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Abstract 

Facing the continuous emergence of new psychoactive substances (NPS) and their threat to public health, more 
effective methods for NPS prediction and identification are critical. In this study, the pharmacological affinity finger-
prints (Ph-fp) of NPS compounds were predicted by Random Forest classification models using bioactivity data from 
the ChEMBL database. The binary Ph-fp is the vector consisting of a compound’s activity against a list of molecular 
targets reported to be responsible for the pharmacological effects of NPS. Their performance in similarity searching 
and unsupervised clustering was assessed and compared to 2D structure fingerprints Morgan and MACCS (1024-bits 
ECFP4 and 166-bits SMARTS-based MACCS implementation of RDKit). The performance in retrieving compounds 
according to their pharmacological categorizations is influenced by the predicted active assay counts in Ph-fp and the 
choice of similarity metric. Overall, the comparative unsupervised clustering analysis suggests the use of a classifica-
tion model with Morgan fingerprints as input for the construction of Ph-fp. This combination gives satisfactory cluster-
ing performance based on external and internal clustering validation indices.

Keywords: New psychoactive substances, Pharmacological affinity fingerprint, Bioactivity data, Similarity search, 
Unsupervised clustering, Machine learning
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Introduction
"Designer drugs" or new psychoactive substances (NPS) 
are compounds that slightly modify the molecular struc-
ture of existing controlled substances to mimic their 
pharmacological effects and bypass legislation [1, 2]. 
Terms such as “research chemicals, bath salts, fertilizers, 
incense, and plant foods” are used to circumvent legisla-
tion designed to control the supply and distribution of 
these substances. According to the United Nations Office 
on Drugs and Crime (UNODC), 126 countries have 
reported a total of more than 1047 NPS as of December 
2020 [1]. Using a 24/7 web crawler to capture the real 
number of NPS shows over 4000 unique substances of 

interest circulating in the online environment, a num-
ber roughly four times greater than that reported in 
known NPS databases [3]. Many countries have used or 
amended existing legislation, or innovative legal instru-
ments, as a way to address the prevalence of NPS. For 
example, the Controlled Substances Act, passed in 1986 
in the United States, allows any chemical that is “substan-
tially similar” to a Schedule I or II controlled substance to 
be treated as a Schedule I substance [2]. In the UK, any 
substance that is not regulated by the Misuse of Drugs 
Act 1971 falls within the scope of the Psychoactive Sub-
stances Act 2016 [4]. However, the ban on any particu-
lar NPS or NPS category has led to a rapid substitution 
in the market. Given that these compounds will now 
reach users through more clandestine routes and that 
synthetic drug overdose mortality is increasing across all 
age groups, races, genders, and ethnicities, new tools and 
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methods must be developed to more effectively address 
the current problem of NPS abuse [5].

NPS are a heterogeneous group of substances, often 
classified according to their chemical scaffoldings, based 
on the observation that structurally similar compounds 
may have similar biological activities and exhibit similar 
spectral behavior [6]. Systematic classification of NPS 
based on pharmacological effects is very challenging 
because a drug often interacts with many different bio-
logical targets. There is no universally agreed method for 
classifying NPS, and based on their primary mechanism 
of action and molecular targets, they have generally been 
grouped into four somewhat overlapping functional cate-
gories related to their chemical structure and pharmaco-
logical effects: stimulants, cannabinoids, hallucinogens, 
and depressants [7–9]. It is very likely that some new 
compounds do not neatly fit into these ‘four-category’ 
classification and their effects cross these boundaries. 
The currently used ‘four-category’ classification system 
groups together compounds with highly varied chemi-
cal structures (such as the synthetic cannabinoids), or 
mechanistically heterogeneous compounds (such as the 
depressants) in a practical workable system for clinicians, 
scientists, law enforcement agencies and other interested 
parties.

Synthetic stimulants currently represent the larg-
est group of NPS that are monitored by the UNODC 
and EMCDDA [1, 10]. It include cathinones, aminoin-
danes, benzofurans, phenethylamines, piperazines, and 
tryptamines, of which synthetic cathinones are by far the 
largest group and the most studied. Synthetic stimulants 
exert their stimulatory effects by increasing the concen-
trations of the monoamine neurotransmitters dopamine 
(DA), serotonin (5HT), and to a lesser extent, norepi-
nephrine (NE) in the synaptic cleft [11, 12]. There are 
two distinct mechanisms of synthetic stimulants: stimu-
lation of neurotransmitter release from the cytosolic 
pool or synaptic vesicles through inhibition of vesicular 
monoamine transporter-2 and reversal of transporter 
influx [13]; and inhibition of neurotransmitters uptake 
from the synaptic cleft through inhibition of the plasma 
membrane transporters [14–16]. Synthetic cannabinoids 
were first formally identified and reported to EMCDDA 
in 2008. Synthetic cannabinoids represent the largest 
and most structurally diverse class of designer drugs, 
and some of these compounds are similar to phyto- and 
endocannabinoids. Synthetic cannabinoids interact pri-
marily with the endocannabinoids systems and its G-pro-
tein-coupled cannabinoid receptor type-1 (CB1) and 
occasionally cannabinoid receptor type-2 (CB2) [17, 18]. 
The current hypotheses on how synthetic cannabinoids 
modulate their effects via these receptors and the differ-
ence between the observed clinical effects of traditional 

cannabis and synthetic cannabinoids include biased sign-
aling at cannabinoid receptors or the disruption of mito-
chondrial homeostasis [19, 20]. Synthetic hallucinogens 
from the phenethylamine and tryptamine classes, also 
known as serotonergic psychedelics, interact primarily 
with cortical serotonin receptors can inhibit the reup-
take and increase the release of serotonin, but display 
heterogeneous profile at several receptors [21–23]. The 
5-HT2A receptor agonism plays a key role in mediat-
ing the psychedelic effects of both phenethylamine and 
tryptamine compounds [24], but the concurrent activa-
tion of 5-HT1A receptors has been suggested to contrib-
ute to the qualitative effects of tryptamine psychedelics 
and distinguishing them from phenethylamine psych-
edelics [25]. Affinity for 5-HT2A and 5-HT2C receptors 
is also reported correlated with the dose that induces 
psychedelic effects in humans [26]. Most synthetic hal-
lucinogens have been shown to interact with other 
monoaminergic targets, including adrenergic, dopa-
minergic, and histaminergic receptors [21, 22, 27–29]. 
Unlike phenethylamine, many tryptamines interact with 
monoamine transporters at pharmacologically relevant 
concentrations [28, 30, 31]. Synthetic depressants are 
broadly classified into two sub-categories: synthetic ben-
zodiazepines and synthetic opioids. Synthetic benzodi-
azepines mediate their effects through interactions at 
gamma-aminobutyric acid-A (GABA-A) receptors, ion 
channels that consist of different subunit compositions, 
responding to the inhibitory neurotransmitter GABA 
[32, 33]. Synthetic opioids are created to bind to the same 
receptors in the brain as opiates, such as morphine and 
codeine, and produce similar effects such as euphoria, 
anxiolysis, feelings of relaxation and drowsiness [34]. 
Novel fentanyl analogs and other synthetic opioids inter-
act with G protein-coupled opioid receptors as partial 
to full agonists at µ -, δ -, and κ-opioid receptor subtypes, 
with selectivity for the µ-opioid receptor [35–37].

