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Abstract

Background: Lithium is an effective treatment for Bipolar Disorder (BD) and significantly reduces suicide risk,
though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our
understanding of this effectiveness by posing hypotheses based on new experimental data as well as published
data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially
hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts
signal transduction pathways leading to differential expression of genes important in the etiology of BD mania.

Results: Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with
lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and
develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified
cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for
BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on
bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with

BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal
transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related
pharmacogenomic, psychiatric, and chemical dependence phenotypes.

Conclusions: We offer a network model of gene-by-environment interaction associated with lithium'’s effectiveness
in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified
drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel
hypotheses for validation in future work, we prioritized SNPs near genes in the network based on functional
annotation. We also developed a “concept signature” for the genes in the network and identified additional
candidate genes that may influence the system because they are significantly associated with the signature.

Background

Bipolar Disorder (BD) is characterized by severe mood
swings, from deep depression to mania, and shows
familial transmission patterns consistent with multiple
genetic influences on susceptibility [1]. It poses a signifi-
cant cost to affected individuals, including ~15% rate of
suicide, and to society as a whole, affecting 1% to 3% of
the population. Lithium is effective in preventing mania
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in many BD patients, although the molecular basis of
lithium’s action is not well understood and not all BD
patients respond to lithium treatment [2,3]. Since
lithium treatment exerts an environmental influence on
cells, and differential gene expression is one important
mechanism of cellular response to environmental influ-
ences, we hypothesized that lithium activates signal
transduction pathways leading to differential expression
of genes related to BD mania [3-5].

Microarray analysis provides an unbiased approach to
identifying genes that are differentially expressed in cells
with treatment, relative to untreated cells [6]. BD is
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thought to be a brain disorder, however, accessing the
most appropriate tissue (live human brain) for expres-
sion studies is unlikely, so a model system is necessary.
Some researchers have used brain tissue from animal
models [7,8], although expression patterns may be dif-
ferent in animals than in humans. Alternately, studies
have been conducted with postmortem human brain tis-
sue [8,9], although expression in postmortem tissue may
differ from expression in living tissue. As a third option,
researchers use peripheral blood cells from humans to
extrapolate genetic variants associated with brain disease
[10-12]. Since expression in brain may be different from
expression in peripheral blood cells, this third approach
necessitates a follow-up analysis to maximize the likeli-
hood that differential expression seen in peripheral cells
is consistent with differential expression in brain. In
spite of this extra step in the analysis, we chose periph-
eral blood cells because they are readily available from
live human participants. Equally, while these cells are
available, each sample represents a finite resource, so
transformation to form Lymphoblast Cell Lines (LCLs)
produces a resource that can be used in follow-on stu-
dies. EBV-transformed lines exhibit chromosomal stabi-
lity [13] while providing ease of handling and availability
for repeated DNA preparations for follow-on studies
[13]. Further, they are consistent with samples derived
from repositories such as the Coriell Institute [14] or
the Rutgers University Cell and DNA Repository [15],
so comparisons can be made based on samples from a
range of phenotypes. Notably, transformation could
influence gene expression. However, the virus is incor-
porated randomly into the genome, so this influence
would not be likely to produce consistent changes of
expression of any particular genes. As such, while
imperfect, we believe that LCLs represent the most
appropriate model for this work.

In this work (Figure 1), based on our initial hypothesis
of lithium activating signal transduction pathways
important in BD etiology, we used microarray analysis
to look for differential expression in untreated LCLs,
relative to the same LCLs treated with a therapeutic
dose of lithium. We confirmed that these candidate
genes are expressed in brain and confirmed differential
expression with rt-QPCR. We then looked for interac-
tions among these candidate genes and used a systems
biology approach to reveal a genetic network consistent
with the hypothesized response to lithium treatment.
This lithium response network is consistent with the
neurotransmitter theory of BD, models responders and
non-responders, and shows statistically significant over-
representation of genes annotated for signal transduc-
tion. Interestingly, we also find a relationship with
comorbid cocaine abuse, consistent with high rates of
substance abuse in BD patients [16]. Based on this
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network, we nominate: a) known therapeutic targets for
drug testing, b) SNPs for validation testing, and c) addi-
tional candidate genes that share the “concept signature”
of the network genes.

