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Abstract: Prenatal viral infection can lead to a spectrum of neurodevelopmental disabilities or
fetal demise. These can include microencephaly, global developmental delay, intellectual disability,
refractory epilepsy, deafness, retinal defects, and cortical-visual impairment. Each of these clinical
conditions can occur on a semi-quantitative to continuous spectrum, from mild to severe disease,
and often as a collective of phenotypes. Such serious outcomes result from viruses’ overlapping
neuropathology and hosts’ common neuronal and gene regulatory response to infections. The
etiology of variability in clinical outcomes is not yet clear, but it may be related to viral, host, vector,
and/or environmental risk and protective factors that likely interact in multiple ways. In this
perspective of the literature, we work toward understanding the causes of phenotypic variability
after prenatal viral infections by highlighting key aspects of the viral lifecycle that can affect human
disease, with special attention to the 2015 Zika pandemic. Therefore, this work offers important
insights into how viral infections and environmental teratogens affect the prenatal brain, toward our
ultimate goal of preventing neurodevelopmental disabilities.

Keywords: prenatal viral infections; Zika virus; flaviviruses; global child health; neurodevelopmental
disabilities; brain development; phenotypic variability

1. Introduction

Prenatal infections are a leading cause of 2.6 million neonatal deaths globally each
year. In addition, such infections increase the risk for preterm birth and contribute 11% of
cerebral palsy risk [1–4]. In a series of 118 cases, prenatal infections were identified in 39%
of second-trimester deaths and accounted for 45% of abortions [5].

Parental viral infections are of greatest concern because they are often difficult to
diagnose, and the developing brain is uniquely susceptible to severe injury [6,7]. Of
significant note, prenatal viral infections tend to cause the same types of neuropathology
and neurodevelopmental disorders in a clinical continuum that can include microencephaly,
global developmental delay, intellectual disability, refractory epilepsy, deafness, retinal
defects, and cortical-visual impairment (see Table for selected prenatal viral infections and
a summary of their associated features and clinical outcomes [3–5,8–10]). In fact, while
some classic features are pathognomonic, prenatal viral infections are almost clinically
indistinguishable by neuroradiographic criteria or clinical outcomes alone [10] Serious
clinical outcomes like these result from the viruses’ overlapping neuropathology, on the one
hand, and from the host’s common neuronal and gene regulatory response to infections,
on the other [6].

Despite the epidemiologic and clinical significance of this problem, no prenatal stan-
dards of care in treatment are available today, nor can virally induced prenatal brain
injury yet be targeted for prevention. This reality calls for a deeper understanding of the
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corresponding neurobiology, which remains extremely limited, as a critical step toward
preventing and addressing prenatal brain injury.

As a case in point, during the 2015 Zika pandemic, prenatal viral infection was identi-
fied as the cause of congenital Zika syndrome (CZS), a clinical entity that can include severe
microencephaly and a partially collapsed skull, among other specific features common to
most prenatal viral infections (Table 1) [11]. In the past 5 years, prenatal Zika infection has
been shown to cause a spectrum of neurodevelopmental disabilities [12,13]. Importantly,
these features can occur in isolation or as a combination of phenotypes [12–16]. Studies
are ongoing to determine all of the clinical and developmental manifestations of prenatal
infection, but we already know that some infants can be severely or moderately affected
while other infants appear to be completely unaffected at present.

Table 1. Prenatal viral infections lead to overlapping neuropathology and neurodevelopmental disabilities.

