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A B S T R A C T   

Population-based neuroimaging studies that feature complex sampling designs enable researchers to generalize 
their results more widely. However, several theoretical and analytical questions pose challenges to researchers 
interested in these data. The following is a resource for researchers interested in using population-based neu-
roimaging data. We provide an overview of sampling designs and describe the differences between traditional 
model-based analyses and survey-oriented design-based analyses. To elucidate key concepts, we leverage data 
from the Adolescent Brain Cognitive Development℠ Study (ABCD Study®), a population-based sample of 11,878 
9–10-year-olds in the United States. Analyses revealed modest sociodemographic discrepancies between the 
target population of 9–10-year-olds in the U.S. and both the recruited ABCD sample and the analytic sample with 
usable structural and functional imaging data. In evaluating the associations between socioeconomic resources (i. 
e., constructs that are tightly linked to recruitment biases) and several metrics of brain development, we show 
that model-based approaches over-estimated the associations of household income and under-estimated the 
associations of caregiver education with total cortical volume and surface area. Comparable results were found in 
models predicting neural function during two fMRI task paradigms. We conclude with recommendations for 
ABCD Study® users and users of population-based neuroimaging cohorts more broadly.   

1. Introduction 

Population neuroscience (Falk et al., 2013; Paus, 2010) arose out of a 
desire to increase statistical power in neuroimaging studies, capture the 
substantial inter-individual variability in environmental exposures and 
outcomes, and improve the generalizability of neuroimaging research. 
Recent neuroimaging studies containing hundreds to thousands of par-
ticipants (e.g., Human Connectome Project (Van Essen et al., 2013), UK 
Biobank (Miller et al., 2016), IMAGEN (Schumann et al., 2010) have 
been enormously successful in increasing statistical power. Moreover, 
these studies have become important resources for the scientific com-
munity via accessible data sharing (Nichols et al., 2017). Less clear is the 
degree to which these studies have been helpful in improving the rep-
resentation and generalizability of neuroimaging studies more broadly 
(Falk et al., 2013; Nielsen et al., 2017). 

One study at the intersection of these issues is the Adolescent Brain 
Cognitive Development℠ Study (ABCD Study®), which is both very 
large and adopted a complex probability sampling design intended to 

improve generalizability over typical convenience samples (Garavan 
et al., 2018). Through the combination of open access data, a large 
sample size, and probability sampling, the ABCD Study® is poised to 
support new scientific discoveries. However, several foundational and 
analytical questions pose challenges to researchers interested in using 
these data. The current paper aims to provide neuroscientists with a 
brief introduction to analytic tools and concepts vital to making popu-
lation inferences from complex probability samples – specifically, the 
components of complex sampling designs and choosing an analytic 
approach that matches researcher goals. We provide empirical examples 
using the ABCD Study® and end with recommendations for researchers 
interested in using population-based neuroimaging datasets. 

1.1. Background 

1.1.1. Sampling approaches 
When designing a sampling and recruitment plan, there are tradeoffs 

between representation and cost. Most neuroimaging studies adopt 
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convenience sampling methods, wherein participants are recruited in 
community settings (e.g., clinics, university subject pools, registry da-
tabases) through flyers, online advertisements, and word-of-mouth 
(Nielsen et al., 2017). Convenience sampling, and other forms of 
non-probability sampling, are the most cost-effective methods to recruit 
participants into research studies (Taherdoost, 2016). Consequently, 
this approach dominates many fields of study (e.g., medicine (Harris 
et al., 2005), epidemiology (Cheung et al., 2017), psychology (Nielsen 
et al., 2017), linguistics (Andringa and Godfroid, 2020). 

Unfortunately, non-probability sampling approaches can be prone to 
selection bias (Oswald et al., 2013; Taylor, 2004), sometimes severe, in 
the form of under-representation of large segments of the population to 
which researchers are trying to generalize (i.e., the “target population”, 
see Table 1) (Dotson and Duarte, 2020; Nielsen et al., 2017). This is not 
always the case: recruitment strategies that target the population of 
interest (e.g., hiring “cultural insiders”, extensive outreach activities, 
including participants in study design (Rowley and Camacho, 2015; 
Yancey et al., 2006) have been enormously successful in recruiting 
diverse samples to participate in neuroimaging studies (Brody et al., 
2017; Habibi et al., 2015; Hein et al., 2018). Yet even within samples 
that include participants from diverse sociodemographic backgrounds, 
selection biases remain. For example, in an analysis of the Pediatric 
Imaging, Neurocognition, and Genetics (PING) study, a non-probability 
sample of 1493 youth aged 3–20 years, LeWinn and colleagues adjusted 
the demographics of PING to match that of the U.S. population of youth 
aged 3–18 years (LeWinn et al., 2017). Compared to the target popu-
lation, PING was over-represented by Hispanic youth, youth from high 
income families (≥ $100,000 annually), and caregivers1 with college 
degrees or higher. These discrepancies in sociodemographic composi-
tion impacted research questions of interest: in the unweighted PING 
sample, age associations with cortical and subcortical volume and 
cortical surface area were largely quadratic, following U-shaped pat-
terns. In contrast, in the weighted sample, age effects were predomi-
nantly cubic, following S-shaped patterns. Thus, even when studies use 
convenience sampling to recruit a sample that contains sociodemo-
graphic diversity, unweighted analyses may still yield conclusions that 
are biased, leading to assumptions in the field about basic science 
questions (e.g., how the structure of the brain changes across develop-
ment). Although arguments for larger samples sizes abound in neuro-
imaging and genetics research (Marek et al., 2022), it is important to 
note that increasing statistical power through larger sample sizes will 
not necessarily eliminate sample selection biases (Bradley et al., 2021; 
Meng, 2018). 