According to the recommendations of the Advisory 
Council on the Misuse of Drugs (ACMD), the in  vitro 
testing should be used to demonstrate whether a sub-
stance is psychoactive [38]. The use of structural simi-
larities to identify compounds with similar biological 
activities has been the subject of virtual screening (VS) 
strategies [39]. Two-dimensional (2D) molecular struc-
ture fingerprints have been successfully combined with 
statistical and machine learning methods for predicting 
target binding and other properties of molecules [40]. 
However, ligand-based similarity search methods per-
form poorly when the number of known ligands is insuf-
ficient, such as when there are far more unknown NPS 
compounds than known NPS compounds. For example, 
synthetic cannabinoids interact less ambiguously with 
CB1 receptors but containing very structurally diverse 
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molecules. Synthetic cannabinoids demonstrate lim-
ited structural similarity to d9-THC are referred to as 
synthetic cannabinoids due to their pharmacological 
mechanisms [41]. Therefore, unless specifically included 
in reference databases they will typically not be detected 
in conventional drug screening procedures such as urine 
tests [42]. Activity cliff, on the other hand, is generally 
defined as a pair of structurally similar compounds with 
a large difference in potency. 5F-PY-PICA (PubChem 
CID 129520948) and 5F-PY-PINACA (PubChem CID 
125181281) were identified in 2015 and regarded as puta-
tive synthetic cannabinoid receptor agonist. However, 
both compounds exhibited low affinity and efficacy at 
CB1 and CB2 receptors in  vitro, and failed to elicit the 
in  vivo effects potently induced by other synthetic can-
nabinoids, which cast doubt on their classification as 
synthetic cannabinoid receptor agonists [43]. Because of 
the scarcity of studies on the interaction of synthetic can-
nabinoids with non-cannabinoid targets, potential effects 
on non-cannabinoid receptors and different signaling 
pathways that have yet to be identified cannot be ruled 
out [19, 44].

In contrast to molecular fingerprint, where it reflects 
compounds’ chemical structure, the so-called bioactivity 
profile can be used to quantitatively describe compound 
interactions with the proteome without taking its chemi-
cal structure into account [45]. It was demonstrated for 
compounds that interact with multiple targets that the 
comparison by their bioactivity profile rather than by 
their structures can lead to discovery structurally dis-
similar compounds eliciting same biological responses 
[46]. Several studies have reported that using publicly 
available bioactivity data to construct such bioactivity 
fingerprints performs better and has a higher hit rate in 
classification tasks compared to ECFP4 fingerprints [47–
49]. Historical screening assays in PubChem were used to 
create bioactivity profiles for more than 3,000,000 small 
molecules. This bioactivity fingerprint, termed PubChem 
high-throughput screening fingerprints (PubChem 
HTSFPs) included 243 different PubChem bioassays. 
PubChem HTSFPs is used to retrieve hits that are struc-
turally diverse and different from the active compounds 
retrieved by chemical similarity-based methods [49].

This study aims to investigate the potential of using fin-
gerprints that encode the compound’s bioactive profiles 
when applied to unsupervised classification methods, 
also known as clustering, for the selection of representa-
tive compounds. Given a set of data points Xi, . . . ,Xn and 
some notion of similarity sij > 0 between all pairs of data 
points Xi,Xj , the intuitive goal of clustering is to divide 
the data points into several groups (clusters) such that 
points in the same group are similar and points in differ-
ent groups are dissimilar to each other. One of the main 

limitations of the widely used k-Means is the need for a 
priori setting of the number of clusters ( K  ). This method 
is also not recommended in cases where the size of the 
clusters is very different. On the other hands, the hierar-
chical clustering take into account the linkage between 
data points called a dendrogram, which represents an 
ensemble of clustering models with every possible K  . 
Hierarchical clustering approaches require defining a dis-
similarity function and a linkage criterion. Agglomerative 
clustering is initialized by considering every object as a 
different cluster to create N  singleton clusters. Then the 
closest two objects are combined, leaving N − 1 clus-
ters. In each step of the algorithm, which pair of clusters 
is linked is determined by the linkage criteria, which will 
greatly affect the results. The dendrogram comprising 
the clustering model can then be “cut” for any number 
of clusters 2 ≤ K ≤ N  . Recently, spectral clustering has 
attracted great interest in the analysis of biological and 
chemical data [50–53]. If we do not have more informa-
tion than similarities between data points, a nice way of 
representing the data is in form of the similarity graph 
G = (V, E). Each vertex vi in this graph represents a data 
point Xi . Two vertices are connected if the similarity sij 
between the corresponding data points Xi and Xj is posi-
tive or larger than a certain threshold, and the edge is 
weighted by sij . The problem of clustering can now to 
reformulated using the similarity graph: to find a parti-
tion of the graph such that the edges between different 
groups have very low weights (which means that points 
in different clusters are dissimilar from each other) and 
the edges within a group have high weights (which means 
that points within the same cluster are similar to each 
other). When constructing similarity graphs the goal is 
to model the local neighborhood relationships between 
the data points. A reasonable default candidate of the 
similarity function is the Gaussian similarity function 
sij = exp(−

�dij�
2

2σ 2 ) with the Euclidean distance d(Xi,Xj) . 
The graph Laplacian matrix is defined as the difference 
of two matrices as L = D −W  , where D is the diago-
nal degree matrix and W  is a matrix of positive weights 
assigned to the graph edges. The eigenvectors of the nor-
malized graph Laplacian then are used as input for a k-
Means clustering step for final partition [54].

