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Abstract: Cyanidin-3-glucoside (C3G) is a well-known natural anthocyanin and possesses antioxidant
and anti-inflammatory properties. The catabolism of C3G in the gastrointestinal tract could produce
bioactive phenolic metabolites, such as protocatechuic acid, phloroglucinaldehyde, vanillic acid,
and ferulic acid, which enhance C3G bioavailability and contribute to both mucosal barrier and
microbiota. To get an overview of the function and mechanisms of C3G and its phenolic metabolites,
we review the accumulated data of the absorption and catabolism of C3G in the gastrointestine,
and attempt to give crosstalk between the phenolic metabolites, gut microbiota, and mucosal innate
immune signaling pathways.
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1. Introduction

Anthocyanins belong to polyphenols, which are one kind of secondary metabolite with
polyphenolic structure widely occurring in plants. They serve as key antioxidants and pigments
that contribute to the coloration of flowers and fruits. Although anthocyanins vary in different
plants, six anthocyanidins, including pelargonidins, cyanidins, delphinidins, peonidins, petunidins,
and malvidins, are considered as the major natural anthocyanidins. Berries, such as red raspberry
(Rubus idaeus L.), blue honeysuckle (Lonicera caerulea L.), and mulberry are used as folk medicine
traditionally, and their extracts have been used in the treatment of disorders such as cardiovascular
disease [1], obesity [2], neurodegeneration [3], liver diseases [4], and cancer [5], in recent years.
Cyanidin-3-glucoside (C3G) is one of the most common anthocyanins naturally found in black rice,
black bean, purple potato, and many colorful berries. C3G possesses strong antioxidant activity
potentially due to the two hydroxyls on the B ring [6], as shown in Figure 1. Recent studies have
suggested that C3G potentially exerts functions primarily through C3G metabolites (C3G-Ms) [7],
and more than 20 kinds of C3G-Ms have been identified in serum by a pharmacokinetics study in
humans [8]. Although the function and mechanism of C3G-Ms are still not clear, protocatechuic acid
(PCA) [9–12], phloroglucinaldehyde (PGA) [1], vanillic acid (VA) [13–15], ferulic acid (FA) [16–19],
and their derivates represent the main bioactive metabolites of C3G due to their antioxidant and
anti-inflammatory properties.
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Figure 1. The catabolism process of cyanidin-3-glucoside (C3G) in an organism. C3G can be 
hydrolyzed to its aglycone by enzymes in the small intestine, and further degraded to phenolic 
compounds by gut microbiota. Microbial catabolism of C3G in the distal small intestine and large 
intestine is performed by the cleavage of the heterocyclic flavylium ring (C-ring), followed by 
dehydroxylation or decarboxylation to form multistage metabolites, which enter the liver and 
kidney by circulation. C3G, cyanidin-3-glucoside; FA, ferulic acid; PCA, protocatechuic acid; PGA, 
phloroglucinaldehyde; VA, vanillic acid. 

2. Absorption and Catabolism of C3G in the Gastrointestine  

Most of the anthocyanins remain stable in the stomach and upper intestine [20,21]. The stomach 
is considered as one of the predominant sites for anthocyanin and C3G absorption [22,23], although 
high concentration (85%) of anthocyanins has been found in the distal intestine [24]. There is 
potential for the first-pass metabolism of C3G in the stomach, that is, C3G can be effectively 
absorbed from the gastrointestinal tract and undergoes extensive first-pass metabolism, which can 
enter the systemic circulation as metabolites [25]. 

Anthocyanins are stable under acidic conditions but extremely unstable under alkaline 
conditions. The higher the pH is, the more colorless and substituent forms of anthocyanin are 
predominant [26]. The catabolism of C3G is mainly completed in the distal small intestine, such as 
ileum [22], and in the upper large intestine, such as the colon [27], with the decomposition by 
microbiota [28]. C3G can be hydrolyzed to their aglycones by enzymes in the small intestine, and 
further degraded to phenolic compounds by gut microbiota, in which microbial catabolism of C3G is 
performed by the cleavage of the heterocyclic flavylium ring (C-ring), followed by dehydroxylation 
or decarboxylation [29]. Subsequently, phase Ⅱ metabolites and multistage metabolites (including 
bacterial metabolites) can enter the liver and kidney to form more methylate, gluronide, and sulfate 
conjugated metabolites by enterohepatic circulation and blood circulation (Figure 1).  