Probability samples, by contrast, give every member of a specific 
target population (i.e., the population to which a study is trying to 
generalize) a non-zero chance of selection into the sample (Heeringa 
et al., 2017). For example, in a convenience sampling approach that 
recruits participants through flyers posted in medical offices, only in-
dividuals who see the flyers (e.g., those with access to the medical fa-
cility during the time that the flyers are posted) are given the 
opportunity to participate. In a probability sampling approach, re-
searchers create a sampling frame (i.e., a list) of all potential participants 
from a specific target population (Table 1). In this example, the sampling 
frame might be a list of all patients who attend specific medical clinics 
during a specific year. As a result, every individual in the sampling frame 
is given the opportunity to participate. From the sampling frame, re-
searchers randomly select a subset of individuals (i.e., a sample) and 
then attempt to recruit those individuals (and only those individuals) 
into the study. Of course, there will always be some degree of selection 
bias in the form of unobserved differences between the sampling frame 
and the target population (coverage error), the sample and the sampling 
frame (sampling error) and respondents and the selected sample 

Table 1 
Key Terms and Concepts.  

Target population. The most abstract conceptualization of the population to be 
studied. For example, all 10-year-olds living in the United States (US).  

Sampling frame. The set of people within the target population who have a non-zero 
chance of being selected into the study. For example, an administrative list of all 10- 
year-olds attending public, private, or charter schools in the US. A supplementary 
frame can be added to target under-covered populations (e.g., 10-year-olds who are 
home-schooled). Coverage error occurs when the sampling frame does not perfectly 
map to the target population (e.g., 10-year-olds who are not enrolled in school, or 
students who newly entered the US school system but are not yet registered in 
administrative records).  

Probability sample. A sample wherein every individual in the sampling frame has a 
non-zero probability of being selected into the study.  

Simple random sampling. A probability sampling approach that gives every 
individual an equal and independent probability of selection (e.g., randomly 
selecting names from a nationwide list of 10-year-olds).  

Complex sampling designs. A probability sampling approach that leverage 
procedures such as stratification and cluster sampling to increase target population 
representation and reduce data collection costs. For example, a two-stage area 
probability sample of 10-year-olds in the US might identify clusters as schools 
(randomly selecting schools), followed by clusters as classrooms (randomly 
selecting classrooms), and ultimately sample students within classrooms. As 
individuals in a complex sampling design are not independently selected (e.g., they 
are nested within clusters or strata), users must account for this nesting in variance 
estimation, and sample sizes must increase to have similar statistical power as in a 
simple random sample.  

Cluster Sampling. A feature of complex sampling designs wherein groups of units (e. 
g., students in schools) are sampled simultaneously. Clustering can function to (a) 
make data collection more efficient (i.e., researchers travel to schools rather than to 
individual households), and (b) enable the construction of a sampling frame (e.g., 
individual schools will maintain administrative list of students, but there may not be 
one nationwide administrative list of all 10-year-olds who attend public, private, or 
charter schools in the United States).  

Stratification. A feature of complex sampling designs wherein the sampling frame is 
partitioned into homogeneous subpopulations based on specific characteristics (e. 
g., socioeconomic resources, urbanicity), generally to increase target population 
representation – e.g., schools stratified by per pupil spending to ensure equal 
representation of students attending low, medium, and high-resourced schools.  

Sample. The set of individuals (e.g., 10-year-olds) from which measurements will be 
attempted. Sampling error may come in the form of sampling bias – wherein certain 
types of individuals from the sampling frame are given a reduced chance of selection 
and this error is systematic – or sampling variance – which is a function of 
stratification (decrease in variance), cluster sampling (increase in variance), and 
sample size (decrease in variance).  

Respondents. Individuals who are successfully measured in the sample. Nonresponse 
error occurs when inferences based only on respondent data differ from those based 
on the entire sample. Nonresponse bias reflects both the nonresponse rate and 
differences in sample means between respondents and nonrespondents.  

