significant, a

model with the main effects of treatment and oxygen

condition was performed. Thus, in absence of a signifi-

cant interaction, the effect of treatment is valid under

both normoxia and hypoxia. With regard to the effect

of treatment under normoxia, afatinib induced a sig-

nificant increase in the proportion of G0/G1 cells in all

cell lines, except for LICR-HN1. Compared to treat-

ment under normoxia, the effect of afatinib on the

G0/G1 cell cycle arrest was generally lower or equal

under hypoxia in cetuximab-sensitive and intrinsically

cetuximab-resistant HNSCC cell lines, except for

SQD9. Remarkably, in the acquired cetuximab-resis-

tant cell lines, the increase in G0/G1 cells after treat-

ment under normoxia was less pronounced compared

to the isogenic PBS-treated control cell lines, especially

in the SCC22b-R versus SCC22b-PBS cell line. The

influence of hypoxia on the G0/G1 cell cycle arrest

induced by afatinib was variable in these acquired

cetuximab-resistant HNSCC cell lines. For instance,

treatment with afatinib under hypoxia, compared to

normoxia, resulted in a more pronounced G0/G1 cell

cycle arrest in the acquired cetuximab-resistant SC263-

R cell line but not in the SCC22b-R cell line.
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Overall, treatment with afatinib under both nor-

moxia and hypoxia established a significant G0/G1 cell

cycle arrest. However, the influence of hypoxia on this

treatment induced G0/G1 cell cycle arrest was cell line

specific and independent of HPV status as well as

cetuximab sensitivity.

3.4.2. Treatment with afatinib leads to the induction of

apoptotic cell death

Besides the capacity of afatinib to induce a G0/G1 cell

cycle arrest, we also assessed its ability to induce pro-

grammed apoptotic cell death using the AnnV/PI flow

cytometric assay. This technique identifies cells in early

(AnnV+/PI�) or late (AnnV+/PI+) phases of apopto-

sis. The majority of intrinsically cetuximab-resistant

HNSCC cell lines demonstrated a dose-dependent

increase in AnnV+/PI� and AnnV+/PI+ cells as well

as a corresponding decrease in viable AnnV�/PI�
cells after 72 h of treatment with afatinib under nor-

mal and reduced oxygen conditions (Fig. 6). However,

in cetuximab-sensitive, acquired cetuximab-resistant,

and PBS-treated control HNSCC cell lines, afatinib

induced an increase in AnnV+/PI� and AnnV+/PI+
cells after treatment with higher doses afatinib under

both normoxia and hypoxia (Fig. 6). This induction of

apoptotic cell death after treatment with afatinib under

normoxia was confirmed by real-time measurements of

active caspase-3/7 using the IncuCyte system. After

24 h of afatinib treatment, a significant dose-depend-

ing increase in green object count, indicating an

increased caspase-3/7 activity, was observed in the

majority of HNSCC cell lines (Fig. 7).

The effects of treatment and oxygen condition as

well as their interaction on the percentage of AnnV�/

PI�, AnnV+/PI�, and AnnV+/PI+ cells were deter-

mined using linear regression (Table 4). After 72 h of

afatinib treatment, AnnV+ cells are mainly PI� and

thus in the early phase of apoptosis. When looking at

the viable cells and early apoptotic cells, the interac-

tion between treatment and oxygen status was found

significant in half of the HNSCC cell lines used in this

study, indicating a cell line-specific effect. Significant

interaction indicated that the effect of afatinib treat-

ment on the percentage of viable and early apoptotic

is different under normoxia versus hypoxia. Moreover,

it also implies that the effect of oxygen condition on

the percentage of viable and early apoptotic cells var-

ies after treatment with different concentrations afa-

tinib. For example, the percentage of AnnV+/PI� cells

was considerable high after treatment under hypoxia

in comparison with treatment under normoxia in UM-

SCC-104 cells. This is consistent with our previous

findings in the cytotoxicity assay, indicating that the

number of viable cells after afatinib treatment

decreases more under hypoxic compared to normoxic

conditions. When cells were already in late apoptosis

after 72 h of treatment, no significant interaction

between treatment and oxygen status was found in the

majority of HNSCC cell lines used in this study

(Table 4).