3. Biological Functions of C3G-Ms  

Only several C3G-Ms have shown potential biological function, although more than 20 kinds of 
C3G-Ms have been identified [8,30]. PCA and phloroglucinaldehyde (PGA) are considered as the 

Figure 1. The catabolism process of cyanidin-3-glucoside (C3G) in an organism. C3G can be hydrolyzed
to its aglycone by enzymes in the small intestine, and further degraded to phenolic compounds
by gut microbiota. Microbial catabolism of C3G in the distal small intestine and large intestine is
performed by the cleavage of the heterocyclic flavylium ring (C-ring), followed by dehydroxylation
or decarboxylation to form multistage metabolites, which enter the liver and kidney by circulation.
C3G, cyanidin-3-glucoside; FA, ferulic acid; PCA, protocatechuic acid; PGA, phloroglucinaldehyde;
VA, vanillic acid.

2. Absorption and Catabolism of C3G in the Gastrointestine

Most of the anthocyanins remain stable in the stomach and upper intestine [20,21]. The stomach
is considered as one of the predominant sites for anthocyanin and C3G absorption [22,23], although
high concentration (85%) of anthocyanins has been found in the distal intestine [24]. There is potential
for the first-pass metabolism of C3G in the stomach, that is, C3G can be effectively absorbed from the
gastrointestinal tract and undergoes extensive first-pass metabolism, which can enter the systemic
circulation as metabolites [25].

Anthocyanins are stable under acidic conditions but extremely unstable under alkaline conditions.
The higher the pH is, the more colorless and substituent forms of anthocyanin are predominant [26].
The catabolism of C3G is mainly completed in the distal small intestine, such as ileum [22], and in the
upper large intestine, such as the colon [27], with the decomposition by microbiota [28]. C3G can be
hydrolyzed to their aglycones by enzymes in the small intestine, and further degraded to phenolic
compounds by gut microbiota, in which microbial catabolism of C3G is performed by the cleavage
of the heterocyclic flavylium ring (C-ring), followed by dehydroxylation or decarboxylation [29].
Subsequently, phase II metabolites and multistage metabolites (including bacterial metabolites) can
enter the liver and kidney to form more methylate, gluronide, and sulfate conjugated metabolites by
enterohepatic circulation and blood circulation (Figure 1).
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3. Biological Functions of C3G-Ms

Only several C3G-Ms have shown potential biological function, although more than 20 kinds
of C3G-Ms have been identified [8,30]. PCA and phloroglucinaldehyde (PGA) are considered as the
major bioactive phenolic metabolites produced by phase Imetabolism, which undergo cleavage of the
C ring of C3G. PCA can increase the antioxidant capacity of cells potentially by increasing the activity
of antioxidant enzymes, such as catalase (CAT) in hypertensive rats or arthritis-model rats [31,32],
superoxide dismutase (SOD) [33], and glutathione peroxidase (GPx) in mice or macrophages [33–36],
and thus attenuate lipid peroxidation. Meanwhile, PCA has been reported to inhibit the production
of inflammatory mediators, such as interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-1β,
and prostaglandin E2 (PGE2) [37–39], potentially by suppressing the activation of nuclear factor-κB
(NF-κB) and extracellular signal-regulated kinase (ERK) [33,38] in murine BV2 microglia cells and
colitis-model mice. PGA has also shown an inhibitory effect on inflammation potentially by modulating
the production of IL-1β, IL-6, and IL-10 [40] in human whole blood cultures, although there are few
reports about the molecular mechanisms. Our previous studies have revealed that both PCA and PGA
are capable to down-regulate the MAPK pathway, especially suppress the activation of ERK, and PGA
can directly bind to ERK1/2 [41] in murine macrophages.