CMV 1 HIV HSV LCMV 2 Rubella VZV 3 Zika
Calcifications 4 4 4 4 4 4

Cerebral Palsy/
Motor Delay 4 4 4 4 4 4

Cerebellar Hypoplasia 4 4 4

Chorioretinitis/Blindness 4 4 4 4 4 4 4

Cortical Malformation 4 4 4 4 4

Epilepsy/Seizures 4 4 4 4 4 4

Hearing Loss 4 4 4 4

Intellectual/
Learning Disability 4 4 4 4 4 4 4

Intraventricular
Hemorrhage 4 4

Meningoencephalitis 4 4 4 4 4 4 4

Microcephaly 4 4 4 4 4 4 4

Myelination Disorder 4 4 4

Neuropathies 4

Vasculopathy/
Porencephaly 4 4 4 4

Ventriculomegaly/
Hydrocephalus 4 4 4 4

1 Cytomegalovirus; 2 Lymphocytic Choriomeningitis Virus; 3 Varicella Zoster.

Variability in outcomes after prenatal viral infections suggests either a continuous
phenotypic spectrum or discrete phenotypic clusters [7,11–15,17–21]. At this point, there is
more evidence in support of discrete phenotypic clusters, but subtle quantitative effects
may take longer to describe [12,13]. In either case, both models suggest quantitative
phenotypic variability and differences in disease severity that may result from differences
in the pathogen, vector, host, or environment or—more broadly—at any point in the virus–
host cycle (Figure 1). (While a normal distribution is represented here given populational
tendencies for quantitative characteristics (e.g., head circumference, height, weight, IQ),
a nonparametric distribution is also possible. At this point, there is not sufficient data to
know for sure which model is more accurate.)

To consider the causes of phenotypic variability after prenatal Zika virus infection and
to gain a greater understanding of other prenatal viral infections, it is important to review
the viral transmission lifecycle because, in theory, each of these stages (or variables) can
have a downstream effect on the infected fetus. Validation of disease modifiers may point
to therapeutically exploitable pathways for treatment or prevention of prenatal brain injury.
In this work, we will review possible or likely factors that may contribute risk or protection
in brain injury and the evidence where available. Overall, more studies are needed to
identify and evaluate qualitative and quantitative disease modifiers and systematically
deconstruct the causes of disease outcomes to identify those factors most amenable to
public health or medical intervention.
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Figure 1. Interaction between possible disease modifiers and the spectrum of outcomes associated
with prenatal viral infections. Various factors, including viral, vector, host, medical, community,
and environment, may contribute to the spectrum of neurodevelopmental disabilities seen after
prenatal viral infection, including in the case of Zika virus. These, in-turn, may interact in additive,
synergistic, or antagonistic ways, which are yet unclear. The resulting phenotypic spectrum includes
infants who are unaffected, possibly unaffected, probably affected, or affected. Affected individuals
are commonly identified in appropriate clinical care settings, but the majority of individuals who
are affected will likely require subclinical phenotyping, which can include neuroimaging, serial
neurodevelopmental follow-up, and quantitative morphometrics. The resulting end-phenotypes
can include a range of neurodevelopmental disabilities, which may include quantitative differences
in head circumference, developmental attainment, the risk for seizures or epilepsy, social skills,
attention, and intellect. Importantly, congenital Zika syndrome is but one manifestation of prenatal
viral infection.

2. Zika–Mosquito–Host Cycle

The Zika virus transmission cycle includes two parallel processes in nonhuman pri-
mates (Sylvatic) or humans (suburban–urban) that can interact or have crossover through
the mosquito vector. In both cycles, the virus is carried to a host by a mosquito vector or
by direct human to human transmission. This is followed by viremia and downstream
effects on the host(s). Mosquitos take a blood meal from an infected host and are infected
by the virus. The virus then sequesters in the salivary gland of the mosquito vector. During
subsequent blood meals by the mosquito, viral particles are injected into the host from
the mosquito’s salivary glands. The cycle continues after viral infection of another host.
Differences in the lifecycle that affect viremia, neurotropism, or viral pathogenicity, likely
contribute to the clinical outcome of the infected fetus.

The following sections cover differences in the virus, mosquito vector, human host,
and their context, including public health and medical infrastructure, local community, and
broader environment that can affect disease outcome after prenatal viral infection (Figure 2).
Because of the number of people who were infected and are affected and mobilization
by national and international research centers and funders to study this global health
problem [22,23], the 2015 Zika virus pandemic offers a unique opportunity to study causes
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of phenotypic variability after prenatal viral infection and other environmental teratogens
that affect the developing human brain.
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Figure 2. A model to consider possible modifiers of phenotypic variability in neurodevelopmental
outcomes toward the long-term goal of prenatal precision therapies. There are likely primary drivers
of neurodevelopmental disabilities. Moving clockwise, primary drivers include the environment,
community, virus, vector, host, and public health efforts. Each primary driver is composed of highly
interdependent factors. Epidemiologic, biomedical, and entomology research suggests the interaction
among primary drivers can be additive, synergistic, or antagonistic. In multiple ways, the primary
drivers are mutually interdependent in their outcomes. In order to develop personalized therapies to
prevent neurodevelopmental disabilities, it is critically important to understand how (and when)
these variables increase or decrease the risk of disease and to further delineate how they interact.
In this way, personalized treatments or prevention strategies can be considered prenatally for viral
infections, and other disorders affecting the developing brain.