Analytic sample. The set of observations that contribute data to the analysis. In a 
neuroimaging study, for example, the analytic sample is often restricted to 
individuals with usable imaging data. A missing values analysis compares the 
analytic sample to the excluded sample on a variety of other sociodemographic and 
clinical features.  

Survey Weights. In the context of a complex sample design, survey weights adjust for 
unequal probabilities of selection (i.e., sample selection weight), sample 
nonresponse (i.e., nonresponse weight), and a post-survey adjustments (e.g., post- 
stratification weight). Post-survey adjustments are used to match the characteristics 
of the sample to a known population. Several methods exist, including post- 
stratification or calibration – which relies on propensity-based matching of sample 
membership to target population membership – and raking – which relies on 
iterative proportional fitting of each variable (e.g., household income) separately. 

(continued on next page) 

1 Throughout the manuscript, we use the term “caregiver” instead of “parent/ 
parental” as a more inclusive descriptor. 
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(non-response error) (Table 1). 
The key difference between selection bias in a probability sample 

versus a non-probability sample is that survey weights can effectively 
adjust for these biases (i.e., non-probability of selection, non-response 
adjustment, poststratification adjustment to the target population; see 
Table 1) and permit estimation of the variance of the sampling distri-
bution of survey estimates that would be generated from many hypo-
thetical samples following the exact sample design. That is, in a 
probability sample, the identification of a target population and a 
sampling frame can be used to assess who is missing and at what rate, 
allowing researchers to adjust estimates for sampling biases. The 
random selection of elements from the sampling frame based on known 
probabilities of selection (e.g., oversampling households in rural areas) 
allows for the estimation of sampling variance. In a convenience sample 
without an explicit target population or sampling frame, researchers 
may have no way of knowing how respondents are different than the 
target population, thus making it difficult or impossible to adjust for 
multiple forms of selection bias or estimate sampling variance (Kish, 
1965). In sum, in a probability sample, everyone in the sampling frame 
has a chance of being selected and we have a good idea of who is missing 
in various ways. In a convenience sample, we simply don’t know the 
target population or sampling frame, nor do we know who and why 
certain groups of people are missing in our sample. The latter case can 
directly impact our ability to generalize to a broader (and 
explicitly-defined) population. 

Clear downsides to probability sampling are cost and feasibility, is-
sues that are magnified by the expense of neuroimaging protocols. 
Depending on the population to which a researcher is trying to gener-
alize (e.g., 10-year-old children in the U.S. versus 10-year-old children 
attending one public school district in one urban U.S. city), the cost of 
collecting data from potentially anywhere in the U.S. – from Capitan, 
NM to Yakima, WA – let alone finding a participating MRI facility, would 
be prohibitive. Moreover, if complex sampling designs leverage cluster 
sampling and/or stratification (Table 1) to reduce the costs of recruit-
ment, the sample size must be larger to account for the non- 
independence among responding individuals due to the cluster sam-
pling. Lastly, if the target population is more heterogenous (e.g., the U.S. 

vs. one public school), this would also necessitate a larger sample size to 
ensure adequate statistical power to estimate reliable effects. 

Collectively, this means that designing a probability sample, partic-
ularly in neuroimaging research, may not be feasible for individual 
scientists. However, fueled by calls for open-access data (Nichols et al., 
2017) and statistically well-powered studies (Button et al., 2013), 
multi-site collaborative studies are becoming more common (e.g., 
Generation R; [White et al., 2013]; Human Connectome Project in 
Development; (Somerville et al., 2018); ABCD Study®; Garavan et al., 
2018). With encouragement from survey methodologists (e.g., Falk 
et al., 2013), some of these studies have implemented complex sampling 
designs or added neuroimaging to existing studies with complex sam-
pling designs (e.g., ABCD Study®; the Michigan Twins and Neuro-
genetics Study, (Tomlinson et al., 2020); the Study of Adolescent 
Neurodevelopment, (Hein et al., 2018). 

As these types of data become publicly accessible, it becomes more 
and more important that data users know how to leverage these studies 
to generate scientific conclusions. Thus, for non-survey methodologists, 
how can researchers take advantage of the sampling design to generalize 
findings to the broader target population (i.e., beyond the recruited 
sample)? 

1.1.2. Analytic approaches for complex sampling designs 
Approaches to making statistical inferences about populations based 

on samples selected from those populations may be model-based or 
design-based (Table 1). Most neurodevelopmental studies have used 
model-based approaches (Fisher, 1955) to make population inferences 
(e.g., linear mixed effects modeling, ordinary least squares regression, 
analysis of variance). Take, as an example, a researcher interested in 
examining the associations between socioeconomic resources (SER) and 
amygdala volume (AV), a region thought to support salience detection, 
emotional learning, and threat processing (Janak and Tye, 2015; 
LeDoux, 2000). In a model-based approach, the researcher adopts a 
statistical model (e.g., AVi = β0 + SERxi + εi), makes parametric 
distributional assumptions (e.g., the errors in the regression model 
denoted by εi are independently and identically distributed with mean 
0 and variance σ2), and accounts for sample clustering (e.g., students in 
the sample are clustered within schools) and selection biases (e.g., the 
analytic sample differs from the excluded sample on known variables, 
which are included as covariates). The model-based approach is flexible 
in that it can be applied to data from non-probability or probability 
sampling designs. 