3.5. Combining afatinib with cisplatin in HNSCC

cell lines with different sensitivity to cetuximab

shows additive to antagonistic effects

To investigate the potential interaction between afa-

tinib and cisplatin, tumor cells were incubated with

fixed doses of afatinib for 72 h combined with sequen-

tial treatment of 0–10 lM cisplatin for 24 h. The fixed

afatinib concentrations were based on the outcome of

the monotherapy experiments and correspond with the

IC20 and IC40 values specific for each cell line. The

dose–response curves of the cetuximab-sensitive and

Table 2. IC50 values and standard errors for HNSCC cell lines after incubation with afatinib for 72 h under normoxic and hypoxic conditions.

Cell line Cetuximab resistance status HPV status

IC50 Afatinib 72 h (nM)

Normoxia (21% O2) Hypoxia (1% O2)

LICR-HN1 Intrinsically resistant Negative 4040 � 70 3750 � 80

SQD9 Intrinsically resistant Negative 1500 � 310 1950 � 310

Cal27 Intrinsically resistant Negative 19 � 15 7 � 6

93-VU147-T Intrinsically resistant Positive 2210 � 260 2350 � 390

UM-SCC-104 Intrinsically resistant Positive 34 � 16 22 � 7

SC263 Sensitive Negative 89 � 34 20 � 11

SC263-PBS PBS-treated control, sensitive Negative 260 � 110 28 � 12

SC263-R Acquired resistant Negative 680 � 270 160 � 60

SCC22b Sensitive Negative 170 � 110 29 � 18

SCC22b-PBS PBS-treated control, sensitive Negative 34 � 19 22 � 13

SCC22b-R Acquired resistant Negative 2420 � 370 225 � 166
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intrinsically cetuximab-resistant cell lines after treat-

ment with these combination regimens are shown in

Figs 7 and 8. All HNSCC cell lines were sensitive to

treatment with cisplatin monotherapy with IC50 values

ranging from 0.83 � 0.11 lM to 4.65 � 0.33 lM
(Table 5). Compared to cisplatin treatment alone,

treatment with afatinib before cisplatin demonstrated

no significant decrease in IC50 value (P ≥ 0.149). In

contrast, treatment with cisplatin followed by afatinib

resulted generally in a significant increase in IC50 com-

pared to the IC50 of cisplatin monotherapy

(0.050 ≤ P ≤ 0.825). Furthermore, CI ranged from

1.01 � 0.06 to 1.96 � 0.40. Thus, sequential exposure

to afatinib followed by cisplatin or the inverse regimen

(i.e., cisplatin followed by afatinib) revealed additive

or subadditive to antagonistic, yet no synergistic inter-

actions.

4. Discussion

Therapeutic resistance to EGFR-targeted therapies

remains a major clinical problem. In order to over-

come resistance to these EGFR-targeted therapies,

new treatment options are urgently needed. Due to

extensive crosstalk among HER receptors, blockade of

one HER receptor can be partially compensated by

other HER family members, which therefore must be

targeted by new therapeutic regimens. In contrast to

the first-generation EGFR inhibitors, afatinib blocks

irreversibly EGFR, HER2, and HER4. As a result, we

hypothesized that treatment with afatinib might result

in a distinct and more pronounced therapeutic benefit.

To test this hypothesis, we investigated the cytotoxicity

of afatinib in a panel of two HPV-positive and nine

HPV-negative HNSCC cell lines that are either sensi-

tive or intrinsically/acquired resistant to cetuximab.

We observed that the majority of HNSCC cell lines

used in this study demonstrated high expression of

EGFR, HER2, and HER3, but rather low HER4

expression under both normal and reduced oxygen

conditions. It has already been established that EGFR

is a key survival factor under hypoxic conditions, as

EGFR stimulates HIF signaling to improve cellular

survival (Wouters et al., 2013). On the other hand,

HIF signaling can also activate the EGFR pathway,

potentiating survival and tumor growth (Wang and

Schneider, 2010). Consistent with previous studies, we

demonstrated that the percentage of EGFR-positive

cells and the EGFR expression level was significantly

increased under reduced oxygen conditions (Krause

et al., 2005; Laderoute et al., 1992; Swinson and

O’Byrne, 2006). Besides the effect on EGFR expres-

sion, hypoxia also induced a significant raise in HER2

expression. In contrast, a significant decrease in the

percentage of HER3-positive cells but not in HER3

expression level was observed under hypoxia. No effect

of hypoxia on HER4 expression was noticed.