3. Virus

Multiple streams of evidence strongly suggest that differences in the virus, including
tissue tropism [24,25], viral strain [26], and evolution [27], contribute to phenotypic vari-
ability and disease severity in the infected fetus. First isolated from rhesus monkeys in the
Zika forest of Uganda in 1947, Zika virus is phylogenetically categorized as a flavivirus [28].
This family of viruses includes many emerging human pathogens of clinical and public
health significance, including Chikungunya, Dengue, yellow fever, and West Nile virus.
Like other flavivirus, Zika virus has a small, single-stranded RNA genome, and it targets
neural tissue [29] and non-neural tissue alike, including the placenta, testis, and uterus [4].
Unlike other flaviviruses, Zika can be transmitted between humans by exchange of bodily
fluids and by sexual transmission [30–33]. In the postnatal brain, Zika leads to several in-
fectious, para- and post-infectious, and inflammatory neurological disorders, affecting both
the peripheral and central nervous systems and ranging from Guillain-Barre Syndrome
to meningoencephalitis [34–38]. In mouse models, adapted viral strains result in similar
developmental defects with prenatal [39–52] or postnatal infection [24,53].
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4. Viral Evolution Likely Contributed to Pathogenicity

Mutations and evolution in the Zika viral genome are associated with increased viral
pathogenicity. Sequence analyses have revealed three major genetic lineages of Zika virus;
East African, West African, and Asian [26,54,55]. While genetically related, each viral strain
evolves new characteristics that contribute to variable neuropathology. In one example, the
nonstructural protein 1 (NS1) enhances viral prevalence in mosquitos and the mammalian
population [54]. Analysis of the African lineages revealed a mutation at the 188th residue,
from alanine to valine, which conferred secretability of the NS1 protein [54,56], and this
may confer highly efficient enzootic and epizootic transmission [54,57,58]. Mutations in
the nonstructural protein 3 (NS3) region, have been shown to increase viral replication
in the mosquito, while decreasing replication in human cells [59]. Residues in the viral
envelope (E) protein, including isoleucine 152, threonine 156, and histidine 158, have been
implicated in the binding efficiency of Zika virus to host cells [60]. It is possible that viral
strains co-evolved with their hosts and vectors, a theory that accounts for Zika’s long-term
potentiation and re-emergence throughout the 20th and 21st centuries [54].

Zika’s unique ability to transfer directly between humans also suggests increased
stability in bodily fluids, which may contribute to disease severity [25,61]. Cryogenic
electron-microscopy of Zika incubated at different temperatures suggests high stability
of viral particles at 40 ◦C in urine, saliva, or semen, in contrast to Dengue, which is not
detected in these bodily fluids [61–65]. However, when studying the infectivity of Zika
after incubation at 40 ◦C, the half-life (11.8 h) was comparable to Dengue (5.2 h) and West
Nile virus (17.7 h), suggesting that viral pathogenicity is not only related to stability [62,66].

5. Mosquito

Flavivirus, including Zika, are transmitted to humans by Aedes mosquitoes, which
have an expanding global distribution that now includes every continent and 41 of the
48 contiguous United States [28]. Zika virus is preferentially transmitted by some species
of the Aedes mosquito, including A. aegypti, A. albopictus, A. hensilli, and A. polynesien-
sis [67] Similar to viral and host factors, differences in the Aedes mosquito can affect
clinical outcomes [68] because they can affect the viral load that reaches the host. For
instance, a recent study identified enhanced viral susceptibility in the evolution of a sub-
species of A. aegypti aegypti, which invaded countries in the tropical belt. The change in the
mosquito population was a major factor in the pathogenesis of Zika virus, and other fla-
viviruses [68] Combined with a preference to lay eggs in human-made containers [69], it ap-
pears that A. aegypti aegypti’s abundance in South America compared to Africa contributed
to disease risk during the pandemic [68]. Conversely, African species of the mosquito,
A. ageypti formosus, appears to be more resistant to Zika virus [68]. A. aegypti aegypti also
has an allelic variation in the Or4 odorant receptor gene that is linked to a preference for
biting humans [70,71]. It is possible that increased mosquito susceptibility results from
genetic drift, adaptation to human urbanization, and/or region-specific factors, including
climate change and human genetic changes [71].