However, like all statistical models, if any of these assumptions/ 
conditions are not met (e.g., distributional assumptions, model fit, 
identification of constructs that predict usable data), parameter esti-
mates may be biased (Sterba, 2009) and/or standard errors may be too 
small (Kish and Frankel, 1974), leading to incorrect conclusions about 
the association between SER and AV or the statistical significance of this 
association. By contrast, a design-based approach relies on the proba-
bility sampling design (and thus can only be implemented in probability 
samples) to make inferences from the recruited sample to the target 
population. Design-based analyses guard against the assumptions 
required in a model-based framework by leveraging survey weights to 
account for selection probabilities, non-response, and poststratification 
adjustments to estimate true population parameters. 

Design-based analyses also use information about the weights, 
stratification (if applicable), and cluster sampling (if applicable) to 
correctly estimate the variance of such parameter estimates (Heeringa 
et al., 2017). As a result, standard errors derived from design-based 
analyses are unbiased (or nearly unbiased) estimates of the variance of 
a parameter estimate given a complex probability sampling design 
(Heeringa et al., 2017). Similarly, applications of survey weights will 
yield population-generalizable parameter estimates that are unbiased – 
whether these parameter estimates are similar to those produced by 
model-based approaches depends on the information about the variables 

Table 1 (continued ) 

The simultaneous incorporation of all three weight components in a complex sample 
design highlights the distinction between post-stratification weights applied to non- 
probability samples and survey weights applied to probability samples. For 
example, as LeWinn and colleagues (2019) leveraged a non-probability sample, the 
survey weights only included post-survey adjustments to the target population – 
sample selection and non-response weights were not included in the overall survey 
weight because these features were unknown, as in all non-probability samples.  

Variance estimation. Complex sample designs (e.g., featuring clustering of students 
within schools) necessitate alternative methods for estimating the standard 
deviations of the sampling distributions of estimates based on many hypothetical 
samples using the same design (i.e., standard errors); otherwise estimates will appear 
more precise than they are in reality. Several methods have been developed to estimate 
the standard error of a point estimate, including Taylor Series Linearization, 
balanced repeated replication, and jackknife repeated replication.  

Design-based analyses. Statistical inferences from sample data are based on the 
distribution of all possible samples that could have been chosen under the specified 
probability sampling design. Design-based analyses are sometimes labeled 
“nonparametric” or “distribution free” because they rely only on the known 
probability that a given sample was chosen (e.g., in a simple random sampling 
design, every individual has an equal and independent probability of selection into 
the sample).  

Model-based analyses. Statistical inferences from sample data are based on a 
probability distribution for the variables of interest rather than the probability 
distribution for the sample selection. Model-based analyses rely on a correctly- 
specified model and the associated parametric distributional assumptions to 
produce unbiased parameters that generalize. Most neurodevelopmental studies 
implement model-based approaches to make population inferences.  
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of interest contained in the weights (i.e., are the variables of interest 
correlated with the weights – either through selection probabilities, 
non-response, or post-stratification to the target population). It is critical 
to note that in model-based frameworks that account for the nested 
structure of the data (i.e., as in the ABCD Study®, wherein individuals 
are nested within study sites), survey weights must be partitioned at 
each level of analysis (e.g., level-1 weights for participants, level-2 
weights for study site). If multi-level survey weights are not yet avail-
able (i.e., as in the case of ABCD Study®), users are suggested to include 
the variables used to construct the survey weights as covariates. 

Although design-based approaches were originally restricted to 
descriptive inference (e.g., estimating the proportion of the target pop-
ulation that meets criteria for a neurodevelopmental disorder), statisti-
cal advances have made design-based estimation of regression models 
possible (Binder, 1983; Kish and Frankel, 1974) (e.g., associations be-
tween household income and the diagnostic likelihood of a neuro-
developmental disorder). A benefit of these approaches is that even if 
the statistical model is mis-specified, estimated parameters will still be 
generalizable to the target population in a probability sampling design. 
Further, advances in survey statistics have allowed these more “ana-
lytic” design-based approaches to be applied to a wide variety of analytic 
frameworks (e.g., structural equation modeling, Bayesian analyses, 
general linear mixed models), though this is an active area of research 
(Heeringa et al., 2017). A variety of packages for implementing 
design-based analyses have been developed in many commonly-used 
statistical packages (i.e., R Statistical Software, STATA, Mplus, SAS, 
SPSS), making the design-based framework feasible for the data user 
more familiar with model-based approaches. 