Previous research demonstrated that EGFR is

expressed in more than 90% of HNSCC and that high

EGFR expression is correlated with worse outcomes

(Ang et al., 2002; Cohen, 2006; Dassonville et al.,

1993; Rubin Grandis et al., 1996, 1998; Santini et al.,

1991). However, EGFR expression level and gene copy

number are not predictive for response to treatment

with EGFR-targeted therapies plus platinum/5-fluor-

ouracil as first-line therapy for patients with R/M

HNSCC (Licitra et al., 2011, 2013). Furthermore,

increased HER2 and HER3 expression have been asso-

ciated with gefitinib resistance (Erjala et al., 2006).

Thus, cetuximab resistance may arise from alterations

in the expression level of HER receptors. In our study,

no significant changes in expression of HER receptors

were found between cetuximab-sensitive, intrinsically

cetuximab-resistant, and acquired cetuximab-resistant

HNSCC cell lines. Nevertheless, the kinase activity of

these receptors can still be strongly induced in cetux-

imab-resistant cells (Wheeler et al., 2008), making inhi-

bition of homo- and heterodimerization of these HER

receptors still a promising strategy to overcome cetux-

imab resistance.

Overall, as the majority of our HNSCC cell lines

demonstrated high EGFR, HER2, and HER3

Table 3. P-values for the interaction of treatment and oxygen

condition on the percentage of cells in the G0/G1 phase of the cell

cycle in HNSCC cell lines. If the interaction was not significant

(P > 0.050), a model with the main effects of treatment and

oxygen condition was fitted to test the significance of treatment

effect and oxygen condition separately. NE: main effects were not

estimated in case of a significant interaction between treatment

and oxygen. Values ≤0.05 are indicated in bold.

Cell line

P-value

interaction

treatment

and oxygen

condition

P-value

main effect

treatment

P-value main

effect oxygen

condition

LICR-HN1 0.991 0.722 < 0.001

SQD9 0.029 NE NE

Cal27 0.433 < 0.001 < 0.001

93-VU-147T 0.776 < 0.001 0.149

UM-SCC-104 0.026 NE NE

SC263 < 0.001 NE NE

SC263-PBS 0.288 < 0.001 < 0.001

SC263-R 0.003 NE NE

SCC22b 0.997 < 0.001 < 0.001

SCC22b-PBS 0.008 NE NE

SCC22b-R 0.013 NE NE
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Fig. 6. Induction of apoptotic cell death in HNSCC cell lines after afatinib treatment (0 nM, IC20, IC40, IC60, IC80) under both normoxic and

hypoxic conditions. Cells were stained with annexin V-FITC (AnnV) and PI and measured flow cytometrically. Treatment with afatinib induced an

increase in the percentage of AnnV+/PI� and AnnV+/PI+ cells with a corresponding decrease of the percentage viable (AnnV�/PI�) cells in the

majority of HPV-negative (A–C) and HPV-positive (D, E) intrinsically cetuximab-resistant HNSCC cell lines under both normal and reduced

oxygen conditions. This induction of apoptotic cell death was also observed in cetuximab-sensitive (F, I) as well as acquired cetuximab-resistant

and PBS-treated control (G, H, J, and K) HNSCC cell lines. *P-value effect treatment on the percentage AnnV+/PI� cells ≤ 0.050.
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expression under normal and reduced oxygen condi-

tions, these intrinsically cetuximab-resistant and

acquired cetuximab-resistant HNSCC cell lines are

valid target candidates for afatinib treatment.

In the current study, we demonstrated that afatinib

indeed has the potential to overcome intrinsic and

acquired cetuximab resistance in both HPV-positive

and HPV-negative HNSCC tumors, as it was able to

0 4 8 12 16 20 24
0

10

20

30

40

50

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )
LICR-HN1

*

*

0 4 8 12 16 20 24
0

200

400

600

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

93-VU-147T

*

0 4 8 12 16 20 24
0

50

100

150

SC263

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 ) *

0 4 8 12 16 20 24
0

30

60

90

120

150

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

SQD9

*

0 4 8 12 16 20 24
0

50

100

150

200

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

UM-SCC-104
*

0 4 8 12 16 20 24
0

50

100

150

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

SC263-PBS

*

0 4 8 12 16 20 24
0

20

40

60

80

100

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

Cal27

0 4 8 12 16 20 24
0

50

100

150

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

SC263-R

*

0

IC40

IC80

0 4 8 12 16 20 24
0

50

100

150

200

250

SCC22b

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 ) *

0 4 8 12 16 20 24
0

50

100

150

200

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

SCC22b-PBS

*

0 4 8 12 16 20 24
0

50

100

150

200

Time (h)