To take advantage of a large amount of bioactivity data 
in the ChEMBL database, a pharmacological affinity fin-
gerprint (Ph-fp) was developed based on Random Forest 
(RF) classification models. The RF classification model 
was trained and cross-validated using bioassay data cov-
ering a range of molecular targets that are informative 
for the pharmacological characterization of the NPS. The 
Ph-fp is much shorter in terms of bit-length compared 
to conventional molecular structural fingerprints. The 
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similarity of the pharmacological profile of compounds 
can be quantified by a metric similar to the commonly 
used Tanimoto coefficient. Since Ph-fp is defined in a 
data-driven manner, it can be updated and adapted to 
the continuous availability of bioassay data in the public 
domain. An external NPS set was used to compare the 
performance of Ph-fp with Morgan and MACCS finger-
prints in two tasks: similarity search and unsupervised 
clustering. Both clustering algorithms were parameter-
ized and evaluated using internal and external indices. 
In particular, we have been interested in addressing the 
question to what extent the data-driven Ph-fp can indeed 
be used to identify compounds based on classical phar-
macological categorization, rather than on their biologi-
cal activity against a single target.

Methods and materials
Dataset acquisition and curation
The ChEMBL database, version 29, was used as the data 
source. [55, 56] A range of major neurotransmitter recep-
tors and transporters were selected for the in vivo phar-
macological characterization of NPS compounds. [9, 16, 
24, 27, 43, 57–60] The biological activity of a compound 
is quantified by its affinity (given as Ki) and/or its potency 
(given as IC50/EC50). Bioactivity data for both human 
and non-human targets were considered. Each distinct 
molecular target is defined by its unique UniProtKB ID, 
and each organism/target/activity type combination is 
referred to as an assay and separate models were built for 
each assay dataset. ChEMBL bioactivity data were filtered 
using the following criteria: (1) only single protein target 
type is considered; (2) human and non-human organ-
isms [Homo sapiens, Rattus norvegicus, Mus muscu-
lus] are considered; (3) activity types of only Ki, IC50, or 
EC50; (4) assay type is “Binding”; (5) activity relationship 
defined as “ = ”; (6) activity values reported in standard 
units nM; (7) MW up to 900. The mean standard activ-
ity values were calculated when multiple activity records 
are available. Assays with less than 50 distinct com-
pounds were discarded. Active compounds were defined 
as those with pKi, pIC50, or pEC50 better than or equal 
to an affinity cutoff value. For each active compound, 4 
decoys were randomly sampled from the benchmarking 
DUD-E (DUD-Enhanced) database [61] to ensure that 
the dataset for each assay was reasonably sized and suit-
able for comparing the performance of machine learn-
ing classification models, while avoiding the creation of 
highly unbalanced data sets. The DUD-E [61] decoy com-
pounds were extracted from the ZINC database [62] and 
filtered based on physicochemical properties. A topo-
logical dissimilarity filter was also applied to avoid active 

compounds in the decoy sets. As an additional step ran-
domly sampled decoys with Tanimoto similarity coeffi-
cient larger than 0.9 were removed. The list of assays used 
to train each model is available from GitHub repository.

The Molecular ACCess System (MACCS) and Morgan 
fingerprints as implemented in the RDKit toolkit were 
calculated as the molecular descriptors and used as input 
feature for the classification model. The substructural 
key-based fingerprints, MACCS, encodes the absence (0) 
and presence (1) of predefined chemical features, and is 
represented by a 166 binary bitstring [63]. MACCS have 
been shown to be more discriminating than structural 
key fingerprints using many more features [63, 64]. Mor-
gan is the RDKit implementation of the ECFP4 extended 
connectivity fingerprint with radius 2 as 1024-bit vector 
[65]. Extended connectivity fingerprints haven shown the 
best performance in comparative tests including virtual 
screening [66], scaffold-hopping [67], and clustering [68].

In addition to the conventional structural fingerprints 
MACCS and Morgan, a total of 118 0D – 2D molecu-
lar descriptors that are immediately available via the 
RDKit package were selected. 2D descriptors include 
are: topological (kappa1 – 3, BertzCT, etc.), composi-
tional (number of rings, number of aromatic heterocy-
cles, etc.), electrotopological state (Estate), MolLogP and 
MolMR (Wildman and Crippen approach), etc. This set 
of descriptors is referred to as Mol_fp in this study. The 
full list can be found in the Supporting document in the 
GitHub repository.

Model training, validation, and performance evaluation
Random Forest (RF) [69, 70] classification model was 
constructed using the ensemble.RandomForestClassifier 
module from the Python scikit-learn library. The num-
ber of decision trees used was set to [20, 60, 100, 140, 180  
and the maximum number of features as the total num-
ber of features. Ten-fold Nested cross-validation (CV) is 
used in model training and validation. Each assay data-
set was split into training and test sets with 90:10 ratio 
using the model_selection.KFold module of scikit-learn. 
The training set was used for hyperparameter tuning and 
then the model was validated with the test set. This pro-
cess was repeated 10 times by selecting a different 10% of 
the data for validation and by using a different 90% of the 
data to develop a new model from scratch. The overall 
performance was then calculated as a mean of classifica-
tion performances of the 10 separately developed models 
on different 10% sets of the validation data. The nested 
CV ensure that the data used to validate the classifier 
is not part of the data used to train it, which provides 
almost unbiased performance estimates [71].
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The Matthews correlation coefficient (MCC) was uti-
lized to measure and compare the performance of clas-
sification models trained in this study [72]:

where tp: true positive,tn: true negative, fp: false posi-
tive (Type I error), fn: false negative (Type II error). MCC 
incorporates the imbalance of the dataset and its invari-
ance to the exchange of classes and is therefore con-
sidered a balanced measure of the biased data set [73]. 
Independent of their ratio in the dataset, the classifier 
must make correct predictions for both negative and pos-
itive cases to obtain a high MCC. It ranges in the interval 
of [− 1, + 1] and reaches the extreme values of –1 and + 1 
in the case of complete misclassification and perfect clas-
sification, respectively, while MCC = 0 is the expected 
value of the coin tossing classifier.

Pharmacological affinity fingerprint (Ph‑fp) construction
The Ph-fp of a compound is a binary array containing the 
compound’s activity across the list of target assays pre-
dicted by corresponding classification models. Only mod-
els with MCC ≥ 0.90 were included in the construction of 
the Ph-fp. For each assay, the predictions were repeated 
50 times using randomly sampled 90% of the ChEMBL 
data as training sets. The final prediction is aggregated by 
majority voting using sklearn.ensemble.BaggingClassifier. 
The workflow for the construction of the Ph-fp is shown 
in Fig. 1.