Phase II metabolites of C3G, such as PCA-3-glucuronide (PCA-3-Gluc), PCA-4-glucuronide
(PCA-4-Gluc), PCA-3-sulfate (PCA-3-Sulf), PCA-4-sulfate (PCA-4-Sulf), VA, VA-4-sulfate (VA-4-Sulf),
isovanillic acid (IVA), IVA-3-sulfate (IVA-3-Sulf), and FA, are mostly derived from PCA and PGA [1,8].
VA and FA represent the bioactive phenolic metabolites based on recent studies. VA may suppress the
generation of reactive oxygen species (ROS) [42] and lipid peroxidation [32], potentially by increasing the
activity of antioxidant enzymes such as SOD, CAT, and GPx [43,44], as well as the level of antioxidants
such as vitamin E [43,44], vitamin C [43,44], and glutathione (GSH) [45] in mice, hamster, and diabetic
hypertensive rats. Additionally, VA can inhibit the production of pro-inflammatory cytokines such
as TNF-α, IL-6, IL-1β, and IL-33 by down-regulating caspase-1 and NF-κB pathways [45–47] in
mice or mouse peritoneal macrophages and mast cells. FA has also been reported to attenuate both
oxidative stress and inflammation potentially by suppressing the production of free radicals (ROS
and NO in rats, rat intestinal mucosal IEC-6 cell, or murine macrophages) [48–50], enhancing Nrf2
expression and down-stream antioxidant enzymes (SOD and CAT in rats or swiss albino mice) [48,51],
and inhibiting the activation of proinflammatory proteins (p38 and IκB in HUVEC cells) [52] and
cytokines production, such as IL-18 in HUVEC cells [52], IL-1β in mice [53], IL-6 in obese rats [54],
and TNF-α in mice [53]. However, both VA and FA showed a limited effect on the activation of MAPK
pathway and production of inflammatory cytokines, such as monocyte chemoattractant protein-1
(MCP-1) and TNF-α in a high-fat diet-induced mouse model of nonalcoholic fatty liver disease [41].
Table 1 summarizes the biological functions of the main bioactive metabolites, including PCA, PGA,
VA, and FA.

Table 1. Biological functions of C3G-Ms.

C3G-Ms Biological
Functions Objects Results

PCA
Antioxidant Rats, mice, macrophages

Treatment with PCA increased T-AOC [31], catalase [33], SOD [33]
and GPx [33–36] levels, but decreased ROS [35], MDA [31] and

hydroperoxides [31] levels.

Anti-inflammatory Mice, macrophages PCA decreased IL-6 [33,37,39], TNF-α [33,39], IL-1β [33,39] and PGE2
production [39], and inhibited ERK, NF-κB p65 activation [33].

PGA Anti-inflammatory Mice, Human

PGA decreased serum levels of MCP-1 and TNF-α in high fat
diet-induced mice [41]; PGA inhibited the production of IL-1β and
IL-6 in human whole blood cultures after LPS stimulation, but no

significant difference (p > 0.01) [40].
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Table 1. Cont.

C3G-Ms Biological
Functions Objects Results

VA

Antioxidant Hamsters, mice, rats VA increased SOD [43,44], catalase [43,44], GPx [43,44], vitamin E
[43,44], vitamin C [43,44] and GSH [43–45] levels.

Anti-inflammatory Rats, mice, macrophages
VA inhibited caspase-1, NF-κB and MAPKs activation [45–47],

decreased production of COX-2, PGE2 and NO [46], and reduced the
levels of TNF-α [45,46], IL-6 [46,55], IL-1β [45] and IL-33 [45].

FA

Antioxidant Rats, mice, IEC-6 cells
FA decreased the production of ROS [45–47], MDA [49], NO [49],
enhanced SOD [48,49] and CAT [48,51] activity, and promoted the

activation of Nrf2 [51].

Anti-inflammatory HUVEC cells, mice, rats
FA decreased the expression of caspase-1 [52], ICAM-1 [52], VCAM-1

[52], IL-18 [52], IL-1β [50,52–54], IL-6 [50,54], TNF-α [53], and
inhibited the phosphorylation of p38 and IκB [52].

Notes: C3G-Ms, cyanidin-3-glucoside metabolites; CAT, catalase; COX-2, cyclooxygenase-2; ERK, extracellular
signal-regulated kinase; FA, ferulic acid; GSH, glutathione; ICAM-1, intercellular adhesion molecule-1; LPS,
lipopolysaccharide; MAPKs, mitogen-activated protein kinases; MCP-1, monocyte chemoattractant protein-1; MDA,
malondialdehyde; NF-κB, nuclear factor-κB; NO, nitric oxide; PCA, protocatechuic acid; PGA, phloroglucinaldehyde;
PGE2, prostaglandin E2; ROS, reactive oxygen species; T-AOC, total antioxidant capacity; VA, vanillic acid; VCAM-1,
vascular cell adhesion molecule-1; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α.