Methods

Genes Differentially Expressed with Lithium Treatment
We used 10 cell lines derived from BD patients who
provided informed consent for their samples to be used
in genetic studies. The protocol was approved by the
University of Michigan’s, IRBMED, Prechter Bipolar
Genetics Repository, HUM00010454. All ten cell lines
were derived from adult patients, ages 27 to 60, who
were diagnosed as BD1 based on DSM III criteria. Of
the ten, 5 were male and 5 female, 6 were responsive to
lithium (ranging from 10 to 120 months of treatment)
and 4 were naive to lithium treatment. No phenotypic
information on cocaine use was collected on these
patients.

Whole blood was drawn from each patient and white
blood cells were isolated. Samples were transformed
with EBV [13] and frozen for storage. Cell lines were
thawed and cultured under identical conditions:
RPMI-1640 media supplemented with 12% FBS, 2 mM
L-glutamine, and 1% ampicillin/streptomycin, in an
incubator set at 37°C with 5% constant CO,. For com-
parison, each line was divided and the treatment sam-
ples received 1 mM LiCl in the media, over a period of
8 days. We isolated total RNA from the stocked cell pel-
lets for each cell line, using TRizol reagent according to
the supplier’s protocol (Invitrogen, Carlsbad, CA). We
treated RNA samples with the RNase-free DNase kit
(Cat. no. 79254, Qiagen), and further cleaned samples
with the RNeasy MinElute Cleanup kit (Qiagen), accord-
ing to the manufacturer’s handbook. Total RNA quality
was assessed by loading 1 pg of RNA on 1% agarose gel,
to check for potential visible DNA contamination via gel
electrophoresis, and by checking for Ayeo/Azg0 ratio in
the 1.8-2.0 range, via the Agilent® 2100 Bioanalyzer.

For cRNA synthesis, we started with 250 ng of total
RNA from each sample and synthesized cRNA via the
INlumina® TotalPrep™ RNA Amplification Kit, following
protocols provided by the supplier, then determined
cRNA quantities via the ND-1000 spectrophotometer.
We performed BeadChip microarray hybridization
according to the protocol provided by Illumina, using 20
Sentrix HumanRef-8 v2 BeadChip microarrays (Illumina,
CA), 10 samples treated and 10 paired controls, loading
750 ng of cRNA onto each BeadChip. We used the
BeadArray Reader 5000X (Illumina) to scan post-
hybridization images, and BeadStudio software version 3
(Illumina) to process the scanned raw image data. After
background subtraction and quantile normalization, we
exported text files of the intensities of each probe.
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Hypothesis: Lithium treatment activates
sighal transduction pathways important in
BD etiology
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Hypothesis testing: Lithium treated LCLs versus controls
-12 genes differentially expressed
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L -PDG-ACE identifies “cocaine” influence
- NESARC confirms comorbidity, OR ~ 5.6
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Hypothesis: Network model via Systems Biology
- GeneGo network: Genes, lithium, cocaine

L Hypothesis testing: GeneGo, ConceptGen, and GAD
-Network significantly associated with signal transduction,
psychiatric, and chemical dependence phenotypes

Novel hypotheses: Drug targets, SNP association
(GIN), and additional candidates (ConSig)

development of novel hypotheses for future analyses.

Figure 1 Analysis Flow. Analysis proceeds from candidate gene selection, based on differential expression with lithium treatment, to
assessment of interactions within the set of differentially expressed genes, to network hypothesis generation, to hypothesis testing, and

We used the IBMT (Intensity-Based Moderated T-sta-
tistic) [17] method to assess differential gene expression.
This method is an extension of the eBayes function in
the limma R package [18], using an empirical Bayes test
that models the dependence of variance on absolute
expression levels, estimated based on local regression.
The posterior variance is a weighted average of the sam-
ple variance and an intensity level-specific background
variance level, with the weights determined by the
empirical Bayes model. IBMT has been shown to per-
form favorably in experiments with small sample size.
All parameters used by IBMT are internally estimated,
based on the expression data, so the only user input to
the algorithm is the relevant expression data. We
guarded against uncontrolled false positive rates com-
mon in high-throughput experimental data [19] by
selecting only genes that showed both statistically signif-
icant (Bonferroni corrected p-value < 0.05) and biologi-
cally relevant (fold change = +/-20%) differential
expression. One of these transcripts is a hypothetical
gene (FLJ39653) and one is a model (LOC400986), so
we removed them from further consideration. We
assessed brain expression for each candidate gene via
Unigene’s EST Profile database [20], then returned to
the LCLs and used rt-QPCR to confirm differential
expression in 6 genes randomly selected from the set.
Briefly, we used reverse-transcription reactions to
convert total RNA to first-strand ¢cDNA with the

SuperScript Preamplification System according to its
manual (Cat No. 18089-011, Invitrogen). Synthesized
first-strand cDNA was diluted 25-fold and used to tem-
plate TaqgMan assays from Applied Biosystems, Inc
(ABI, CA). We carried out the TagMan assays in tripli-
cate, according to ABI's recommendations, using an
SDS7900 real-time quantitative PCR thermocycler (ABI,
CA) and used the 2722€* method to calculate fold
change, with normalization to the Ct values of the inter-
nal reference gene TBP. We performed two-tailed,
paired, t-tests and tested for differential expression con-
sistent with expression changes seen in the microarray
study.