1.1.3. Threats to generalizability in complex sampling designs 
When does inference from the sample to the target population break 

down in the context of probability sampling designs? At each stage in the 
design and recruitment process, multiple types of error threaten popu-
lation inference. Fig. 1 displays the lifecycle of a complex sampling 
design, using the ABCD Study® as an example. The ABCD Study® is a 
longitudinal population-based neuroimaging study of 11,878 eligible 
9–10-year-olds in the U.S. (Garavan et al., 2018). The target population 
is 9–10-year-old children living in the U.S., born between 2006 and 2008 
(Fig. 1). To identify children in the target population, a sampling frame 
was constructed – a list of public and private elementary schools in 
districts wherein at least 50% of the schools were located within the 
catchment area of one of 21 ABCD recruitment sites where the necessary 
neuroimaging equipment was present/chosen through grant applica-
tions. There is necessarily coverage error in the sampling frame – it does 
not include, for example, elementary schools outside of a catchment area 
(e.g., not near the participating academic medical centers) or 
home-school settings.2 

From the sampling frame, researchers selected a sample of schools to 
contact. Sampling error arises when, by chance, the selected sample is 
different in some way (e.g., on demographic characteristics) than the 
non-selected sample. Of schools selected by the ABCD Study® survey 
methods team, not all consented to participate, contributing to non- 
response error. Further, once a school agreed to participate in recruit-
ment by facilitating contact with all students, children had to be eligible, 
and their parents or guardians had to consent to participate in the study. 
Some of the exclusion criteria included MRI contraindications (e.g., 
cardiac pacemakers, metal implants), inability to speak or understand 
English, uncorrected vision, hearing or sensorimotor impairments, birth 

weight < 1200 g, and gestational age < 28 weeks. Thus, eligibility re-
strictions and differences in who consented to participate constitute 
additional sources of non-response error. 

Such biases in coverage error, sampling error, and non-response 
error can be accounted for by postsurvey adjustments (i.e., adjustment 
for non-probability of selection, non-response, and calibration to the 
target population through survey weights). However, in the context of a 
neuroimaging study wherein data loss due to poor data quality is com-
mon (e.g., due to movement, low behavioral performance, falling 
asleep), there may be substantial missing data in the sample of re-
spondents used in analyses. Critically, when design features such as 
survey weights are correlated with missing data, target population 
inference cannot be achieved without attention to missing data (e.g., 
multiple imputation, full-information maximum likelihood) (Groves 
et al., 2009; Kish and Frankel, 1974). Moreover, empirical analyses have 
shown that the influence of survey weights on point estimates and 
standard errors may be larger when the weights themselves are corre-
lated with the variables of interest (Heeringa et al., 2017; Spencer, 
2000). That is, when missing data is related to the outcome being 
studied, survey weights will have a bigger impact on conclusions. This 
issue is a particular challenge for developmental neuroscientists because 
data loss in neuroimaging (e.g., through movement) may be highly 
related to a construct of interest (e.g., ADHD symptoms) (Kong et al., 
2014; Satterthwaite et al., 2012). 

1.1.4. The salience of socioeconomic resources for generalizable 
neuroimaging research 

One goal of population neuroscience is to understand how environ-
mental inputs shape brain structure and function to support cognition, 
behavior, and health in large representative samples (Falk et al., 2013; 
Paus, 2010). Owing to decades of behavioral research highlighting the 
centrality of socioeconomic resources (SER) in shaping environmental 
opportunity, a rich literature in human neuroscience has sought to 
explore how SER sculpts structural and functional brain development 
(Farah, 2017). Studies have examined structure and function across the 
entire cortex and within specific brain regions (Johnson et al., 2016; 
Rakesh and Whittle, 2021) that underlie salience detection (Maren et al., 
2013), working memory (Jonides et al., 2008), and cognitive control 
(Fuster, 2001; Hampshire et al., 2010). Yet non-response constitutes a 
major threat to the generalizability of this research. Neuroimaging 
studies historically under-represent participants from low socioeco-
nomic backgrounds and from marginalized identities who are more 
likely to be subjected to adversity due to structural inequalities and 
previous experiences of mistreatment in research and medical settings 
(Dotson and Duarte, 2020; Falk et al., 2013). Thus, postsurvey adjust-
ments are likely to yield survey weights that are correlated with socio-
economic resources (i.e., lower-SER individuals will be assigned larger 
weights to maintain target population generalizability), and in analyses 
that examine the associations between SER and brain development, 
parameter estimates (i.e., point estimates and standard errors) may be 
highly sensitive to the decision of whether to adjust for survey weights 
or not (Heeringa et al., 2017; Spencer, 2000). 