4. Crosstalk between Gut Microbiota and C3G&C3G-Ms

Bacteria can use phenolic compounds as substrates to obtain energy [56,57] and to form
fermentable metabolites which can exert bioactive functions similar to parent anthocyanins [58],
and thus, gut microbiota play an important role in the metabolism of anthocyanins and the secondary
phenolic metabolites after the removal of anthocyanins’ sugar moiety [59].

PCA has already been proven as the gut microbiota metabolite of C3G [60], as Lactobacillus and
Bifidobacterium have the maximum ability to produce the β-glucosidase so that anthocyanins are
transformed to PCA [61]. Lactobacillus and Bifidobacterium are also observed to produce p-coumaric acid
and FA under different carbon sources [57,62], while Bacillus subtilis and Actinomycetes are involved in
the bioconversion of VA to guaiacol [63].

On the other hand, anthocyanins are capable of modulating the growth of special intestinal
bacteria [24] and increasing microbial abundances [64]. Anthocyanins have been reported to increase
the relative abundance of beneficial bacteria such as Bifidobacterium and Akkermansia, which are believed
to be closely related to anti-inflammatory effects [24,65]. Monofloral honey from Prunella Vulgaris, rich in
PCA, VA, and FA, showed protective effects against dextran sulfate sodium-induced ulcerative colitis in
rats potentially through restoring the relative abundance of Lactobacillus [66]. Our previous studies also
found that the Lonicera caerulea L. berry rich in C3G could attenuate inflammation potentially through
the modulation of gut microbiota, especially the ratio of Firmicutes to Bacteroidetes in a mouse model of
experimental non-alcoholic fatty liver disease [67]. Nevertheless, another study revealed that propolis
rich in PCA, VA, and FA could suppress intestinal inflammation in a rat model of dextran sulfate
sodium-induced colitis potentially by reducing the population of Bacteroides spp [68]. This may be
because of the inhibitory and lethal effects on pathogenic bacteria by anthocyanins and their metabolites.
PCA has been reported to inhibit the growth of E. coli, P. aeruginosa, and S. aureus [69]. VA can decrease
the cucumber rhizosphere total bacterial Pseudomonas and Bacillus spp. community by changing their
compositions [70]. FA is identified as highly effective against the growth of Botrytis cinerea isolated
from grape [71]. Table 2 shows the microbial species that can biotransform C3G&C3G-Ms and the
bacteriostasis effects of C3G-Ms.

The mechanisms underlying the anti-microbial effect of anthocyanins are not clear yet. Ajiboye
et al. have pointed out that PCA may induce oxidative stress in gram-negative bacteria [69], that is,
PCA can combine with O2 to form •O2−, which attacks the polyunsaturated fatty acid components of the
membrane to cause lipid peroxidation, and attacks the thiol group of protein to cause protein oxidation.
To be more precise, •O2− can be continually produced by autoxidation of PCA and semiquinone
oxidation through the inhibition of NADH-quinone oxidoreductase (NQR) and succinate-quinone
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oxidoreductase (SQR). Although SOD converts •O2− to H2O2, which can be finally changed to H2O
and O2 by catalase, excessive H2O2 produces •OH during the Fenton reaction (Fe2+

→Fe3+), and •OH
attacks the base of DNA and results in DNA breakage. In addition, the suppression of NQR and SQR
may lead to ATP depletion. Finally, bacterial death could be induced by lipid peroxidation, protein
oxidation, DNA breakage, and ATP depletion. (Figure 2).

Table 2. Crosstalk between C3G&C3G-Ms and microorganism.