Candidate Gene Analysis

In complex diseases, multiple genetic influences
converge on a single phenotype, consistent with some
interaction among the genes involved. We first used
PDG-ACE (Prioritizing Disease Genes by Analysis of
Common Elements) [21,22] to look for statistically sig-
nificant gene-gene interactions among the differentially
expressed candidate genes. Briefly, we used PDG-ACE’s
Medical Subject Heading (MeSH)- derived controlled
vocabulary of 2,531 keywords, at least 10° iterations in
significance testing, repeated each test to confirm a
satisfactory survey of the genome, and only accepted
keywords over-represented at a Bonferroni corrected
p-value < 0.05. After identifying a significant interaction
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between FOS and NR4A2 with respect to the keyword
“cocaine”, we used NESARC (the National Epidemiologi-
cal Survey of Alcohol and Related Conditions) [23], a
population based survey of 43,093 subjects, to assess
rates of comorbid BD and cocaine abuse. We used
GRAIL (Gene Relationships Across Implicated Loci)
[24] to assess the group of candidate genes as a whole,
and identify statistically over-represented keywords asso-
ciated with the set of candidate genes. To assess the
potential roles of each of the differentially expressed
candidate genes, we used the MiSearch [25] adaptive
publications search tool, querying specifically for asso-
ciation of each of the candidates with bipolar disorder,
lithium treatment, and cocaine abuse.

Network Hypothesis Generation

While the differentially expressed genes may individually
or collectively influence lithium’s therapeutic action, they
also interact with genes that are not differentially
expressed with lithium treatment. To understand how
the differentially expressed candidates interact with this
larger set of genes, we used a systems biology approach
to build a network using GeneGo’s MetaCore [26] data-
base of gene-gene and gene-small molecule interactions
(GeneGo Inc., St. Joseph, MI). Assuming that the genes
most likely to influence lithium response are those most
closely interacting with the differentially expressed genes,
we set parameters for the shortest path algorithm and
accepted only interactions that were manually curated,
including both functional and binding interactions. To
take advantage of known metabolic and signaling path-
ways data we included canonical pathways information,
then built the smallest network that includes all of the
differentially expressed genes. To assess the most likely
influences of environmental lithium, we added lithium to
the network, along with the nodes (genes) required to
include lithium in the network. After identifying cocaine
comorbidity as a significant factor in the network, we
added environmental cocaine, along with the nodes
required to include cocaine in the network.

Network Hypothesis Testing

Based on our initial hypothesis, we tested this network
for over-representation of genes associated with signal
transduction. GeneGo automatically provides an internal
test for association of a given network with a range of
annotations, based on manually curated data that is pro-
prietary to GeneGo. In addition, ConceptGen [27] is a
recently developed open access resource that allows the
user to upload a set of genes, then look for over-repre-
sentation of genes associated with a range of “concepts”.
Casting a broad net, we searched for MeSH concepts
that may be significantly associated with our network.
Finally, we used the Genetic Association Database
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(GAD) [28] via the DAVID interface [29] to test
whether the network was over-represented for genes
associated with related disease phenotypes. We searched
for “GENETIC_ASSOCIATION_DB_DISEASE_CLASS”
and accepted phenotypes over-represented at the FDR <
5% level. Since we added lithium and cocaine, plus the
nodes required to connect them to the network, and in
consideration of the possibility that these additional
nodes would bias the analysis towards lithium and/or
cocaine related phenotypes, we did a second round of
GAD hypothesis testing, excluding these nodes.