In the western Pacific, such as the Federated States of Micronesia (FSM) and Palau, a
2007 outbreak of Zika virus was brought to the islands by a mosquito [72,73]. Introduction
of the mosquito, along with the lack of herd immunity, contributed to the pandemic in
this region. In addition, intense air and sea traffic could introduce mosquito species into
different geographic regions across the globe [72,73]. The density and type of endogenous
mosquito populations can affect the ability of novel mosquito species to establish new
territory [72]. Artificial and natural habitats could support further evolution of various
mosquito species [72], an approach that is considered in limiting mosquito populations
that contribute to human disease [74].



Trop. Med. Infect. Dis. 2021, 6, 95 6 of 14

6. Host
6.1. Gestational Age Confers Susceptible to Zika Pathogenesis

Epidemiological data from multiple countries strongly suggests that viral infection
during the first trimester of gestation is associated with the greatest risk of severe neurode-
velopmental disorders, including microcephaly [25,75] and other developmental abnormal-
ities [76]. Consistently, Coutinho et al.’s prospective population-based study found a strong
association between poor infant prognosis when mothers’ were infected with Zika virus
during the first trimester (<12 weeks) of gestation [16]. These findings were corroborated
by neuroimaging, which showed an eight times higher rate of brain abnormalities after
first-trimester exposure compared to later in gestation. The risk of fetal anomalies was
14-fold higher [76].

6.2. Phenotypic Variation: From Congenital Zika Syndrome to Mild, and Subclinical
Developmental Delay

In several recent studies, Zika-exposed children with normal clinical examinations
and neuroimaging at birth went on to develop mild to moderate developmental delay and
developmental disabilities [12,13,76]. Often, initially asymptotic infants had a developmen-
tal delay of 3–12 months of age. These findings included poor head growth or worsening
developmental delay over time [77]. Prenatal Zika infection may also increase the risk for
autism spectrum disorder [77,78]. Exposure to other viruses in the Flaviviridae family may
also affect development, a factor that might be heightened when children are exposed to
multiple related viruses [16,77,79]. Given this variability, physicians caring for patients
with suspected exposure or those working in endemic areas should continue to closely
evaluate head circumference and developmental attainment of prenatally exposed infants,
even when infants are asymptomatic at birth [80]. A systematic approach is needed to
assess the impact of Zika virus infection at specific gestational ages so that physicians,
parents, and local resources can guide care and therapy for children with increased risk for
delay or disability [16].

6.3. Host Genetic Modifiers after Prenatal Zika Infection

Powered by genetics and genomics, human susceptibility to infections is a subject
of increasing interest over the past 60 years [81]. Among the first of these studies, a
higher concordance rate of tuberculosis infection was identified in monozygotic twins
compared to dizygotic twins [82], suggesting host genetic factors can contribute to in-
creased susceptibility to infections. More recently, genetic susceptibility was identified
for Plasmodium falciparum, a mosquito-borne unicellular protozoan that leads to malaria
in childhood [83,84]; for HIV, a sexually transmitted RNA virus that can be congenitally
acquired [10,85,86], and for Dengue, an emerging mosquito-borne flavivirus with a single-
stranded RNA genome [87]. Zika is similar to these infectious agents because it is a
mosquito-borne, prenatally acquired, and an RNA virus.

Interestingly, while many of these genetic modifiers confer risk [83,85], others factors
confer protection [81,87–89]. The human genetic architecture of risk and protection is best
characterized for HIV, where host genetic factors can affect viral load, disease progression,
viral clearance, viral control, and chronic infection [85,88–98]. Mapping these genes illu-
minates critical genetic and cellular pathways that constitute the host response to viral
infections and provides insights into creating preventative and therapeutic strategies and,
ultimately, into producing rationale vaccine candidates.