The NPS set includes 189 compounds collected from 
the literature and their pharmacological classification was 
determined based on their in vitro profile data [22, 27, 28, 
57–60, 74–77]. Twenty-one natural and synthetic alkaloid 
and phenylpiperidine opioids and 13 benzodiazepines are 
classified as depressants; 33 cathinones, 16 phenethyl-
amines, 10 benzofurans, 9 piperidines, 5 aminoindanes are 
classified as stimulants; 8 THC and derivatives, 14 indoles, 
and 7 indazole are classified as cannabinoids; 39 phenethy-
lamines (ring-substituted phenethylamines including 2C 
drugs and their methoxybenzyl [NBOMes] analogues) and 
14 tryptamine are classified as serotonergic psychedelics. 
In this study, the two sub-groups of depressants were sepa-
rated as individual class because of the unique molecular 
targets reported in pharmacological studies.

Pharmacological affinity fingerprint in similarity search 
performance assessment
Figure  2a describes the workflow of the performance 
assessment of Ph-fp in similarity search. The similarity of 

(1)MCC =
tp · tn− fp · fn

√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

the pharmacological profiles of the molecules described 
by Ph-fp was calculated by the Rogot-Goldberg index 
[78]:

The four basic quantities can be calculated for each pair 
of fingerprints are:
a : the number of 1’s (common “on” bits).
b : the number of 1’s present in the first fingerprint but 

absent in the second.
c : the number of 1’s present in the second fingerprint 

but absent in the first.
d : the number of coincident 0’s (common “off” bits).
In comparison to the frequently used Tanimoto coef-

ficient [79] for structural similarity calculated  using 
binary fingerprint, the Rogot-Goldberg index values the 
information at which targets the compound is inactive 
as well as which at targets it is active.

The similarity search performance was assessed by 
two quality metrics, AUC and EF10. AUC is the area 
under the ROC curve and it quantifies the general abil-
ity of a method to discriminate between actives and 
inactives. AUC equals to the probability that a classifier 
will rank a randomly chosen positive instance higher 
than a randomly chosen negative example. Enrichment 
factor, EF, explicitly measures the early recognition per-
formance. EF is defined as:

where χ% is the fraction of the sorted dataset EF is cal-
culated for, Pχ% is the number of actives in this fraction 
and Nχ% is the number of all molecules in this fraction, 
whereas Ptotal and Ntotal are the number of actives and 
the total number of molecules in the dataset. In this 
study, EF10 at top 10% ( χ = 0.10 ) of the sorted data set 
was calculated.

The performance of the Ph-fp in similarity searching 
was evaluated using the NPS set and compared with 
Morgan and MACCS fingerprints. For each experi-
ment, 50 similarity searches were performed for each 
pharmacological class using different randomly selected 
test sets where actives were defined as NPS compounds 
from the pharmacological class of interest. The query 
set consisted of 10 actives, and 10 decoys randomly 
selected for each active. The remaining actives of this 
class and 10 randomly sampled decoys for each active 
formed the test set to maintain the same 10:1 decoy to 
actives ratio. The fraction of actives in the test set 
( PtotalNtotal

 ) is kept constant at 0.091. For each compound in 

(2)SRG =
a

2a+ b+ c
+

d

2d + b+ c

(3)EF(χ%) =

Pχ%
Nχ%

Ptotal
Ntotal
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Fig. 1 The workflow for the construction of binary pharmacological affinity fingerprint. A total of 132 assay datasets for 70 unique molecular targets 
were extracted from the ChEMBL 29 database [55, 56]. Each RF classification model was trained with 90% of the data, validated by 10% of the data, 
and repeated 10 times (tenfold Nested CV). Only models with a mean MCC greater than or equal to 0.90 were included in the Ph-fp construction for 
the NPS set compounds
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Fig. 2 The workflow for the performance evaluation of Ph-fp in similarity search and clustering. a Similarity search is evaluated using EF10 and AUC. 
b Clustering performance is evaluated using both external (ARI, NMI) and internal (Silhouette score) validation indices
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the test set, its similarity to the query compound is cal-
culated, and its nearest neighbor with the highest simi-
larity is retained. The entire test set is then sorted by 
decreasing similarity and the AUC and EF10 are calcu-
lated based on this sorted list (see Table 1).

Pharmacological affinity fingerprint in clustering 
performance assessment
Figure  2b describes the workflow of the performance 
assessment of Ph-fp in unsupervised clustering. The 
NPS set compounds (n = 189) described by different fin-
gerprints can be transformed into n × n matrices using 
appropriate similarity metrics and submitted to hierar-
chical and spectral clustering algorithms. Structural simi-
larity was calculated using MACCS or Morgan structural 
fingerprints using Tanimoto coefficients, Spearman’s rank 
correlation coefficient was used to quantify compound 
pair similarity using Mol_fp fingerprint, and pharmaco-
logical similarity was calculated using Ph-fp using Rogot-
Goldberg index. In agglomerative hierarchical clustering, 
four linkage criteria are tested: Ward, complete, weighted 
average, and single linkage, which measure the proxim-
ity between two clusters. In spectral clustering, the n × 

n similarity matrix is transformed into a similarity graph 
in the form of an affinity matrix which is represented by 
A in different manners: (1) k-nearest neighbor graph by 
connect each point with k-nearest neighbors. After con-
necting the appropriate vertices, the edges are weighted 
by the similarity of their endpoints. (2) Fully connected 
graph simply connects all points with positive similarity 
with each other and weight all edges by sij . Compute the 
first K  generalized eigenvectors u1, . . . ,uK  of the gener-
alized eigenproblem Lu = �Du , where the generalized 
eigenvectors of L correspond to the eigenvectors of the 
matrix Lrw = D−1L = I − D−1W  . These eigenvectors are 
used as input in the last k-Means step to extract the final 
partition. The main trick is to change the representation 
of the abstract data points Xi to points yi ∈ R

K  . The clus-
tering hyperparameters investigated are listed in Table 2.