Additional Hypotheses for Follow-up Validation and
Testing

Given the initial set of differentially expressed genes, as
well as the larger network based on interaction with
these candidate genes, we sought to generate additional
hypotheses for follow-up work. We first prioritized Sin-
gle Nucleotide Polymorphisms (SNPs) in and near the
genes in the network using the GIN [30] approach, to
systematically annotate the appropriate SNPs with func-
tional data and allow future researchers to prioritize
them for follow-up. GeneGo provides annotation of
genes that are either therapeutic or experimental targets
for known drugs, so we used this annotation to priori-
tize drugs that target genes in the network, based on
their known functions. Finally, we used a novel resource
called ConSig (Concept Signature) to hypothesize addi-
tional candidate genes, based on the characteristics of
the network genes [31]. ConSig creates a “signature” for
a set of genes, based on annotation of concepts asso-
ciated with the individual genes, then searches the gen-
ome for additional genes that are significantly associated
with the signature. Since these genes have signatures
similar to the set of genes in the network, they represent
novel hypotheses on association with the phenotype.

Results

Differentially expressed genes

RNA preprocessing produced high quality total RNA,
with an A,go/Asgp ratio in the range of 1.8-2.0 as mea-
sured by an Agilent® 2100 Bioanalyzer, while maximally
maintaining the integrity of the RNA. A total of 22,177
transcripts were detected on the Sentrix HumanRef-8 v2
BeadChip. Table 1 shows the 12 transcripts showing dif-
ferential expression meeting a Bonferroni corrected
p-value < 0.05 and fold change = +/-20% (excluding
hypothetical gene FLJ39653 and model gene
LOC400986). The Unigene database shows that all of
these genes are expressed in the human brain, though
FOS and NR4A2 are expressed at significantly higher
levels than the rest. As seen in Table 1, all 6 of the rt-
QPCR results show the same direction and approximate
magnitude of effect as seen in the microarray study,
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Table 1 Genes differentially expressed with lithium treatment
Microarray Unigene rt-QPCR
EntrezID Gene Fold Change Corrected P-value Brain exp per 1 M transcripts Fold Change P-value
1316 KLF6 1.24 3.77E-02 70
1396 CRIP1 1.29 1.42E-05 3 1.58 231802
1843 DUSP1 1.57 1.17E-02 53
2353 FOS 1.88 4.87E-09 461 2.02 1.63E-05
2354 FOSB 153 3.32E-03 32
4921 DDR2 -1.25 5.02E-04 21 -1.15 4.61E-01
4929 NR4A2 1.36 4.22E-03 134 142 3.07E-02
5997 RGS2 123 2.57E-02 25
8614 sTC2 -1.24 141E-03 22 -1.50 4.22E-03
28984 RGC32 1.55 5.19E-06 58 1.58 240E-03
29923 HIG2 -1.35 4.20E-04 33
118429 ANTXR2 127 1.05E-03 25

12 genes were significantly differentially expressed (Bonferroni corrected p-value < 0.05 and fold change > +/- 20%) in the microarray experiment. All of these
genes are expressed in brain tissue (UniGene), and rt-QPCR results are consistent with the microarray results in both direction and approximate magnitude.

while 5 of the 6 show p-value < 0.05. The rt-QPCR data
on DDR2 is somewhat noisy with an insignificant
p-value, however it was kept in the set of differentially
expressed genes because it is suggested that IBMT is
superior to a t-test in managing variance in small sam-
ples [17]. Under the null hypothesis of no differential
expression, the probability of 6 out of 6 tests matching
for direction, and 5 of 6 matching for significance
(p-value < 0.05) is ~2.8 E-8.

Commonality testing

PDG-ACE identified a significant interaction between
FOS and FOSB, both members of the FB] murine osteo-
sarcoma viral oncogene family, based on the keyword
“forebrain”. In addition, FOS and NR4A2 show signifi-
cant interaction based on the keyword “cocaine”. Prob-
ing this interaction between FOS and NR4A2, NESARC
shows an Odds Ratio of 5.6 for cocaine abuse among
patients with mania in bipolar disorder, relative to the
general population. For the set of 12 differentially
expressed genes, GRAIL identified common keywords
“induced, complement, phosphatase, induction, activa-
tion, response, neurons, expression, dopaminergic,
mapk, transcription, kinase, cycle, mitogen, after, mid-
brain, rats, dopamine, mice, and activated”. MiSearch
(Table 2) revealed that four of our differentially
expressed genes were previously associated with lithium
in the literature (FOS, FOSB, NR4A2, RGS2) and six
were previously associated with cocaine (DUSPI1, FOS,
FOSB, HIG2, NR4A2, and RGS2).