Looking at it from the host’s vantage point, there are three [99] important Zika tar-
gets and thus potential host modifiers of prenatal brain injury: the mother [16,100,101],
placenta [102], and fetus [103]. For example, identical twins have similar types of brain
injury, whereas, fraternal twins have different levels of brain injury [103,104]. This suggests
genetic susceptibility in the fetus can affect neurodevelopmental outcomes [53,104]. As an
example, human neurodevelopmental protein Musashi 1 affects Zika replication [105], and
differences in mTOR signaling correlate with phenotypic differences among discordant
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dizygotic twins [103]. In addition to genetic differences between infants, different human
populations appear to be affected differently as well [7,18,55]. This further suggests that
genetic differences between populations can also contribute to risk.

In addition to neurodevelopmental gene expression, differences in host immune
response, including T-cells, immunoglobulin, and mucin (TIM1) phosphatidylserine trans-
membrane receptors, have also been implicated in Zika-binding to a wider range of host
tissues compared to Dengue [25,106]. TIM1 is also present in the human placenta, which
might be a mechanism for placental infection, and could be a therapeutic target to prevent
fetal infection [25,106]

6.4. Differences in Head Circumference after Prenatal Zika Infection Offers a Unique Opportunity
to Study a Variable Clinical and Quantitative Phenotype with Impact on Human Development

Of the phenotypes associated with Zika virus, microcephaly and microencephaly
were among the first to be recognized [107–111]. According to the CDC, microcephaly
affects one in every 800 to 5000 infants and is defined as head circumference less than two
standard deviations from the mean, for age and sex. In contrast, microencephaly refers to
abnormalities in the brain tissue itself, defined as a brain weight two standard deviations
below the mean. Microencephaly is an important medical problem to consider because it is
associated with intractable epilepsy, cerebral palsy, global developmental delay, intellectual
disability, and ophthalmologic disorders [112]. Studies on microencephaly are harder to
perform because they often require neuroimaging, whereas microcephaly is evaluated
routinely by measuring head circumference. Microcephaly and microencephaly often, but
do not always, correlate directly.

Like many human conditions, microcephaly is genetically complex, which means both
genetic and environmental factors contribute to risk [108]. Only 12 genetic loci are known
in congenital microcephaly [113], but many more genetic syndromes or forms of brain
injury can include microcephaly as a phenotypic component [114]. In addition to congenital
presentations, microcephaly can also result from poor head growth over time (postnatal
onset) [108,112]. The drivers of microencephaly include disorders in neurogenesis, neuronal
cell death, or defects in neuronal maturation [108]. In addition to genetic causes, multiple
environmental factors can result in microencephaly from brain injury (acquired), including
malnutrition and other infections [10,108,115].

Interestingly, Zika is unique among infectious etiologies because it can lead to both
congenital and postnatal onset microencephaly [116–119]. As a quantitative human trait,
differences in head circumference can predict developmental attainment after Zika virus
infection [12]. Therefore, the Zika pandemic offers a unique opportunity to study how
environmental infectious pathogens, maternal-placental-fetal neuroimmune activation,
and genetic modifiers affect postnatal human developmental attainment.

7. Public Health, Community, and Environmental Factors
7.1. Public Health and Medical Considerations

To date, as with other prenatal viral infections, it is difficult to diagnose prenatal
Zika infection because the symptoms are nonspecific, if they occur [28,118]. Furthermore,
there are no approved therapies to treat prenatal Zika virus infection or to prevent its
associated developmental disabilities when (or if) an infection is detected [120,121]. Efforts
are ongoing to identify and test vaccine candidates and therapeutic modalities [122]. When
an infant is affected, a systematic and integrated approach is needed to assess the total
impact relative to the gestational age at exposure so that parents and physicians can
anticipate care for children with brain injury [16].

7.2. Impacts on Transmission

Investigations into the 2007 outbreak on the Yap Islands found immature forms of
Ae. aegypti, Ae. hensilli, Ae. lameliferus, Ae. maehleri, and Ae. vexans in water-holding con-
tainers such as tires, tarp, water barrels, water tanks, and animal pans with the highest pro-
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portion in tires [72,123]. In the case of Brazil, standing water, improper disposal of garbage,
and densely populated areas constitute potent breeding grounds for Ae. Aegypti [56,124].
A similar situation was seen with Dengue in Thailand, which likely contributed to the
number of people affected and disease severity by impacting the overall viral load in the
host [56,125,126]. Cumulatively, there is an increased risk of transmission, especially in
urban populations where Aedes proliferation, and in turn viral load, is only mitigated
by human behavior [55,56]. Other environmental factors include temperature, relative
humidity, annual rainfall, and exposure to other teratogens.