Microbial Species Features Bioconversion Bacteriostasis

Lactobacillus (L. paracasei, B. lactis and B. dentium)
and Bifidobacterium

Gram-positive
anaerobes

C3G and cyanidin
3-rutinoside→PCA [60,61]

PCA—|E. coli, P. aeruginosa
and S. aureus [69]

Lactobacillus (L. acidophilus K1 ) and
Bifidobacterium (B. catenulatum KD 14, B. longum

KN 29 and B. animalis Bi30)

Gram-positive
anaerobes

Methyl esters of phenolic
acids→FA [57,62] FA—|Botrytis cinerea [71]

Bacillus subtilis and Actinomycetes (Streptomyces sp.
A3, Streptomyces sp. A5 and Streptomyces sp. A13)

Gram-positive
facultative anaerobes VA→guaiacol [63] VA—|Pseudomonas and

Bacillus spp. [70]

Notes: →, generate; —|, inhibit.

Given these, interactions between C3G&C3G-Ms and gut microbiota can improve the
bioavailability of C3G. C3G&C3G-Ms potentially ameliorate micro-ecological dysbiosis by inhibiting
gram-negative bacteria. But it is worth noting that a few studies have demonstrated that
the over-consumption of polyphenols had significant negative effects on reproduction and
pregnancy [72–74]. Although it is inexplicit whether there is a correlation with the changes of gut
microbiota composition, the negative effects of polyphenols-mediated modulation of gut microbiota
should be focused on.
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Figure 2. Potential mechanisms underlying the lethal effect of PCA on gram-negative bacteria.
Autoxidation of PCA and semiquinone oxidation through the inhibition of NADH-quinone
oxidoreductase (NQR) and succinate-quinone oxidoreductase (SQR) can cause ATP depletion and
produce •O2−, which attacks the polyunsaturated fatty acid components of the membrane to cause lipid
peroxidation and attacks the thiol group of protein to cause protein oxidation. Although SOD converts
•O2- to H2O2, which can be finally changed to H2O and O2 by catalase, excessive H2O2 produces •OH
during the Fenton reaction (Fe2+

→Fe3+), and •OH attacks DNA bases to cause DNA fragmentation.
Ultimately, lipid peroxidation, protein oxidation, DNA fragmentation, and ATP depletion induce
bacterial death. PCA, protocatechuic acid; SOD, superoxide dismutase.

5. The Potential Mechanisms of C3G&C3G-Ms against Intestinal Injury

Multiple studies have shown that C3G&C3G-Ms have an essential role in intestinal health [55,75,76].
The potential mechanisms of C3G&C3G-Ms against intestinal injury are considered as they act in
a synergistic manner between the antioxidant, anti-inflammatory, and anti-apoptosis function.
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5.1. Antioxidant

The protective effect of C3G&C3G-Ms against intestinal injury is largely based on their antioxidant
ability. On the one hand, C3G, along with its bioactive phenolic metabolites, including PCA,
VA, and FA, can up-regulate the antioxidant enzyme system, such as increasing the activities of
manganese-dependent superoxide dismutase (MnSOD) [34] and GSH [34,77]. On the other hand,
they can also down-regulate the pro-oxidant system, such as decrease the expression of cyclooxygenase-2
(COX-2) [77,78] and inducible nitric oxide synthase (iNOS) [77,78], and thus, decreasing the production
of free radicals, including ROS [79] and reactive nitrogen species (RNS) [78]. Our previous study
has shown that the Lonicera caerulea L. berry rich in C3G may enhance the expression of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) and MnSOD during the earlier response in LPS-induced
macrophages [80].

Nrf2 is a transcription factor with a basic leucine zipper (bZIP) that regulates the expression
of antioxidant enzymes. Under normal conditions, Nrf2 is kept in ubiquitination by Cullin 3 and
Kelch like-ECH-associated protein 1 (KEAP1), which facilitates ubiquitination of Nrf2. In this regard,
Nrf2 forms a virtuous cycle so that it does not come into the nucleus to bind with the antioxidant
response element (ARE) to modulate the transcription of down-stream genes. Once upon oxidative
stress, Nrf2 can be released from KEAP1 to enter the nucleus with the disruption of cysteine residues in
KEAP1 [81], or the activation of protein kinase C (PKC) [82], extracellular signal-regulated kinase (ERK)
or p38 MAPKs [83], GSK-3β [84], and phosphoinositide 3-kinase (PI3K) [85]. In the nucleus, Nrf2 binds
with ARE and other bZIP proteins (like small Maf) to induce down-stream genes to transcribe.