Network hypothesis generation
We started building the network looking for direct
interactions among the differentially expressed genes,

but the resulting network did not include all of the
genes. We expanded the network to include one node
between the differentially expressed genes, and the
resulting network connects the 12 genes. We then
added lithium and cocaine, as well as the nodes required
to link them to the network. The resulting network
includes the 12 genes differentially expressed with
lithium treatment, the genes most closely interacting
with them, and the nodes required to include lithium
and cocaine (Figure 2). This network has been organized
to display major hubs including ¢-FOS (FOS), MKP-1,
NR4A2 (NURRI), FOSB, and RGS2, as well as the multi-
ple positive and negative feedback loops in the network.
The 12 differentially expressed genes have colored
circles surrounding them. This network represents our
secondary hypothesis on the mechanism through which
the environmental influences of lithium treatment
(upper left corner) and cocaine use (upper right corner)
influence BD, lithium response, and/or comorbid
cocaine abuse. Additional details of this network are
included in Additional file 1 - GeneGo network details.

Network hypothesis testing

Based on internal data, GeneGo shows annotation for
“signal transduction” as being significantly over-repre-
sented among the network genes, relative to all genes,
with a p-value of 3.5E-29 (Additional file 1 - GeneGo
network details). Based on MeSH annotation, Concept-
Gen analysis also shows signal transduction to be the
MeSH term most significantly over-represented, with a
False Discovery Rate of ~4 E-55. Both of these results
are consistent with our original hypothesis. Testing this
network for related hypotheses via the DAVID interface
for the Genetic Association Database, we found that the
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Table 2 MiSearch queries

MiSearch #
PubMedIDs
Returned
Query Lithium Cocaine
KLF6 (" Kruppel like factor” OR GBF OR ZF9 OR BCD1 OR CBA1 OR CPBP OR PAC1 OR ST12 OR COPEB 0 0
OR DKFZp686N0199 OR KLF6) AND keyword
CRIP1 (CRHP OR CRIP OR CRP1 OR CRIP1 OR “cysteine rich protein”) AND keyword 0
DUSP1  ('dual specificity phosphatase” OR HVH1 OR MKP1 OR CL100 OR MKP-1 OR PTPN10 OR DUSP1) AND keyword 0 1
FOS ("FBJ murine osteosarcoma” OR AP-1 OR C-FOS OR FOS) AND keyword 143 401
FOSB ("FBJ murine osteosarcoma” OR AP-1 OR GOS3 OR GOSB OR MGC42291 OR DKFZp686C0818 OR FOSB) AND keyword 51 72
DDR2 (TKT OR MIG20a OR NTRKR3 OR TYRO10 OR DDR2 OR “discoidin domain receptor”) AND keyword 0
NR4A2  ('nuclear receptor subfamily 4” OR RNR1 OR HZF-3 OR NURRT OR TINUR OR NR4A2) AND keyword 2 4
RGS2 ("regulator of G-protein signaling” OR G0S8 OR RGS2) AND keyword 1 1
STC2 (stanniocalcin OR STC-2 OR STCRP OR STC2) AND keyword 0 0
RGC32  ('response gene to complement” OR RGC32 OR RGC-32 OR KIAA0564 OR MGC87338 0 0
OR bA157L14.2 OR C130rf15) AND keyword
HIG2 ("hypoxia inducible protein” OR HIG2 OR HIG-2 OR FLJ21076 OR MGC138388 OR C7orf68) AND keyword 0 1
ANTXR2 (ISH OR JHF OR CMG2 ORCMG-2 OR ANTXR2 OR "“anthrax toxin receptor”) AND keyword 0 0

Using the MiSearch adaptive publications search, each of the differentially expressed genes was queried for known association with lithium response and
cocaine. Counts refer to the number of publications returned for each query.

network is over represented for pharmacogenomic, psy- phenotypes that are not normally considered psychiatric
chiatric, and chemical dependency phenotypes (Table 3), or substance use disorders (ageing, cancer, etc.).

at the FDR < 5.0% significance level. For the network

that excludes lithium and cocaine, pharmacogenomic  Hypotheses for follow-up analysis and testing

and psychiatric phenotypes remain significant, though  Using the GIN algorithm, we nominate ~5,000 SNPs for
the chemical dependency phenotype is not significant.  validation testing, and prioritize them based on func-
Notably, the network is also associated with disease tional annotation (Additional file 2 - GIN details).
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Figure 2 Network Hypothesis. The network developed models the complex gene-by-environment interactions involved in both lithium
etiology and comorbid cocaine abuse associated with BD. Consistent with our initial hypothesis, the network is significantly over-represented for
genes associated with signal transduction. In addition, the network models related pharmacogenomic, psychiatric, and chemical dependence
phenotypes.
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Table 3 GAD disease phenotype testing