2. Empirical demonstration 

We now provide an empirical demonstration using data from the 
ABCD Study®. The ABCD Study® is an important dataset within which 
to evaluate sampling biases and analytic options because it is a well- 
sampled, large, and a publicly-available resource likely to be utilized 
extensively over the coming decades. We had three primary research 
questions:  

● How does the target population of 9–10-year-olds in the U.S. differ 
from the ABCD Study® respondent sample? For this aim, we 
examined several sociodemographic variables (e.g., race-ethnicity, 
household income, caregiver education, child sex), many of which 

2 Although home-schooled children were not included in the original sam-
pling frame because of the school-based recruitment strategy, home-schooling 
was not a strict exclusion criterion. Home-schooled children were given the 
opportunity to participate through alternative recruitment strategies (e.g., 
media, outreach), which comprised less than 10% of the final ABCD Study® 
sample 
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were used to construct the ABCD Study® survey weights (see 
Methods). Based on previous reports of participant characteristics in 
neuroimaging and cognitive neuroscience studies (Dotson and 
Duarte, 2020; Rowley and Camacho, 2015), we hypothesized that 
children from low-SER households (i.e., household income below 
poverty line, caregivers with a high school degree) and 
racial-ethnically marginalized children would be under-represented 
in the ABCD Study® respondent sample compared to the target 
population. We note the issue of “population representation” in the 
ABCD Study® was first raised in a commentary by Compton et al. 
(2019). Here, we explore this question empirically.  

● How does the analytic sample in structural MRI (sMRI) and task- 
based functional MRI (fMRI) analyses differ from the ABCD 
Study® respondent sample? To evaluate this research question, we 
identified usable sMRI data and fMRI data from two tasks (the 
Emotional N-back [EN-back] and the Stop Signal Task [SST]) using 
inclusion recommendations from the ABCD Study® release 3.0 
documentation. We examined the EN-back and SST tasks given the 
wealth of previous research (Farah, 2017; Johnson et al., 2016; 
Rakesh and Whittle, 2021) highlighting associations between so-
cioeconomic resources (i.e., a primary construct of interest in our 
evaluation of sampling biases) and processes captured by these tasks 
(i.e., EN-back: salience and emotion processing; SST: response inhi-
bition, impulsivity). To comprehensively characterize predictors of 
missing data across imaging modalities, we examined constructs 
across several domains: (1) demographic (e.g., race-ethnicity, 
household income, caregiver education, child sex), (2) 
social-contextual (e.g., neighborhood safety, school quality, lead 
exposure risk), (3) visit characteristics (e.g., number of scanning 
sessions), and (4) individual-level survey weights. In addition, we 
leveraged participant feedback (e.g., “the consent form was clear”, 
“participants felt comfortable with staff”) from an ABCD Study® 
subsample to probe whether missing data was associated with 
participant perceptions of study characteristics. Although de-
mographic differences between participants with and without 
task-based fMRI data were included in a recent report (Chaarani 
et al., 2021), we expand this investigation to include 
social-contextual variables, visit characteristics, survey weights, and 
participant feedback. Our goal was to holistically characterize the 

representativeness of participants in the analytic versus recruited 
samples.  

● What is the impact of analytic method on parameter estimates when 
evaluating the associations between socioeconomic resources and 
brain structure and function? Although associations between indi-
vidual measures of socioeconomic resources (i.e., neighborhood 
disadvantage, household income-to-needs, and caregiver education) 
and imaging metrics have already been examined using ABCD data 
(e.g., Rakesh et al., 2021; Taylor, et al., 2020), these investigations 
have been limited to model-based analyses, most often within a 
multi-level modeling (MLM) framework that accounts for nesting of 
families within study site; less commonly occurring have been 
model-based analyses that do not account for the nested structure of 
the data (e.g., Vargas et al., 2020). Here, we compared parameter 
estimates (i.e., point estimates and standard errors) across analytic 
approaches – design-based and two model-based methods (i.e., 
“Model-Based MLM” and unnested ordinary least squares, or “Mod-
el-Based OLS”). Model-based approaches did not account for the 
survey weights in estimation because multi-level weights are not 
currently available for ABCD Study®; rather, we controlled for the 
constructs used in the generation of the survey weights (Heeringa 
and Berglund, 2019). Consistent with decades of research in survey 
methodology (Heeringa et al., 2017), we hypothesized that the 
clustering of participants by study site and the application of survey 
weights would result in larger standard errors in design-based ana-
lyses than model-based analyses, which do not account for survey 
weights. That is, design-based analyses which account for the clus-
tered sampling design will necessarily increase the sampling vari-
ance in estimates – an expected tradeoff of increased generalizability 
in design-based analyses. We also hypothesized that point estimates 
(i.e., the estimated coefficients representing SER associations with 
brain metrics) would change across modeling frameworks as a result 
of the application of informative survey weights (Bollen et al., 2016; 
Heeringa et al., 2017; Korn and Graubard, 1995; LeWinn et al., 
2017). As this was the first analysis of its kind, we made no pre-
dictions about the direction or magnitude of changes in point esti-
mates across modeling frameworks. 