G
re

en
 o

bj
ec

t c
ou

nt
 (1

/m
m

2 )

SCC22b-R

*

A B

D E

F

C

G H

I J K

Fig. 7. Caspase-3/7 activity in HNSCC cell lines during afatinib treatment (0 nM, IC40, IC80) under normoxic conditions. The induction of

apoptosis was detected by real-time measurements of active caspase-3/7 during afatinib treatment using the IncuCyte system. The green

object count corresponds with the caspase-3/7 activity. After 24 h, treatment with afatinib induced a significant increase in caspase-3/7

activity in the majority of HPV-negative (A–C) and HPV-positive (D, E) intrinsically cetuximab-resistant HNSCC cell lines. This significant

increase in caspase-3/7 activity was also detected in cetuximab-sensitive (F, I), acquired cetuximab-resistant, and PBS-treated control (G, H,

J, and K) HNSCC cell lines. *P-value effect treatment on the green object count ≤ 0.050.
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establish a cytotoxic effect in HNSCC cell lines with

different cetuximab sensitivity and HPV status. No sig-

nificant effect of cetuximab resistance status and HPV

status on the cytotoxic effect of afatinib was observed.

Our results are in concordance with those of others

who showed that targeting multiple members of the

HER receptor family is effective in overcoming intrin-

sic and acquired cetuximab resistance (Iida et al.,

2014, 2016; Quesnelle and Grandis, 2011). Further-

more, a phase II study has recently demonstrated that

afatinib showed antitumor activity comparable to

cetuximab with lack of cross-resistance (Seiwert et al.,

2014). Thus, inhibition of multiple members of the

HER receptor family seems to be necessary in order to

completely overcome intrinsic and acquired cetuximab

resistance. Nevertheless, previous research by us and

others demonstrated that MEHD7945A, a dual mAb

targeting EGFR and HER3, is only partially able to

overcome cetuximab resistance in HNSCC cell lines

(De Pauw et al., 2017; Fayette et al., 2016). These

studies suggested the presence of additional resistance

mechanisms to cetuximab treatment besides HER3 sig-

naling. As afatinib irreversibly inhibits EGFR, HER2

as well as HER4 and consequently also HER3 by

inhibiting its dimerization partners, a more pro-

nounced therapeutic benefit with afatinib might be

expected in patients with HNSCC experiencing cetux-

imab resistance.

Despite that statistical analysis did not reveal a sig-

nificant influence of cetuximab resistance on the cyto-

toxicity of afatinib, our results indicated the possibility

of cross-resistance between cetuximab and afatinib.

The presence of cross-resistance between cetuximab

and afatinib indicates that resistance to EGFR inhibi-

tors is not exclusively due to alterations of HER recep-

tor signaling.

In the LUX-Head and Neck 1 phase III trial, pro-

gression-free survival was significantly improved by

afatinib compared to methotrexate in patients with

second-line R/M HNSCC (Machiels et al., 2015). In

contrast to the study of Seiwert et al. (2014), subgroup

analysis showed a pronounced therapeutic benefit for

patients who had not been treated with an EGFR-tar-

geted antibody in R/M setting, indicating cross-resis-

tance with afatinib. The lack of an observed overall

survival benefit with afatinib compared to methotrex-

ate might result from some characteristics of the study

population, particularly the inclusion of HPV-positive

patients and those who received previous EGFR-tar-

geted treatment. The inclusion of these unselected

patients might have diluted the treatment effect of afa-

tinib (Machiels et al., 2015). Indeed, further subgroup

analysis of the LUX-Head and Neck 1 trial identified

biomarkers (HPV-negative, EGFR-amplified, low

HER3 expression, and high PTEN expression) that

could predict clinical outcomes with afatinib versus

methotrexate in R/M HNSCC. This finding empha-

sizes the importance of well-defined biomarkers for

optimal patient selection.

Table 4. P-values for the interaction of treatment and oxygen

condition on the percentage of AnnV�/PI�, AnnV+/PI�, and AnnV+/

PI+ cells in HNSCC cell lines. If the interaction was not significant

(P > 0.050), a model with the main effects of treatment and oxygen

condition was fitted to test the significance of the effect of

treatment and oxygen condition separately. NE: main effects were

not estimated in case of a significant interaction between treatment

and oxygen. Values ≤0.05 are indicated in bold.