GAD Disease P- Genes (Entrez Gene ID) Fold FDR

Phenotype Value Enrichment

AGING 2.66E- 3569, 3558, 7040, 7422, 7157, 3586, 3458, 3576, 5291, 1277, 7124, 367, 6464, 154, 492 0.002%
06

IMMUNE 848E- 3569, 2784, 3265, 6548, 1392, 6774, 3588, 2796, 3570, 2099, 2778, 1843, 6352, 3561, 1956, 1.87 0.006%
06 367, 3558, 7040, 3572, 7422, 3586, 7157, 3577, 1385, 1906, 3579, 115, 3932, 3560, 3458, 3576,

2782, 1051, 2908, 1277, 7124, 3559, 1128, 116, 154,

CANCER 3.28E- 3569, 1499, 5997, 2784, 3265, 2796, 1869, 2099, 2778, 6352, 5781, 7032, 5291, 1956, 2932, 1.83 0.025%

05 367, 6464, 4609, 5290, 3558, 7040, 7422, 1316, 3586, 7157, 5970, 3577, 3579, 1906, 3560,
3458, 3576, 4193, 4088, 2908, 1277, 7124, 154,

INFECTION 9.03E- 3569, 3558, 7422, 7040, 3586, 7157, 3577, 3579, 3560, 3716, 6772, 3458, 6776, 3576, 2099, 246 0.068%
05 6352, 5781, 4088, 1956, 7124, 3559, 154,

PHARMACOGENOMIC* 3.08E- 5290, 3569, 7422, 7040, 3586, 7157, 5997, 2784, 1385, 409, 3265, 6774, 3458, 3576, 4193, 226 0.230%
04 2099, 2908, 1956, 1812, 7124, 2932, 154,

PSYCH* 1.64E- 3569, 5997, 2784, 887, 3265, 1392, 2099, 2778, 1812, 2932, 367, 6571, 3558, 7422, 3586, 7157, 1.79 1.226%
03 409, 1385, 115, 3560, 4929, 5914, 2908, 7124, 1128, 154, 116,

CHEMDEPENDENCY*  3.08E- 3576, 2099, 3586, 2908, 1277, 7124, 1812, 2932, 887, 409, 1128, 6571, 2.76 2.284%
03

METABOLIC 3.70E- 3569, 860, 5997, 2784, 887, 1392, 2796, 3570, 6654, 2099, 2778, 6352, 5291, 1956, 367, 2932, 154 2.739%

03 6464, 3572, 7040, 7422, 2798, 1316, 3586, 7157, 1906, 3458, 2353, 3576, 4088, 2908, 1277,

7124, 154, 116,

In addition to GeneGo and ConceptGen hypothesis testing, the network model was tested for related disease phenotypes via the Genetic Association Database
(GAD). The network is consistent with pharmacogenomic, psychiatric, and chemical dependency phenotypes, as well as phenotypes that are traditionally

considered medical.

ConSig nominates additional candidate genes based on
the signature of the network genes (Additional file 3 -
Candidate genes nominated by Concept Signature). As
expected, a consistent theme among concepts significant
in this signature is signal transduction, consistent with
the original hypothesis. Finally, we nominate drugs for
follow-up testing because they are immediately available
and target genes in the network (Additional file 1 -
GeneGo Network details).

Discussion

Based on our initial hypothesis that lithium treatment
poses an environmental influence on cells through acti-
vation of signal transduction pathways, we investigated
differential gene expression in response to lithium treat-
ment. Microarray analysis revealed 12 genes that were
significantly differentially expressed in LCLs with
lithium treatment. The resulting list of candidate genes
may provide insight to the etiology of lithium’s effective-
ness in BD. Seeking to put these genes into context, we
first looked for interactions (commonality) among them
via PDG-ACE and GRAIL analyses. PDG-ACE identified
significant commonality between FOS and FOSB, serving
as a positive control consistent with their roles as mem-
bers of a single gene family. Notably, the keyword “fore-
brain”, common across the FOS/FOSB pair, is also
consistent with impulsivity seen in BD patients where
variations in neurotransmitter signaling within forebrain
regions may influence impulsivity associated with mania
[32,33]. In addition, PDG-ACE revealed a significant