7.3. Interventions to Combat Vector Density

It may be possible to reduce mosquito density by safely storing still water or disposing
of artificial water containers, thus reducing mosquito access to breeding grounds. Pyriprox-
yfen can be used to prevent mosquito maturation into the adult form and allows predators
to consume the larvae, overall decreasing the mosquito population [127]. Fumigation
techniques and insecticides are important to consider, but their impact on the environment
and pregnancy is unknown. Recent promising efforts have focused on using Wolbachia (a
bacteria that infects mosquitos and blocks their viral infection) to reduce the transmission
of mosquito-borne viruses [74].

7.4. Socioeconomic Factors as Drivers and Modifiers of Clinical Outcomes

Multiple studies have identified socioeconomic drivers for neurodevelopmental dis-
abilities. For instance, higher maternal education reduced the risk of microcephaly prior to
the pandemic in Brazil [128,129]. Further, lower household income and higher crowding
was a risk factor for microcephaly [56,129]. Co-occurring health risks, such as malnutrition,
increase the risk to the fetus [129]. Similar socioeconomic health modifiers should be
considered and modeled in more developmental diseases [128]. Local efforts, for example,
educating lower income households on Zika, can increase health-seeking behavior in so-
cially marginalized groups and may decrease disease burden in future pandemics [129,130].

7.5. Global Climate Change

Global climate change may also increase the incidence of prenatal viral infection [131].
Previous modeling of Aedes-borne pathogens, such as Dengue, suggests that climate change
increases the growth rate of Aedes, and in turn Zika virus, by lowering the outbreak
threshold [124,132]. Temperature differences may produce a larger population of Aedes
species, and increase exposure to potential virus-carrying vectors [132]. While considering
various socioeconomic scenarios, approximately 1.3 billion new people are predicted to shift
into geographic regions with favorable conditions for Zika and other viral infections [131].
Along with temperature changes, and the expected increase in vector density, there is a
higher risk for local transmission in Europe and North America [132]. Though modeling
is heavily dependent on multiple factors, these insights can be used to guide preliminary
responses in case of a future outbreak [132].

8. A Conclusion and Perspective toward Understanding Phenotypic Variability after
Prenatal Viral Infections

Causes of phenotypic variability after a prenatal viral infection are emerging but are
as yet unclear (Figure 1). Furthermore, their relative contributions (and their interaction) to
risk or protection in disease are unknown. Recent studies suggest that some of these factors
can include differences in the virus, vector (mosquito), host (which includes the mother,
placenta, and fetus), medical care (including early diagnosis and treatment), local commu-
nity, and environment. Each of these factors might interact with in additive, synergistic, or
antagonistic ways that affect the development of the central nervous system. Clinical and
epidemiologic data shows a phenotypic spectrum of neurodevelopmental disabilities after
prenatal viral infection. In fact, while some individuals are either unaffected or affected,
the likely majority of individuals may be affected but require deep clinical (or subclinical)
phenotyping over time to uncover the full impact based on recent studies [12,13]. Helpful
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phenotyping strategies can include neuroimaging, morphometrics, and long-term neu-
rodevelopmental evaluations. These types of evaluations are often limited in low- and
middle-income countries, which likely contributes to a systemic ascertainment bias for the
number of affected individuals.

In turn, each discrete clinical problem associated with prenatal infection (microen-
cephaly, developmental delay, autism, intellectual disability) than have a phenotypic
spectrum of their own, which is either semi-quantitative or continuous. For example,
an affected infant can have autism that is mild, moderate, or severe (semi-quantitative).
Further still, each of these phenotypes may occur in isolation or in tandem or as part of a
spectrum of disorders that result from prenatal brain injury.

Identifying these factors, and modeling their relative contributions, is critically im-
portant in understanding viral neurobiology in the parental brain and preventing neu-
rodevelopmental disabilities. With this model in mind, it might be possible to identify
pharmacologic therapies or risk mitigation strategies for pregnant women and their future
infants. Such work could help us fully realize the long-term goal of prenatal precision
medicine toward the prevention or treatment of neurodevelopmental disabilities (Figure 2),
for Zika and beyond.
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