The bioactive phenolic metabolites of C3G have also been reported to activate Nrf2. PCA may
increase the activities of glutathione reductase (GR) and glutathione peroxidase (GPx) by the c-Jun
NH2-terminal kinase (JNK)-mediated Nrf2 pathway in murine macrophages, as silencing of the JNK
gene expression can attenuate the PCA-induced nuclear accumulation of Nrf2 [86]. FA potentially
induces the expression of Nrf2 and HO-1 via the activation of the PI3K/Akt pathway, as the specific
PI3K/Akt inhibitor can suppress FA-induced Nrf2 and HO-1 expression, and block the FA-induced
increase in occludin and ZO-1 protein expression in rat intestinal epithelial cells [49]. The potential
mechanisms underlying the C3G-Ms induced expression of Nrf2 is summarized in Figure 3.
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Figure 3. Potential mechanisms underlying the C3G-Ms regulated Nrf2 system. PCA and FA may
induce the nuclear translocation of Nrf2 via JNK and PI3K/Akt pathways, respectively. FA, ferulic
acid; GPx, glutathione peroxidase; GR, glutathione reductase; JNK, c-Jun NH2-terminal kinase;
KEAP1, Kelch like-ECH-associated protein 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PCA,
protocatechuic acid; PI3K, phosphatidylinositol 3-Kinase.
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5.2. Anti-Inflammatory

Endotoxin produced by dysbacteriosis is considered as the major trigger of inflammation in
intestines [87,88]. When gram-negative bacteria such as Escherichia coli and Salmonella predominate in
gut, bacterial lipopolysaccharide (LPS) can form a complex called LPS binding proteins (LBP) to be
associated with pattern recognition receptors (CD14) which locate on the cell membrane, and then
activate toll-like receptors (TLRs), such as the TLR4 pathway, to induce inflammatory reactions in
different types of cells, such as epithelial cells and immune cells [24]. TLR4 dimerizes itself and
induces two major pathways, the myeloid differentiation factor 88 (MyD88)-dependent pathway
and MyD88-independent pathway. In the dependent pathway, MyD88-induced phosphorylation of
interleukin receptor-associated kinases 1 (IRAK1) and IRAK4 can activate the tumor necrosis-associated
factor 6 (TRAF-6) adapter protein, which forms a complex with the enzymes that activate transforming
growth factor beta-activated kinase-1 (TAK1) during ubiquitination. Then TAK1 induces the
phosphorylation of the inhibitor kinase complex (IKKβ), which further induces the decoupling
of NFκB in the dimer of NFκBp50 and NFκBp65 by degrading its inhibitory protein IκB. Finally,
NFκB enters the nucleus and modulates the expression of a series of inflammatory cytokine genes [24].

Overexpression of inflammatory cytokines largely influences the expression of epithelial tight
junctions (TJs) such as zonula occludens-1 (ZO-1), occludin, and claudin [89,90], which increase cellular
permeability and give more access for LPS to enter cells [91,92]. The pro-inflammatory cytokines,
like TNF-α, IFN-γ, and IL-1β, can induce an increase in intestinal TJ permeability potentially through
the activation of myosin light chain kinase (MLCK), which appeared to be an important pathogenic
mechanism contributing to the development of intestinal inflammation [93]. Another factor that
aggravates intestinal inflammation is that macrophages can be recruited to adhere and infiltrate into
inflammatory sites through chemokines and intercellular adhesion molecule-1 (ICAM-1), which is
largely increased by the activation of the NF-κB signaling pathway [94] among several cell types
including leukocytes, endothelial cells, and macrophages [95].