Cell line

P-value

interaction

treatment

and oxygen

condition

P-value

main effect

treatment

P-value

main effect

oxygen

condition

AnnV�/PI�
LICR-HN1 0.393 < 0.001 < 0.001

SQD9 0.020 NE NE

Cal27 0.538 < 0.001 < 0.001

93-VU-147T 0.001 NE NE

UM-SCC-104 0.694 < 0.001 0.053

SC263 < 0.001 NE NE

SC263-PBS < 0.001 NE NE

SC263-R 0.682 < 0.001 0.342

SCC22b < 0.001 NE NE

SCC22b-PBS 0.103 < 0.001 0.053

SCC22b-R 0.048 NE NE

AnnV+/PI�
LICR-HN1 0.030 NE NE

SQD9 0.002 NE NE

Cal27 0.296 0.003 0.003

93-VU-147T 0.005 NE NE

UM-SCC-104 0.191 < 0.001 0.003

SC263 < 0.001 NE NE

SC263-PBS < 0.001 NE NE

SC263-R 0.778 < 0.001 0.259

SCC22b 0.005 NE NE

SCC22b-PBS 0.371 < 0.001 < 0.001

SCC22b-R 0.042 NE NE

AnnV+/PI+

LICR-HN1 0.007 NE NE

SQD9 0.016 NE NE

Cal27 0.396 0.124 0.023

93-VU-147T 0.086 < 0.001 0.023

UM-SCC-104 0.682 0.090 0.209

SC263 0.531 < 0.001 0.339

SC263-PBS 0.805 0.017 0.286

SC263-R 0.870 0.092 0.538

SCC22b 0.130 0.017 0.001

SCC22b-PBS 0.095 < 0.001 0.450

SCC22b-R 0.653 0.012 0.769
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Interestingly, afatinib demonstrated higher cytotoxic

activity under hypoxia in cetuximab-sensitive, intrinsi-

cally cetuximab-resistant, and acquired cetuximab-

resistant HNSCC cell lines. This is an important find-

ing, as oxygen deficiency is a common characteristic of

HNSCC and these hypoxic tumor regions often con-

tain viable cells that are more resistant to conventional

chemotherapy and/or radiotherapy (Wouters et al.,

2007). It has already been speculated that hypoxia

enhances the sensitivity to the cytotoxic effect of

EGFR-targeted mAb and TKIs, given the link

between HIF and EGFR signaling (Boeckx et al.,

2015b; Pore et al., 2006; Riesterer et al., 2011). For

instance, cetuximab and gefitinib are able to overcome

hypoxia-induced drug resistance by downregulation of

HIF-1alpha through inhibition of the EGFR–Akt

pathway (Li and Fan, 2010; Li et al., 2008b; Luwor

et al., 2005; Rho et al., 2009). Hence, treatment with

afatinib can similarly lead to HIF-1alpha downregula-

tion. Increased expression of EGFR and/or HER2

under hypoxic conditions may also explain afatinib’s

increased cytotoxic effect under hypoxia, as afatinib

irreversibly inhibits both receptors.

Concerning the mechanism of action by with afa-

tinib exerts its effect, we observed that treatment with

afatinib under both normal and reduced oxygen levels

established a G0/G1 cell cycle arrest and induction of

apoptotic cell death in the majority of cetuximab-sensi-

tive, intrinsically cetuximab-resistant, and acquired

cetuximab-resistant HNSCC cell lines, which is in
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Fig. 8. The cytotoxic effects of afatinib followed by cisplatin treatment in a panel of HNSCC cell lines with different sensitivity to cetuximab.

Dose–response curves for the intrinsically cetuximab-resistant cell lines LICR-HN1 (A), SQD9 (B), and Cal-27 (C) indicate an additive to

antagonistic effect. Dose–response curves for the cetuximab-sensitive cell lines SC263 (D) and SCC22b (E) show an additive to subadditive

effect. Survival curves were corrected for the cytotoxic effect of 72-h afatinib alone. Cells were treated with fixed concentrations afatinib,

which were based on the outcome of the monotherapy experiments.
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accordance with previous findings in HNSCC (Iida

et al., 2016; Liu et al., 2016; Macha et al., 2017).

However, induction of G0/G1 cell cycle arrest and

induction of apoptotic cell death were not associated

with each other in all cell lines under investigation. As

activation of the EGFR signal transduction pathway

can result in stimulation of both proliferation and

anti-apoptotic signaling (Wee and Wang, 2017), block-

ade of EGFR as well as other HER family members

through afatinib can prevent subsequent activation of

these signaling pathway. Consequently, afatinib can

affect the cell cycle, programmed cell death, or both

cellular processes simultaneously.