The Leave-one-out cross validation was used in all the 
clustering analysis and the averaged results of n itera-
tions were reported. Both internal and external indices 
were used to measure the quality of the clustering parti-
tion. The internal indices Silhouette score [80] estimate 
the quality of a partition by measuring how closely each 
instance is related to the cluster and how well-sepa-
rated a cluster is from other clusters given the number 
of desired clusters K. Silhouette score ranges from − 1 
to + 1, where + 1 means clusters are well apart from each 
other and clearly distinguished, − 1 indicates member is 
assigned to the wrong cluster. On the other hand, exter-
nal validation indices measure the similarity between the 
output of the clustering algorithm and the correct par-
titioning of the dataset [81]. In this study the clustering 
success defined as correctly identify the Maximum Com-
mon Substructure (MCS) based clusters and/or the five 
pharmacological classes are evaluated using the adjusted 
Rand-Index (ARI) [82] and the normalized mutual infor-
mation (NMI) [83]. When two sets of cluster labels have 

Table 1 NPS set compounds pharmacological categorization 
and primary molecular target

This NPS dataset is available as a supporting file in GitHub repository: https:// 
github. com/ nina2 3bom/ NPS- Pharm acolo gical- profi le- finge rprint- predi ction- 
using- ML

Pharmacological category [7, 12] Target(s) Actives

Stimulants NET, DAT, SERT 73

Cannabinoids CB1, CB2 29

Serotonergic psychedelics 5-HT2A, 5-HT2C 53

Depressant—opioids µ− opioid 21

Depressant—benzodiazepines GABAA 13

Table 2 Clustering hyperparameters investigated

The fcluster and dendrogram in scipy.cluster.hierarchy package are used for hierarchical clustering, the SpectralClustering in sklearn.cluster package are used for spectral 
clusterings

Hyperparameters Parameter Values explored

Hierarchical clustering

Linkage Ward Minimizes the variance of the clusters being merged

Complete Maximum distances between all observations of the two sets

Average Average of the distances of each observation of the two sets

Single Minimum distances between all observations of the two sets

Spectral clustering

Fully connected graph (RBF) γ [1–5]

eigen_tol [0.1, 0.01, 0.001,0.0001,0.00001, 0.000001]

k-nearest neighbor graph n_neighbors [7, 9, 11, 13, 15, 17, 19]

eigen_tol [0.1, 0.01, 0.001,0.0001,0.00001, 0.000001]

https://github.com/nina23bom/NPS-Pharmacological-profile-fingerprint-prediction-using-ML
https://github.com/nina23bom/NPS-Pharmacological-profile-fingerprint-prediction-using-ML
https://github.com/nina23bom/NPS-Pharmacological-profile-fingerprint-prediction-using-ML
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a perfect one-to-one correspondence, the ARI equal to 
unity. NMI = 0 mean two partitions contain no informa-
tion about one another, whereases NMI = 1 indicates two 
partitions contain perfect information about one another. 
See Supporting document for more detail.

All hierarchical clusterings were generated using the 
fcluster and dendrogram in scipy.cluster.hierarchy pack-
age; spectral clusterings were conducted using the Spec-
tralClustering in sklearn.cluster package; Silhouette score, 
ARI, and NMI values were computed using sklearn.met-
rics package.

Results and discussion
Data curation and statistics
A total of 132 data sets were curated using ChEMBL and 
DUD-E databases, covering 70 distinct molecular targets 
from 11 classes. A total of 48 targets were modeled with 
more than one assay. Three different affinity measure-
ments (pKI, pIC50 and pEC50) with cutoff values greater 
than or equal to 5 (10 μM), 6 (1 μM) and 7 (10 nM) were 
used to define the active compound. When a tighter 
affinity cutoff was applied, fewer assay datasets were used 
during model training due to fewer compounds labeled 
as active. Assay datasets with less than 50 unique active 
compounds were further discarded, resulting in 132, 126, 
and 116 models being built when using cutoff 5, 6, and 
7, respectively. The ratio of decoys to actives is kept at 
4:1 for all assay datasets. Hence in average there are 3880 
data in each assay dataset using cutoff 5. To construct 
the binary Ph-fp for the NPS set compounds, only the 
models with MCC ≥ 0.90 were included to ensure suf-
ficiently high predictive power. Six versions of the Ph-fp 
were constructed using assay datasets created with differ-
ent affinity cutoff values and molecules encoded by two 
molecular descriptors, which are referred in the following 
text as p5_maccs, p6_maccs, p7_maccs, p5_morgan, p6_
morgan, and p7_morgan, their final lengths are listed in 
Table 3. The comparison of the molecular target classes 
between the total assay datasets trained and final models 
included in each Ph-fp is shown in Fig.  3 using activity 
cutoff values greater than or equal to 5, which shows that 
the distribution are preserved in the final Ph-fp. An Excel 

file listing the target name, UniProtKB, ChEMBL assay 
ID, target type, activity type, and the number of active 
compounds using all three affinity cutoffs can be found as 
Supporting Document in the GitHub repository.

Performance of Ph‑fp in similarity search
The distribution of pairwise similarity scores of the 
NPS set compounds was compared by calculating Tani-
moto coefficients using structural fingerprints MACCS 
or Morgan, or Rogot-Goldberg indices using Ph-fp 
fingerprints, as shown in Fig.  4. Figure  4a shows the 
right-skewed distribution of structural similarity with 
a medium score of 0.351 and 0.130 using MACCS and 
Morgan fingerprints, respectively. In contrast, as seen 
in Fig.  4b, the medium pharmacological similarity is 
left-shifted and has an asymmetrical long tail with more 
pairs of compounds on the high-value side. 25% of the 
compound pairs showed pharmacological similarity 
scores higher than 0.73 and 0.59 using the p5_maccs 
and p5_morgan fingerprints, respectively. In Fig. 5, the 
level of correspondence between structural and phar-
macological similarity of the NPS compounds can be 
demonstrated. The distribution of MACCS and Morgan 
similarities for all compound pairs, among which the 
pharmacologically similar pairs are also shown in the 
bar chart for comparison. In this analysis, pharmaco-
logically similar compound pairs are defined as having 
a Rogot-Goldberg index greater than or equal to 0.70 
using p5_maccs. Only 13.2% of the p5_maccs similar 
pairs have a MACCS similarity above 0.70, while 80.4% 
of the p5_maccs similar pairs have a MACCS similar-
ity of between 0.20 and 0.60. When compared to Mor-
gan, 78.2% of the p5_maccs similar pairs have a Morgan 
similarity below 0.30. A similar distribution pattern can 
be observed when comparing the structural similarity 
to other Ph-fp similarities.