In addition to the influence on gut microbiota, the inhibitory effect of anthocyanins on epithelial
inflammation is another important factor that acts against intestinal injury [64,76]. Ferrari et al. have
demonstrated that the main protective effect of C3G in chronic gut inflammatory diseases is derived
from the selective inhibition of the NF-κB pathway in epithelial cells [76]. Our previous studies
have also shown that the Lonicera caerulea L. berry rich in C3G can inhibit LPS-induced inflammation
potentially through TAK1-mediated mitogen-activated protein kinase (MAPK) and NF-κB pathways
in an LPS-induced mouse paw edema and macrophage cell model [80]. Although the metabolites
of C3G are complicated, recent studies have revealed that phenolic metabolites identified in blood
circulation, such as PCA, PGA, VA, and FA, may modulate inflammatory signaling pathways. PCA,
VA, and FA can suppress the production of ICAM-1, and thus, alleviate inflammatory infiltration and
damage in vascular endothelial cells [52,96]. In a mouse colitis model, PCA can decrease both mRNA
levels and protein concentration of Sphingosine kinases (SphK), which induces the phosphorylation of
sphingosine to form sphingosine-1-phosphate (S1P), but increase the expression of S1P lyase (S1PL)
which irreversibly degrade S1P, and thus, inhibit SphK/S1P pathway-mediated activation of the NF-κB
pathway through S1P receptors (S1PR) [33]. The main mechanism of VA on inflammation is that it can
down-regulate the MAPK pathway by suppressing the phosphorylation of ERK, JNK, and p38 [47]. It is
reported that FA may prevent macrophages from responding to LPS, potentially through target myeloid
differentiation factor 88 (MyD88) mediated pro-inflammatory signaling pathways [50,97], while other
studies suggested that FA may increase the expression of TJs, such as occludin and ZO-1 via regulating
HO-1 expression to prevent LPS enter the cells [52]. In our previous studies, both C3G and its phenolic
metabolites showed inhibitory effects on LPS-activated inflammatory pathways in macrophages,
and C3G can directly bind to TAK1 and ERK1/2, while PGA, one of phase I metabolites, can also
directly bind to ERK1/2 [41,80]. These studies suggest that C3G and its phenolic metabolites may
attenuate both a primary and secondary inflammatory response and by inactivating pro-inflammatory
pathways and enhancing cellular barrier function (Figure 4).
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Figure 4. Potential mechanisms of C3G&C3G-Ms in attenuating intestinal inflammation. C3G and
its phenolic metabolites mainly modulate inflammation by three ways, first, to suppress the
production of chemotactic factors such as ICAM-1 and thus alleviate inflammatory infiltration, second,
to down-regulate inflammatory pathways such as TAK1-mediated MAPK pathway and SphK/S1P
mediated NF-κB pathway, finally, the down-regulated inflammatory pathways, and up-regulated
antioxidant pathway, as mentioned in Figure 3, will maintain sufficient expression of tight junction
proteins such as ZO-1 to promote normal intestinal barrier function, and thus prevent LPS from
entering mucosal cells. C3G, cyanidin 3-glucoside; FA, ferulic acid; ICAM-1, intercellular adhesion
molecule-1; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; SphK, Sphingosine kinases; S1P,
sphingosine-1-phosphate; TAK1, transforming growth factor beta-activated kinase-1; VA, vanillic acid.

5.3. Anti-Apoptosis

Under normal conditions, the homeostasis between apoptosis and proliferation of intestinal
epithelial cells regulates the normal morphological structure and physiological function of the
intestinal tract [98]. However, pathological factors, such as intestinal flora disorder, may induce local
inflammation and subsequently, the infiltration of immune cells, such as leukocytes, that can be easily
activated by microbial products causing the overproduction of RNS and ROS, which finally causes
abnormal apoptosis among intestinal cells [34,99,100]. Although mechanisms underlying apoptosis
are complicated, it has been considered that apoptosis is mainly mediated by two ways [101]. On the
one hand, pro-apoptotic factors such as ROS may change mitochondrial permeability and induce the
release of second mitochondria-derived activator of caspases (SMACs) into the cytoplasm to bind and
inactivate the inhibitor of apoptosis proteins (IAPs) like Bcl-2 [102,103], which inhibit the activation of
caspase and contribute to protecting intestinal epithelial cells from apoptosis [104]. On the other hand,
increased mitochondrial permeability can also cause the release of cytochrome c (Cyto C), the inducer of
apoptotic protease activating factor-1 (Apaf-1), through the mitochondrial apoptosis-induced channel
(MAC), which is generally suppressed by Bcl-2 family proteins [105], to induce the production of
caspase 9 and caspase 3 and promote apoptosis [105].