Importantly, in the current study, we also included

HPV status of our HNSCC cell line panel as an

important variable. Despite the impressive progress

regarding comprehension of the etiology, epidemiol-

ogy, and prognostic impact of HPV, the extent to

which HPV status may be predictive of response to

therapeutic regimens used in the treatment of
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Fig. 9. The cytotoxic effect of cisplatin followed by afatinib treatment in a panel of HNSCC cell lines with different sensitivity to cetuximab.

Dose–response curves for the intrinsically cetuximab-resistant cell lines LICR-HN1 (A), SQD9 (B), and Cal-27 (C) also indicate an additive to

antagonistic effect. Dose–response curves for the cetuximab-sensitive cell lines SC263 (D) and SCC22b (E) show an additive to antagonistic

effect. Survival curves were corrected for the cytotoxic effect of 72-h afatinib alone. Cells were treated with fixed concentrations afatinib,

which were based on the outcome of the monotherapy experiments.
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HNSCC remains incompletely understood (Ver-

morken, 2017).

Previous research demonstrated that the expression

of EGFR was significantly increased in HPV-negative

HNSCC tumors, whereas the expression of HER2 and

HER3 was significantly elevated in HPV-positive

HNSCC, suggesting that agents targeting multiple

HER receptors might be more effective in HPV-posi-

tive HNSCC (Mazibrada et al., 2014; Pollock et al.,

2015). These findings were supported by data available

from the Cancer Genome Atlas Network and Chicago

Genomics Cohort, demonstrating that HPV-negative

tumors show high EGFR levels and EGFR amplifica-

tion, whereas HPV-positive tumors show generally low

EGFR expression and high HER2 and HER3 expres-

sion (Pollock et al., 2015; Szturz et al., 2017). In con-

trast, we did not find significant differences in EGFR,

HER2, and HER3 expression between the HPV-posi-

tive and HPV-negative HNSCC cell lines included in

our extensive panel of HNSCC cell lines. Hence, HPV

did not induce overexpression of HER2 and HER3 in

our HPV-positive HNSCC cell lines. Yet, it is impor-

tant to keep in mind that the use of only two HPV-

positive cell lines limits our interpretations. Neverthe-

less, in our as well as Pollock’s study (Pollock et al.,

2015), afatinib established a clear cytotoxic effect after

drug exposure in HPV-positive HNSCC cell lines,

which might indicate its potential for the treatment of

HPV-positive patients with HNSCC.

A phase Ib trial recently demonstrated that afatinib,

ribavirin, and weekly paclitaxel and carboplatin as

induction chemotherapy is safe and well tolerated in

patients with locally advanced HPV-associated

oropharyngeal HNSCC (Dunn et al., 2017). In con-

trast, clinical data of the LUX-Head and Neck 1 trial

do not support these preclinical observations and

demonstrated that patients with HPV-positive tumors

had less benefit from treatment with afatinib (Machiels

Table 5. IC50, CI, and standard errors for HNSCC cell lines after sequential treatment with afatinib followed by cisplatin as well as cisplatin

followed by afatinib. CI < 0.8, CI = 1.0 � 0.2, and CI > 1.2 indicated synergism, additivity, or antagonism, respectively. ND, not determined,

as cell survival did not decrease below 50%. P ≤ 0.050, significant difference in IC50 compared to cisplatin monotherapy. P-values ≤0.05

are indicated in bold. –, cannot be calculated.