interaction between FOS and NR4A2 based on the key-
word “cocaine”. Pursuing this result via the NESARC
survey, we found that the odds ratio for cocaine abuse
among “manic” BD patients is more than 5 times that of
the general population [23]. This is also consistent with
a number of studies that have documented association
between BD and cocaine abuse [34-42]. GRAIL results
are consistent with the psychiatric implications of the
candidate genes but do not suggest novel hypotheses.
Based on our MiSearch publications search, we find
that both FOS and FOSB are well established as candi-
date genes for both lithium response and cocaine abuse.
Relatively little research currently associates NR4A2 with
BD, lithium response, or cocaine abuse. However, Xing,
et al., showed a reduction of NR4A2 in the prefrontal
cortex of patients with BD [43] and Buervenich, et al,,
found that NR4A2 mutations caused a 30-40% reduction
of in-vitro transcriptional activity in one case of BD
[44]. In both cases, the data are consistent with lithium
having a therapeutic effect in BD, by normalizing defi-
cient NR4A2 levels. Contrary to this effect, chronic
lithium treatment was shown to decrease NR4A2
expression in rat brain [45], though this effect was loca-
lized to the CA1l hippocampal subregion. Much more
research has been published on potential effects of FOS
on BD susceptibility and/or lithium response. Rao, et al.,
[46] recently reported increased expression of FOS in
postmortem brain tissue from BD patients, relative to
controls. St. Andre, et al., reported induction of FOS in
multiple brain regions with LiCl treatment [47], along
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with Spencer and Houpt [48], Hammamura, et al., [49],
Swank [49], and Portillo [50]. These results are consis-
tent with the multiple genetic and environmental inter-
actions influencing lithium etiology in BD. However,
while lithium appears to influence FOS expression, the
multiple positive and negative feedback loops evident in
the network model likely make simple predictions
unreliable.

PDG-ACE points us in the direction of lithium’s influ-
ence on dopamine signaling via NR4A2 and FOS, consis-
tent with the catecholamine theory of BD etiology [51].
NR4A2 also regulates dopaminergic neuron development
[52,53]. Cocaine represses NR4A2 expression [54-57] as
well as DAT expression [57]. Lithium may increase
NR4A2 expression [45-58] and reduces mania, so we
speculate that lithium may function in BD by increasing
expression of DAT and other neurotransmitter related
genes though, as with FOS, it is likely that simple predic-
tions are unreliable. Interestingly, both lithium and
cocaine pose environmental influences on cells, consis-
tent with the hypothesized antagonism of these two sub-
stances [59-61], as well as the potential for using lithium
treatment in cocaine abuse [62-64]. Notably, the keyword
“forebrain” characterizing the interaction between FOS
and FOSB is also consistent with cocaine abuse. Zahm, et
al., showed that FOS expression in basal forebrain was
“recalibrated” with cocaine use [65].

Network hypothesis

The network developed provides a model of the multi-
ple interacting genetic and environmental influences
involved in lithium etiology, as well as the influence of
cocaine on this system. It is strongly consistent with our
initial hypothesis that signal transduction plays an
important role in lithium etiology, and also models
related pharmacogenomic, psychiatric, and chemical
dependence phenotypes. Variation in any of the genes in
this network could influence an individual’s response to
lithium treatment or susceptibility to substance abuse,
explaining the approximate 70% rate of lithium response
in BD patients, as well as high rates of comorbid sub-
stance use disorders. Since substance use poses an
environmental influence on cells, signal transduction is
implicated along with neurotransmitter signaling and
metabolism, consistent with our previous work in BD
comorbid with tobacco use disorder [66], and depres-
sion comorbid with alcohol use disorders [67]. In addi-
tion, as we observed in these previous studies, this
network is enriched for genes associated with pheno-
types that are not normally considered psychiatric disor-
ders (ageing, cancer, immune disorders, etc) (Table3).
This result challenges our traditional view of psychiatric
and substance use disorders as being distinct from med-
ical disorders.
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Clinical implications for BD

Our network model reveals multiple pathways for both
lithium and cocaine to influence the genetic network, as
well as both positive and negative feedback loops. This
is consistent with BD’s characterization as a complex
disease, where multiple genetic and environmental influ-
ences interact in predisposition to disease and in modu-
lating sensitivity to drug therapies. In addition,
individuals with certain constellations of genetic variants
in the network genes may be more likely to respond to
lithium treatment and/or be more vulnerable to comor-
bid cocaine abuse. Of the genes in the network, 28 are
known therapeutic drug targets (Additional file 1 - Gen-
eGo Network details).