In Fig.  4b, the pharmacological similarities are cen-
tered at 0.45–0.48 for both p5_morgan and p5_maccs, 
although p5_morgan regarded more pairs to be median 
similar, as indicated by the higher peak around this range. 
Since p5_morgan and p5_maccs fingerprints are similar 
in length (107 bits vs. 113 bits) and in assay distribution 
(see Fig. 2b), this discrepancy stems from the number of 
active assays predicted by the classification models using 
different molecular fingerprints. Naturally, the level of 
similarity between two compounds is affected by the 
molecular encoding, as well as the similarity metric used. 
For instance, in the following example: A = (00,000,000) 
and B = (00,000,000), indicates that both compounds 
A and B are predicted to be inactive in all eight assays. 
Using the Tanimoto coefficient, their similarity is calcu-
lated to be zero. However, the Rogot-Goldberg index is 

Table 3 Number of assay datasets used in the RF classification 
model and final length of Ph-fp 

Three different affinity cutoff values and two molecular descriptors were used in 
the assay data curation and classification model training, and only models with 
MCC ≥ 0.90 were included in the final Ph-fp construction

5 (10 μM) 6 (1 μM) 7 (10 nM)

Total assay sets 132 126 116

Final Ph-fp using different molecular descriptors

 MACCS (116 bits) 113 110 102

 Morgan (1024 bits) 107 106 104
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Fig. 3 The representation of 11 molecular target classes final models selected for the construction of Ph-fp. a the total assay datasets trained. b final 
models included in constructing p5_maccs and p5_morgan. The actives in the assay data are defined as compounds with activity values (pKI, pIC50 
and pEC50) greater than or equal to 5

Fig. 4 Frequency distribution of pair-wise comparison of NPS set compounds. a Structural similarity calculated using Tanimoto coefficient and 
structural molecular fingerprints, and, b Pharmacological similarity calculated using Rogot-Goldberg index and pharmacological affinity fingerprints
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0.5. Likewise, A = (10,000,000) and B = (01,000,000) are 
still considered to be somewhat similar according to the 
Rogot-Goldberg index of 0.429 since they are both inac-
tive against a total of 6 assays. In Fig. 6, the histogram of 
the total number of active assay count is plotted for all 
189 NPS compounds when described using p5_maccs 
and p5_morgan. Upon further inspection, there are a 

total of 21 NPS compounds predicted to be inactive in 
all assays according to p5_morgan, 19 of which are cathi-
nones (stimulants). In general, classification models using 
Morgan fingerprints as molecular descriptors predict 
that NPS set compounds are active in fewer assays and 
result in more "sparse" (few "1 s" on the bits) binary Ph-
fp fingerprints. Therefore, more compound pairs were 

Fig. 5 Distribution of the MACCS, Morgan, and p5_maccs similarity values between p5_maccs similar and p5_maccs unsimilar compound pairs

Fig. 6 Histogram of the total number of active assay count (“1” bits) of NPS set compounds
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calculated as having a Rogot-Goldberg index of about 0.5 
using p5_morgan.

The performance comparison of MACCS and Morgen 
fingerprints in retrieving compounds of the same phar-
macological class is given in Table  4 and is separated 
for each class. To assess the effect of structural diversity 
on the similarity search for the retrieval of compounds 
belonging to the same pharmacological class, a similar-
ity threshold was defined as: Sc = Zσ + y . Here y is the 
average and σ is the standard deviation of the Tanimoto 
similarity of the k ( = 5 ) nearest neighbors of each com-
pound in the pharmacological class. Z is an empiri-
cal parameter to control the significant level and set as 
0.5. The smaller the Sc , the more structurally diverse the 
compound set. This similarity threshold value was cal-
culated using MACCS and is listed in Table  4 for each 
pharmacological class. It shows that the compounds con-
sidered as stimulants are the most structurally diverse, 
while depressants—benzodiazepines are quite similar to 
each other. The same conclusion is supported by the Sc 
calculated using Morgan as well. It is then expected that 
similarity searches using structural fingerprints to iden-
tify compounds in the same pharmacological class should 
perform better when the structural diversity of the com-
pounds is small. This is confirmed by the results. Overall, 
Morgan had better performance based on EF10 and AUC, 
but among all pharmacological classes, stimulants were 
the most difficult to identify by similarity search using 
structural fingerprints. The optimal threshold was also 
calculated from the ROC curve for each pharmacological 
class similarity search, which is defined as the threshold 
corresponding to the maximal G-Mean = 

√

tp(1− fp) . 
The lowest similarity thresholds are required to correctly 
distinguish stimulus-like compounds compared to other 
classes.

The similarity search results obtained using Ph-fp are 
summarized in Table  5. The table is divided into two 
parts, AUC and EF10. For each performance metric, the 
values in row i and column j of the table represent the 
percentage difference between the average Ph-fp perfor-
mance minus the average structural fingerprint perfor-
mance of each pharmacological class. The last column 
of the table gives the average AUC and EF10 of each 
Ph-fp across all pharmacological classes. Using MACCS 
or Morgan as a reference, the best results for each per-
formance metric are shown in italics, and the worst 
results are underlined. In general, no correspondence 
was observed between the performance of Ph-fp and the 
structural fingerprints used to construct Ph-fp. Although 
Morgan performed best in retrieving NPS compounds of 
the same pharmacological class, Ph-fp constructed with 
Morgan performed the worst. This can be explained by 
the lower total active assay counts as demonstrated in 
Fig. 6. During the similarity search, NPS compounds are 
compared not only with each other but also with decoys. 
Most decoys were predicted to be inactive in all assays 
and had all "off" bits in their Ph-fp. The Rogot-Goldberg 
index between decoys and NPS compounds with sparse 
“on” bits is still seen as somehow similar. Therefore, it is 
challenging to efficiently retrieve NPS compounds of the 
same pharmacological class that also have sparse Ph-fp. 
One potential solution is to expand the list of assay data-
sets used in the construction of Ph-fp. Another piece of 
supporting evidence is that Ph-fp constructed by using 
Morgan has the worst performance in identifying the 
depressant benzodiazepine class compounds. This class 
of compounds has the lowest degree of structural diver-
sity, however, less than 2% of the assays in Ph-fp are rep-
resentative of molecular targets specific to this class of 
compounds.

Table 4 Performance comparison of MACCS and Morgan fingerprints in pharmacological class similarity search

The data shown is the average of 50 similarity searches for each pharmacological class

Both the query and test sets are composed of 1:10 active to decoy ratio by random sampling

Opt_thr is the optimal threshold defined by the maximal G-Mean = 
√

Sensitivity × Specificity

MACCS Morgan

EF10 AUC Opt_thr Sc EF10 AUC Opt_thr

Stimulants 4.15 ± 0.81 0.67 ± 0.07 0.72 ± 0.03 0.26 7.70 ± 0.78 0.95 ± 0.03 0.34 ± 0.02

Cannabinoids 7.61 ± 0.81 0.95 ± 0.03 0.76 ± 0.02 0.30 8.61 ± 0.98 0.97 ± 0.07 0.39 ± 0.05

Serotonergic psychedelics 7.45 ± 0.86 0.91 ± 0.06 0.78 ± 0.03 0.34 8.96 ± 0.70 0.99 ± 0.03 0.39 ± 0.05

D-opioids 8.23 ± 1.00 0.98 ± 0.02 0.77 ± 0.03 0.43 9.26 ± 0.76 0.99 ± 0.01 0.44 ± 0.09