Fig. 1. Lifecycle of the ABCD Complex Sampling Design. 
Note. Lifecycle of the ABCD Study® complex sampling 
design, from identification of the target population to 
postsurvey adjustments before analyses. Note that the 
ABCD Study® cohort also includes an oversample of twins 
from four of the 21 study sites (150 – 250 twin pairs per 
site), sampled from state registries (Garavan et al., 2018). 
Thus, the sampling design is different from the rest of the 
ABCD Study® sample. For simplicity, we do not make a 
distinction between the twin sample and the general pop-
ulation sample. In addition, less than 10% of the final study 
sample was recruited through alternative strategies (e.g., 
media, outreach), which allowed for the recruitment of 
children who otherwise would have been excluded based 
on the sampling frame (e.g., home-schooled children). 
Figure adapted from (Groves et al., 2009).   
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3. Method 

3.1. Sample 

The Adolescent Brain Cognitive Development℠ Study (ABCD 
Study®) is a longitudinal population-based neuroimaging study of 
11,878 eligible 9–10-year-olds in the United States (Garavan et al., 
2018; Fig. 1). To construct the sample, the study employed a clustered 
probability sample to recruit eligible children from a comprehensive list 
of public and private schools within 21 catchment areas near study sites. 
Multiple children from each household were eligible to participate. 
Participating caregivers were administered informed consent and pro-
vided caregiver consent for participating minors. The baseline ABCD 
Study® cohort also included an oversample of twins from four of the 21 
study sites (150 – 250 twin pairs per site), sampled from state registries 
(Garavan et al., 2018). For simplicity, we do not make a distinction 
between the twin sample and the general population sample in the 
current empirical demonstration. Behavioral data was downloaded from 
the second public release (version 2.0.1, released July 2019; https://doi. 
org/10.15154/1504041) and neuroimaging and additional behavioral 
data was downloaded from the third public release (version 3.0, released 
October 2020; https://doi.org/10.15154/1519007). All measures were 
downloaded directly from the NIMH Data Archive collection #2573 
(DUA #3067). 

3.2. Measures 

3.2.1. Demographic 
Demographic- and individual-level constructs included youth sex 

(1 = male, 2 = female), race-ethnicity (Asian, Biracial or Multiracial, 
Black, Hispanic or Latino/a, White, and [due to small sample sizes] 
Native American/Alaskan/Hawaiian or Pacific Islander or other race not 
specified), pubertal development (Potter et al., 2020), number of trau-
matic brain incidents (TBI), caregiver-reported externalizing and inter-
nalizing behavior total scores, caregiver marital status (married, 
divorced, cohabitating, never married, separated, widowed), and pri-
mary caregiver employment status (employed, not in labor force, un-
employed, other or refused). 

Household income, caregiver education, and neighborhood disad-
vantage were used to index socioeconomic resources (Bradley and 
Corwyn, 2002; Conger et al., 2010). Annual household income reported 
by primary caregivers was measured semi-continuously on an ordinal 
scale from less than $5,000 to more than $200,000. We recoded this 
variable to reflect income-to-needs relative to the U.S. federal poverty 
line (FPL) for a family of four, which in 2019 was ~$25000 (Semega 
et al., 2019): 1 = < 100% FPL, 2 = 100–200% FPL, 3 = 200 – 400% 
FPL, and 4 = > 400% FPL. Primary caregiver and partner years of ed-
ucation were each recoded into six-level categorical variables: 1 = less 
than high school, 2 = high school degree or equivalent, 3 = some col-
lege, 4 = associates or occupational degree, 5 = college degree, 
6 = masters or professional degree, and then combined into one vari-
able. The highest education level of the primary caregiver or partner was 
used to index caregiver education. Neighborhood disadvantage was 
measured using a sum score of nine U.S. Census tract-level indicators, 
based on a recent analysis in the ABCD Study® baseline sample (Taylor 
et al., 2020). See the Supplemental Methods for more details. 

3.2.2. Social-contextual and visit characteristics 
Social-contextual characteristics included Census-derived neighbor-

hood disadvantage (Taylor et al., 2020) and lead exposure risk (Marshall 
et al., 2020), caregiver-reported neighborhood safety, and 
youth-reported school quality and family conflict. We also examined 
visit characteristics as correlates of missingness to guide future protocols 
that might maximize retention. Visit characteristics included the num-
ber of scanning sessions (i.e., across how many sessions was the imaging 
data collected at the baseline visit; 92% one versus two sessions), and 

the number of available runs for task-based fMRI (see Supplemental 
Methods for more detail). In addition, a small subset of ABCD Study® 
participants was invited to participate in the ABCD Study® Social 
Development Study (ABCD-SD; N = 989). ABCD-SD (Hoffman et al., 
2019) collected more detailed phenotypic and environmental measures. 
Primary caregivers were also asked to provide feedback on several 
components of the protocol (e.g., “The staff explained the study clearly”, 
“I did not understand some of the questions”, “The level of compensation 
seemed appropriate”) by rating each item on a 5-point Likert scale (1 =

Strongly Disagree to 5 = Strongly Agree). We examined caregiver 
feedback on 16 prompts that were administered to families who 
completed the ABCD-SD protocol on either the same day or a different 
day as the ABCD Study® baseline protocol. 