Given the network of interactions, the genes asso-
ciated, and the drugs known to target these genes, the
potential exists for novel applications of known drugs in
BD and cocaine abuse treatment. We know that psycho-
sis may be present in mood episodes of bipolar patients,
including both mania and depression [68]. In addition,
there is evidence [69] linking the use of anti-psychotic
medications to treatment efficacy in bipolar depression
and bipolar mania. Lithium appears to have an interac-
tion with genes whose expression is also believed to be
altered by treatment with certain antipsychotic medica-
tions (i.e. perphenazine, thioridazine, asenapine, chlor-
promazine, and clozaril) [69]. Clozaril, known for its
potential side effect of neutropenia, is a medication pur-
ported to be effective in treatment resistant schizophre-
nia illness [70]. The onset of such neutropenia is
frequently managed successfully with the stoppage of
clozaril treatment and the initiation of lithium treat-
ment. This is consistent with lithium’s known effect on
white blood cell (WBC) elevation and subsequent neu-
trophilia, believed to be induced via lithium’s induction
of Granulocyte Macrophage-Colony Stimulating Factor
(GM-CSF) [71].

Sex hormone changes are widely believed to be asso-
ciated with mood changes, both pathological and
non-pathological. Indeed, the dysphoria often present in
relation to the female menstrual cycle is well known to
clinicians. In addition, pathological changes in the post-
partum period are often present and particularly insi-
dious in their severity and presentation. It would thus
be logical to believe that medications that can alter sex
hormone levels would influence mood. Indeed clomi-
phene and diethylstilbestrol treatment have both been
observed to be associated with potential side effects of
depression [72,73] and anxiety [73,74]. Abortifacients
such as mifepristone have been investigated for their
potential effect in the treatment of neurocognitive func-
tioning and mood stability in bipolar disorder [75]. Pre-
dnisone treatment is believed to be associated with the
side effects of development of both depression and
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manic psychosis [76]. Notably, both measured cortisol
levels and results of the dexamethasone suppression test
(DST) have been shown in bipolar subjects to differ
from healthy controls [77], but are somewhat consistent
across either depressive or manic episodes in a particu-
lar bipolar patient.

Among the other drugs that may be important in
the treatment of BD, scopolamine has received some
attention as an investigation treatment in the relief of
bipolar depressive episodes[78]. Treatment with TNF-
alpha (Tumor Necrosis Factor alpha) has the frequent
side effect of inducing depression and there have
been reports of mania [79]. As such, anti-TNF-alpha
medications would potentially reverse this side effect.
In addition, two of the genes that link cocaine to the
network, PKC-epsillon and PYK2, are therapeutic tar-
gets of KAI1455 and PF562271, respectively, and may
offer insight into the comorbidity of BD with cocaine
abuse.

Novel hypotheses

Based on the genes in our network, GIN analysis nomi-
nates ~5,000 SNPs for follow-up analysis, prioritized by
functional annotation (Additional file 2 - GIN details).
In addition, depending on the threshold set by the user,
ConSig identifies hundreds of candidate genes that are
significantly associated with the signature of the network
genes (Additional file 3 - Genes nominated by Concept
Signature). These genes represent novel candidates for
validation in follow-up studies.

Conclusions

In this work, we hypothesized that signal transduction is
significant in the etiology of lithium response in BD.
Consistent with this hypothesis, we identified 12 genes
that are differentially expressed with lithium treatment,
then explored their likely roles in BD. In the course of
this exploration, we identified a significant influence on
comorbid cocaine abuse in BD, consistent with the epi-
demiological evidence. Using a systems biology
approach to place the 12 differentially expressed genes
into context, we developed a novel network model of
the multiple interacting genetic and environmental
influences on BD, lithium response, and comorbid
cocaine abuse. Consistent with our hypothesis, this net-
work is significantly associated with signal transduction,
as well as pharmacogenomic, psychiatric, and chemical
dependence phenotypes. Of the genes in this network,
28 are therapeutic drug targets, making them immediate
candidates for follow-up drug testing. We also pose new
hypotheses in the form of SNPs prioritized by func-
tional annotation and novel candidate genes that are
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significantly associated with the concept signature of
our network candidates.

Additional material

Additional file 1: GeneGo network details.
GeneGo_Li_Resp_lithium_cocaine_network_statistics.xIs is a spreadsheet
detailing input parameters, output, drug targets, and hypothesis testing
of the network.

Additional file 2: GIN details. SNPs_Prioritized_via_GINxIs is a
spreadsheet that prioritizes SNPs in and near the network genes based
on functional annotation.

Additional file 3: Candidate genes nominated by Concept Signature.
ConSig_resultsxls is a spreadsheet detailing Concept Signature
prioritization for novel candidate genes, based on their similarity to
genes in the network.
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