The effects of C3G on apoptosis are various in different cell models. It has been reported that
C3G can potentially inhibit human colon cancer cell proliferation through promoting apoptosis and
suppressing angiogenesis [106,107]. But in other normal cases, C3G showed the protective effects on
gastrointestinal cells, as well as endothelial cells, and obviously inhibited apoptosis by regulating
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apoptosis associated proteins, such as reducing the cytoplasmatic levels in Bax [108] and inhibiting
the expression of caspase-8 [109], caspase-9 [108], and caspase-3 [108,109] to attenuate gastrointestinal
damage. The impacts of C3G-Ms on apoptosis are similar to C3G, and multiple studies have suggested
that PCA [35,36,100] and FA [110,111] may act against apoptosis in various models, although other
studies revealed that C3G-Ms (PCA, FA) might promote apoptosis of colorectal adenocarcinoma
cells [112]. The mechanism of C3G-Ms against apoptosis is still unclear, but a recent study has shown
that in addition to the direct quenching of ROS, PCA may inhibit the expression of pro-apoptotic Bax
in mitochondria and subsequently, increase the ratio of Bcl-2/Bax to reduce the production of caspase 8,
caspase 9, and caspase 3 in injured gastrointestinal mucosa (Figure 5) [36].
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Figure 5. Potential mechanisms of C3G&C3G-Ms against apoptosis in intestinal epithelial cells.
Intestinal flora disorder can induce the overproduction of pro-apoptotic factors such as ROS to increase
mitochondrial permeability and cause the release of SMACs to bind and inactivate IAPs, such as Bcl-2.
Since IAPs inhibit the activation of MAC and caspase to inhibit apoptosis, the inactivation of IAPs
will induce the release of Cyto C through MAC, and subsequently induce the expression of Apaf-1
and caspase to cause apoptosis. C3G and its metabolites PCA can directly quench ROS and activate
IAPs to inhibit the release of Cyto C and expression of caspases. Apaf-1, apoptotic protease activating
factor-1; Cyto C, cytochrome C; C3G, cyanidin 3-glucoside; IAPs, inhibitor of apoptosis proteins; MAC,
mitochondrial apoptosis-induced channel; PCA, protocatechuic acid; ROS, reactive oxygen species;
SMACs, second mitochondria-derived activator of caspases.

6. Conclusions

Due to the strong antioxidant and anti-inflammatory properties, anthocyanins present in natural
products offer great hope as an alternative therapy for chronic disorders, such as cardiovascular
disease, fatty liver disease, inflammatory bowel disease, and glucose-lipid metabolism disorders.
Maintaining the gut integrity plays an important role in the health-promoting functions of anthocyanins,
as the intestinal tract is not only the main place for digestion and absorption of food but also the
first defense barrier against external pathogens and stimulus. It is commonly believed that the
degradation of anthocyanins in the gastrointestinal tract decreases their bioavailability; however, recent
studies based on the microbiome and metabonomics have suggested that the interaction between
natural bioactive compounds and gut microbiota may potentially increase health benefits. On the
one hand, anthocyanins can modulate the gut microbiota composition through either bacteriostasis
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effect or as nutrients to promote the growth of specific microbes. On the other hand, gut microbiota
may break down anthocyanins to form multiple metabolites, which are absorbed into the systemic
circulation to exert positive or negative effects. Thus, understanding the interactions between
anthocyanins and microorganisms, as well as the effects of anthocyanin-derived metabolites on cellular
signaling pathways, is necessary for the rational use of anthocyanins. The breakdown of C3G in the
gastrointestinal tract generates a series of secondary phenolic metabolites, which take up the main part
of C3G-derived bioactive phenolics in circulation. Those metabolites, such as PCA, PGA, VA, and FA,
not only regulate the gut microbiota potentially by their lethal effects on microorganisms but also affect
the Nrf2-mediated antioxidant system and inflammatory pathways, such as the TAK1-mediated MAPK
pathway and SphK/S1P mediated NF-κB pathway. Based on this, C3G and its metabolites improve
the microenvironment and attenuate the oxidative stress and inflammation to reduce the cell death of
enterocytes, which ultimately maintain intestinal integrity and function. However, species-specific
microbial communities and their products affected by C3G and its bioactive metabolites, and how
those products regulate signaling pathways and physiological responses are still not clear. Future
studies based on multi-omics analysis will provide an insight into both the health benefits and negative
effects of C3G and contribute to the rational use of this common natural anthocyanin.
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