Cell line Condition IC50 (lM) P-value CI

LICR-HN1 72 h 0 lM afatinib ? 24 h cisplatin 4.42 � 0.49 – –

72 h 3 lM afatinib ? 24 h cisplatin ND – 1.34 � 0.38

72 h 4 lM afatinib ? 24 h cisplatin ND – 1.50 � 0.65

24 h cisplatin ? 72 h 0 lM afatinib 1.25 � 0.05 – –

24 h cisplatin ? 72 h 3 lM afatinib 1.48 � 0.04 0.050 1.07 � 0.02

24 h cisplatin ? 72 h 4 lM afatinib 2.25 � 0.37 0.050 1.30 � 0.13

SQD9 72 h 0 lM afatinib ? 24 h cisplatin 4.65 � 0.33 – –

72 h 1 lM afatinib ? 24 h cisplatin 6.58 � 0.61 0.149 1.16 � 0.185

72 h 2 lM afatinib ? 24 h cisplatin ND – 1.33 � 0.42

24 h cisplatin ? 72 h 0 lM afatinib 1.78 � 0.14 – –

24 h cisplatin ? 72 h 1 lM afatinib 2.78 � 0.28 0.050 1.27 � 0.17

24 h cisplatin ? 72 h 2 lM afatinib 4.06 � 0.16 0.050 1.56 � 0.25

Cal-27 72 h 0 lM afatinib ? 24 h cisplatin 1.72 � 0.28 – –

72 h 0.002 lM afatinib ? 24 h cisplatin 1.83 � 0.28 0.465 1.01 � 0.06

72 h 0.04 lM afatinib ? 24 h cisplatin 2.68 � 0.49 0.175 1.23 � 0.11

24 h cisplatin ? 72 h 0 lM afatinib 0.83 � 0.11 – –

24 h cisplatin ? 72 h 0.002 lM afatinib 1.58 � 0.19 0.127 1.31 � 0.09

24 h cisplatin ? 72 h 0.04 lM afatinib 4.07 � 0.48 0.050 1.96 � 0.40

SC263 72 h 0 lM afatinib ? 24 h cisplatin 3.48 � 0.64 – –

72 h 0.01 lM afatinib ? 24 h cisplatin 3.44 � 0.78 1.000 1.02 � 0.02

72 h 0.05 lM afatinib ? 24 h cisplatin 3.72 � 0.71 0.827 1.03 � 0.12

24 h cisplatin ? 72 h 0 lM afatinib 1.44 � 0.20 – –

24 h cisplatin ? 72 h 0.01 lM afatinib 1.82 � 0.35 0.513 1.24 � 0.11

24 h cisplatin ? 72 h 0.05 lM afatinib 2.87 � 0.71 0.050 1.73 � 0.51

SCC22b 72 h 0 lM afatinib ? 24 h cisplatin 0.87 � 0.09 – –

72 h 0.01 lM afatinib ? 24 h cisplatin 0.88 � 0.13 0.602 1.13 � 0.13

72 h 0.05 lM afatinib ? 24 h cisplatin 0.80 � 0.17 1.37 � 0.42

24 h cisplatin ? 72 h 0 lM afatinib 0.84 � 0.09 – –

24 h cisplatin ? 72 h 0.01 lM afatinib 0.90 � 0.12 0.825 1.11 � 0.10

24 h cisplatin ? 72 h 0.05 lM afatinib 1.15 � 0.20 0.268 1.38 � 0.18
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et al., 2015, 2016). They reported that subgroups of

patients with HNSCC, who may achieve increased

benefit from afatinib, were identified based on prespec-

ified tumor biomarkers (i.e., HPV-negative, EGFR

amplification, low HER3 expression, and high PTEN

expression (Cohen et al., 2017). Consequently, further

preclinical and clinical research is needed to draw final

conclusions upon the possible predictive role of HPV

status for the treatment with EGFR-targeted thera-

pies.

At the moment, most cancer treatments are combi-

nations of chemotherapeutic agents and/or radiother-

apy, and it is expected that new EGFR-targeted agents

will achieve their greatest efficacy in combination with

traditional cytotoxic agents and/or radiotherapy.

Indeed, previous research demonstrated that afatinib

radiosensitizes HNSCC cells by targeting cancer stem

cells (Macha et al., 2017). Furthermore, concurrent

treatment of afatinib with gemcitabine demonstrated

synergistic antitumor effects in nasopharyngeal carci-

noma, but also potentially enhanced toxicity in mouse

models (Xue et al., 2016). As cetuximab has been

approved for the treatment of R/M HNSCC in combi-

nation with platinum-based drugs (Vermorken et al.,

2008), we investigated the combination of afatinib with

cisplatin. Preclinical research in wild-type EGFR

HNSCC cell lines already demonstrated that cotreat-

ment with afatinib enhances the therapeutic effect of

platinum-based chemotherapy such as cisplatin

(Brands et al., 2016). However, it was also reported

that simultaneous treatments with afatinib and stan-

dard chemotherapy are associated with increased fre-

quency of side effects in HNSCC xenograft studies

and clinical trials, so that we found it more relevant to

study sequential treatment regimens (Chung et al.,

2016; Xue et al., 2016). Unfortunately, in our study,

we were not able to demonstrate any synergistic inter-

action upon sequential treatment of afatinib followed

by cisplatin or the inverse sequence, being cisplatin fol-

lowed by afatinib. In contrast to cetuximab, afatinib

seems not the ideal combination partner with plat-

inum-based drugs for the treatment of HNSCC.