D-benzodiazepines 7.55 ± 2.13 0.94 ± 0.06 0.80 ± 0.06 0.52 10.1 ± 1.61 0.99 ± 0.01 0.50 ± 0.06

Average 7.00 0.89 8.92 0.98
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Performance of Ph‑fp in Hierarchical and Spectral 
Clustering
To calculate the external clustering validation indices 
ARI and NMI, the externally provided class labels must 
be used. To reflect the two commonly used categoriza-
tion systems of NPS compounds, the NPS set is labeled 
using two sets of external class labels, (1) the five phar-
macological classes (Stimulants, Cannabinoids, S-psych-
edelics, D-opioids, and D-benzodiazepines), and (2) the 
chemical scaffold classes using Maximum Common Sub-
structure (MCS) based approach. For clarity, K = Pharm 
and K = MCS are used in the following text to refer to the 
two different external class labels assigned to the NPS set. 
The fully annotated NPS dataset is available on GitHub 
repository. The MCS similarity is calculated by identify-
ing structural overlap by matching atomic elements and 
bond types using the rdFMCS modules implemented 
in RDKit [84]. The MCS-based clustering was achieved 
using hierarchical clustering with Ward linkage. A total 
of 17 classes were determined as the optimal number of 
clusters by choosing the maximal Silhouette score as the 
internal validation of the clustering analysis. See Addi-
tional file 1 for more detail. The MCS clustering heatmap 
in Additional file 1: Fig S1 shows two supergroups. Under 
the first supergroup, all depressants – benzodiazepines 
are in cluster 1, where depressants—opioids compounds 
are split into two clusters (clusters 2 and 9) due to the 
two main core scaffolds of alkaloid and phenylpiperidine 
opioids. All cannabinoids are also under this superclus-
ter, with THC based derivatives as one tight cluster and 
other types of cannabinoids split into several clusters 

due to the shared indoles, and indazole scaffolds. All 
serotonergic psychedelic compounds are under the other 
supercluster and split according to common scaffolds of 
phenethylamines and tryptamine. Stimulant compounds 
are distributed in both superclusters due to their struc-
tural diversity.

The hyperparameters of both clustering algorithms 
listed in Table  2 were investigated. In Fig.  7, differ-
ent linkage methods for hierarchical clustering were 
used and the validation indices calculated using exter-
nal K = MCS and  K = Pharm class labels are plotted 
side-by-side for comparison. Figure  7 is divided into 
three parts, each corresponding to a clustering valida-
tion index. Assuming that if Ph-fp is indeed describ-
ing intrinsic clusters based on the pharmacological 
characteristics of different classes of NPS compounds, 
the clustering results using Ph-fp fingerprints should 
be better or at least comparable to structural molecu-
lar fingerprints when evaluated using K = Pharm class 
labels, but worse than structural molecular finger-
prints when evaluated using K = MCS class labels. As 
expected, MACCS and Morgan performed significantly 
better than Ph-fp in MCS-based cluster discrimina-
tions (K = MCS) according to ARI and NMI, with Mor-
gan slightly outperforming MACCS. Most interesting, 
however, was how their performance changed com-
pared to Ph-fp when the task was to distinguish clusters 
based on pharmacological characteristics (K = Pharm). 
In the right-hand panels of Fig.  7, it can be seen that 
although Morgan gives slightly lower ARI and NMI in 
this task, the scores still indicate moderate accuracy of 

Table 5 Performance comparison of Ph-fp in pharmacological category similarity search

Stimu  Stimulants, Canna  Cannabinoids, S-psyche  Serotonergic psychedelics, D-opioids Depressant opioids, D-benzo Depressant benzodiazepine

The data shown is the average of 50 similarity searches for each pharmacological class using each fingerprint

Fingerprint MACCS Morgan Ave

Stimu Canna S‑psyche D‑opioids D‑benzo Stimu Canna S‑psyche D‑opioids D‑benzo

 AUC 

 p5_maccs 46.3% 0.0% 6.6% − 1.0% − 9.6% 3.2% − 2.1% − 2.0% − 2.0% − 14.1% 0.94

 p6_maccs 44.8% 0.0% 4.4% − 1.0% − 1.1% 2.1% − 2.1% − 4.0% − 2.0% − 6.1% 0.95

 p7_maccs 28.4% 0.0% 6.6% − 1.0% 1.1% − 9.5% − 2.1% − 2.0% − 2.0% − 4.0% 0.94

 p5_morgan 17.9% − 3.2% 0.0% − 6.1% − 2.1% − 16.8% − 5.2% − 8.1% − 7.1% − 7.1% 0.89

 p6_morgan 22.4% 2.1% 2.2% − 4.1% − 17.0% − 13.7% 0.0% − 6.1% − 5.1% − 21.2% 0.89

 p7_morgan 1.5% − 2.1% − 1.1% − 7.1% − 55.3% − 28.4% − 4.1% − 9.1% − 8.1% − 57.6% 0.77

EF10

 p5_maccs 103.4% 0.8% 12.1% − 3.2% − 14.6% 9.6% − 10.9% − 6.8% − 13.9% − 35.8% 7.78

 p6_maccs 96.1% − 6.18% 6.4% − 0.6% − 3.8% 5.7% − 17.1% − 11.5% − 11.7% − 27.8% 7.73

 p7_maccs 46.8% 0.7% 5.8% 0.7% 14.6% − 20.9% − 11.0% − 12.1% − 10.5% − 13.9% 7.71

 p5_morgan − 31.6% − 60.3% − 57.6% − 57.0% − 1.9% − 63.1% − 64.9% − 64.7% − 61.8% − 26.3% 3.99

 p6_morgan 26.0% 1.8% − 3.8% − 8.0% − 21.3% − 32.1% − 10.0% − 20.0% − 18.3% − 40.9% 6.73

 p7_morgan − 29.9% − 45.5% − 39.2% − 44.7% − 89.3% − 62.2% − 51.8% − 49.4% − 50.9% − 91.9% 3.39
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Fig. 7 Performance of the hierarchical clustering using different linkage methods. ARI and NMI are calculated by requesting 5 and 17 clusters and 
comparing them with external K = MCS and K = Pharm class labels. The dashed lines are p6_maccs, p7_maccs (green) and p6_morgan, p7_morgan 
(red), respectively

the results, while MACCS shows worse performance. 
Also, the performance deviation of Ph-fp depends on 
how it is generated. Therefore, it is recommended to 
use Morgan as a molecular descriptor to train the clas-
sification models to be used for the construction of Ph-
fp. Curiously, Morgan had the lowest Silhouette score 
despite its superior performance in both clustering 
tasks according to external indices. In contrast, Ph-fp 
clusterings had the highest Silhouette scores, indicating 
that, on average, the distance between clusters was the 
largest and the distance within clusters was the smallest 

when compounds are described by their pharmacologi-
cal affinity profiles.