Besides combining afatinib with standard

chemotherapy and/or radiotherapy, combinations with

other targeted agents such as CDK and Akt inhibitors

have shown synergistic effects in HNSCC cell lines

(Beck et al., 2016; Silva-Oliveira et al., 2017). How-

ever, combining two EGFR inhibitors, that is, afatinib

with cetuximab, did not reveal any advantage to sin-

gle-agent treatment (Quesnelle and Grandis, 2011;

Young et al., 2015). Although a randomized phase II

of afatinib versus cetuximab in R/M HNSCC sug-

gested a lack of cross-resistance between afatinib and

cetuximab (Seiwert et al., 2014), biomarker analysis of

the LUX-Head and Neck 1 trial suggested that afa-

tinib is more effective in patients whose tumors are

cetuximab na€ıve, indicating the possibility of cross-

resistance (Cohen et al., 2017).

Of particular interest and complexity are regimens

combining immunotherapy with EGFR-targeted ther-

apy in HNSCC. The EXTREME study demonstrated

that cetuximab could prolong median overall survival

when added to platinum/5-fluorouracil doublet in R/M

HNSCC (Vermorken et al., 2008). To date, however,

no other EGFR-blocking agent has demonstrated

these results in clinical studies (Szturz and Vermorken,

2017). From this point of view, it appears that cetux-

imab has additional immune-based mechanisms of

activity through stimulation of antibody-dependent

cytotoxicity and enhancement of cytotoxic T-lympho-

cyte cross-priming by dendritic cells (Kimura et al.,

2007; Yang et al., 2013). The PD-1-directed immune

checkpoint inhibitors, nivolumab (based on phase III

data) and pembrolizumab (based on phase II data),

are novel therapeutic agents that have gained FDA

approval and have become available for second-line

treatment of R/M HNSCC (Chow et al., 2016; Ferris

et al., 2016; Seiwert et al., 2016). There are several

clinical studies exploring the inhibition of the PD-1/

PD-L1 axis in combination with or without cetuximab

(NCT02764593 and NCT02999087).

As afatinib has no additional immune-based mecha-

nisms, it seems not the ideal combination partner with

immunotherapy. Nevertheless, afatinib is able to over-

come cetuximab resistance, as shown in this study.

Several clinical studies are currently evaluating single-

agent treatment with afatinib in HNSCC (LUX-Head

and Neck 2, 3, and 4, that is, NCT0134566,

NCT01856478, and NCT02131155). Furthermore, afa-

tinib displayed a radiosensitizing effect in preclinical

studies (Huguet et al., 2016; Macha et al., 2017). As a

result, afatinib is still considered as a promising agent

to treat patients with HNSCC. However, optimization

of combination treatment regimens with afatinib and

conventional as well as other targeted therapies is nec-

essary. Furthermore, identifying predictive biomarkers

to select the patients that benefit most from these par-

ticular combination strategies is of crucial importance.

5. Conclusion

Our results suggest that afatinib has the potential to

overcome intrinsic and acquired cetuximab resistance

in both HPV-positive and HPV-negative HNSCC

tumors, as it was able to establish a cytotoxic effect in

HNSCC cell lines with different cetuximab sensitivity
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and HPV status. However, cross-resistance between

cetuximab and afatinib might be possible. Therefore,

further research is required to identify predictive

biomarkers to optimize patient selection. Treatment

with afatinib causes a G0/G1 cell cycle arrest and

induces apoptotic cell death. Sequential combinations

of afatinib with cisplatin demonstrated additive to

antagonistic effects. In contrast to cetuximab, afatinib

seems not to be the ideal combination partner with

platinum-based drugs for the treatment of HNSCC. In

this study, neither cetuximab resistance nor HPV sta-

tus significantly influenced the expression of HER fam-

ily members in HNSCC cell lines. In contrast, the

expression of EGFR, HER2, and HER3 was signifi-

cantly altered under reduced oxygen conditions. Fur-

thermore, the cytotoxic effect of afatinib was increased

under hypoxia. Overall, these data support the hypoth-

esis that afatinib might be a promising therapeutic

strategy to treat patients with HNSCC experiencing

intrinsic or acquired cetuximab resistance. Neverthe-

less, further identification of predictive biomarkers is

necessary.
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