The hyperparameter optimization of spectral cluster-
ing can be found in the Supporting Document. When 
using the default parameter gamma = 1 with fully con-
nected graph (affinity = RBF), the same interesting 
pattern of how the performance “switched” between 
MACCS and Ph-fp_morgan when the task changed 
from K = MCS-based clustering to K = Pharm-based 
clustering (See Additional file 1: Fig S3).
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Finally, the performance of the clustering algorithm 
was verified and compared by setting different values of 
the requested number of classes  K. Since the goal is to 
compare whether the data-driven derived Ph-fp provides 
a comparable or more optimized clustering performance 
when the objective is to separate NPS compounds based 

on their pharmacological characteristics, the external 
class label K = Pharm was used to calculate the ARI and 
NMI external performance indices. The default param-
eter gamma = 1 was used for spectral clustering, and the 
Ward linkage method was used for hierarchical cluster-
ing. The results obtained using hierarchical and spectral 

Fig. 8 Performance of the algorithms when varying the expected number of clusters K. The ARI, NMI, and Silhouette were calculated by comparing 
to K = Pharm external labels. The red line indicates the five-categories of NPS compounds. The default parameter gamma = 1 was used for spectral 
clustering, and the Ward linkage method was used for hierarchical clustering
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clustering algorithms are plotted side-by-side in two 
panels in Fig.  8. The red line indicates the five pharma-
cological classes of NPS compounds expected from this 
data. Reasonable results can be expected if the cluster-
ing algorithm used is appropriate and the description of 
the compound is appropriate for the clustering task. The 
results obtained for both algorithms are mostly simi-
lar and in agreement with each other for all fingerprints 
tested. Using all three validation indices, both Morgan 
and p5_morgan fingerprints show satisfactory clustering 
performance, with  p5_morgan  also showing the high-
est overall Silhouette score. The highest ARI and NMI 
were obtained using p5_morgan corresponding to K = 5. 
Conversely, setting K < 10 resulted in worse performance 
for hierarchical clustering using MACCS and Morgan. 
This result suggests that Ph-fp constructed using models 
trained with Morgan fingerprints as input features is best 
suited to characterize the pharmacological profile of NPS 
compounds.

Conclusion
The previously unseen NPS continue to emerge at an 
alarming rate posing additional challenges to their accu-
rate and rapid detection. Given the rapid growth in the 
number of newly synthesized NPS, it is impractical to 
study all of them in detail. A more economical approach 
to mitigate the public health threat of NPS is to rapidly 
screen for active compounds against molecular tar-
gets reported to be responsible for the pharmacological 
effects of NPS. With the increasing availability of HTS 
data, predictive models can be constructed for each tar-
get individually and then subsequently be used to pre-
dict the multi-target pharmacological profile of sample 
compounds. In this study, a data-driven pharmacologi-
cal affinity fingerprint (Ph-fp) was constructed using 
ChEMBL bioactivity data with Random Forest classifi-
cation models. The Ph-fp consists of biological activities 
predicted across 132 assay datasets. Two different struc-
tural molecular fingerprints, MACCS and Morgan, were 
used as the input feature in the classification models and 
assay datasets were further curated using different activ-
ity threshold values. The performance of Ph-fp in similar-
ity searching and unsupervised clustering was evaluated 
using a set of NPS compounds. The external class labels 
for NPS set were assigned based on their five pharma-
cological categorization (K = Pharm) and chemical scaf-
fold categorization (K = MCS). In both tasks, the Ph-fp 
was compared to structural molecular fingerprints: 1024 
bits long Morgan and 116 bits long MACCS, as well as 
118 bits long Mol_fp constructed using 0D-2D molecular 
descriptors.

The degree of similarity between pairs of compounds 
is strongly influenced by the encoding of molecular 

fingerprints, and the use of Ph-fp to encode com-
pounds’ predicted pharmacological affinity profiles can 
provide a complementary perspective when screening 
for compounds that have the potential to become the 
next emerging NPS. Ph-fp outperformed MACCS in the 
similarity search in retrieving stimulants with the high-
est level of compound structural diversity. The poor 
performance of the Ph-fp constructed by the model 
using Morgan fingerprints as input features demon-
strates the importance of expanding the list of assays. 
Using the Rogot-Goldberg index as the similarity 
metric overestimated the level of similarity predicted 
between compounds with fewer "on" bits in their Ph-
fp and decoys. However, when clustering only the NPS 
compound set without decoys, Ph-fp trained with Mor-
gan can successfully discriminate compounds based 
on generally accepted pharmacological categorization, 
with overall superior performance using both external 
and internal clustering validation indices.

New NPS are emerging at an alarming rate and often 
without time for adequate experimental determina-
tion of their pharmacological profile. In traditional 
drug testing, if a sample does not match any known 
substance, it does not yield a positive identification. 
By definition, designer drugs are made up of chemi-
cal combinations that we have not seen before. They 
almost never match traditional databases. However, 
a potential strategy is to propose possible structural 
analogues of popular drugs and synthesize the com-
pounds in the laboratory, and then have their profiles, 
such as their vibrational or chromatographic spectra, 
measured and stored in an archive. Then when these 
drugs become popular in the market, it will shorten 
the time for positive identification. However, among 
the endless possible structural analogues, we can fur-
ther reduce the time cost if we can somehow perform 
a virtual screening to find the most likely candidate in 
terms of its potential pharmacological categorization. 
Thus, when given only the proposed chemical struc-
ture, a preliminary virtual screening can be performed 
using its Pf-fp constructed in this data-driven man-
ner using models trained with ChEMBL bioassay data. 
In summary, data-driven Ph-fp is a promising tool for 
screening potential emerging NPS compounds using 
public domain bioassay data. Of course, further stud-
ies are needed to optimize the list of bioassay data sets 
used and to further validate the performance of Pf-fp 
using a larger NPS data set. It would be interesting to 
compare the performance of representative databases 
constructed using structure-based clustering alone or 
in combination with the pharmacological space of the 
NPS in identifying unknown samples.



Page 17 of 19He  Journal of Cheminformatics           (2022) 14:35  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 022- 00607-6.

Additional file 1: Figure S1. Heatmap of the MCS clustering of NPS 
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and NMI are calculated by requesting 5 and 17 clusters and comparing 
them with external K = MCS and K = Pharm class labels. The dashed 
lines are p6_maccs, p7_maccs (green) and p6_morgan, p7_morgan (red), 
respectively.
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