3.2.3. Survey weights and primary sampling units 
Survey weights were developed for the ABCD Study® baseline cohort 

that account for (1) quasi-probability of initial selection into the study, 
(2) conditional probabilities of study participation, and (3) calibration 
to external population controls (Heeringa and Berglund, 2019). Inverse 
propensity weighting (Elliott and Valliant, 2017; Kim, 2022) was used to 
benchmark ABCD Study® baseline weights to estimated features of the 
target population based on 2011 – 2015 American Community Survey 
(ACS) demographic and socioeconomic estimates for U.S. children ages 
9 and 10 (n = 376,370). The variables used in the weighting procedure 
included: child age in years, child sex, child race-ethnicity, family in-
come, family type, household size, caregiver employment status, and 
Census region. For more details about the ABCD Study® baseline survey 
weights, see Heeringa and Berglund (2019). 

The primary sampling units (PSUs) in the ABCD Study® complex 
sample design are the 21 study sites. Although the study sites were based 
on the locations of neuroimaging research centers rather than conven-
tional probability sampling of PSUs (i.e., the sites were not chosen at 
random), study sites were distributed throughout the U.S. and largely 
captured the range of demographic and socioeconomic diversity of the 
target population (Garavan et al., 2018; Heeringa and Berglund, 2019).3 

3.3. Imaging data 

3.3.1. Structural MRI 
Details on MRI acquisition, preprocessing, and quality control can be 

found elsewhere (Casey et al., 2018; Hagler et al., 2019) and are sum-
marized in the Supplemental Methods. 

We relied on imaging inclusion recommendations from the ABCD 
Study® release 3.0 documentation (Anon, 2020) (imgincl_t1w_include =
1, from the abcd_imgincl01.txt instrument) to create our final subject 
list. Several measures of structural brain development were used as 
dependent variables, all previously shown to be associated with 
household socioeconomic resources (Johnson et al., 2016; Rakesh and 
Whittle, 2021): (1) bilateral hippocampal volume (i.e., sum of left and 
right hippocampal volume), (2) whole brain cortical surface area, and 
(3) whole brain cortical volume. 

3.3.2. Task-based functional MRI 
Details on fMRI data acquisition, preprocessing, and quality control 

can be found elsewhere (Casey et al., 2018; Hagler et al., 2019), and are 
briefly summarized in the Supplemental Methods. fMRI data from two 
tasks were used in the current analytic demonstration: Emotional 
N-Back (EN-back) and Stop Signal Task (SST). The EN-back task is used 
to elicit neural function during emotional salience (i.e., by contrasting 

3 Note that there were originally 22 study sites. After the baseline wave, one 
site closed, and participating families were recruited into one of the remaining 
21 sites. Therefore, for participants from site 22, we used their assigned study 
site at the 6-month or 1-year follow-up wave to maximize PSU completeness. 
Five participants could not be reassigned a PSU. 
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activation during happy or fearful face versus neutral face trials) and 
working memory (i.e., by contrasting activation during 2-back versus 
0-back blocks). The SST engages neural function during impulse control 
(i.e., correct “stops”) and impulsivity (i.e., failed “stops”). 

We relied on imaging inclusion recommendations from the ABCD 
Study® release 3.0 documentation (Anon, 2020) (imgincl_nback_include 
= 1 and imgincl_sst_include = 1, from the abcd_imgincl01.txt instru-
ment). In addition, we removed participants with more than 20% 
censored volumes (e.g., for EN-back, calculated as tfmri_nback_-
ab_subthnvols/ tfmri_nback_all_beta_nvols from the nback_bwroi02.txt 
instrument). 

Multiple regions of interest were used as dependent variables in our 
empirical analysis. Although several regions of the prefrontal cortex are 
activated during salience processing, the EN-back does not include an 
explicit regulatory component; previous research suggests a rostral/ 
ventral functional distinction in the mPFC wherein rostral regions un-
derlie the cognitive rather than regulatory components of salience and 
emotion processing (Etkin et al., 2011). Thus, for the EN-back task, we 
examined the rostral anterior cingulate (rACC) and medial orbitofrontal 
cortex (mOFC), and amygdala reactivity to negative facial expressions 
versus neutral faces. We also examined hippocampal activation during 
the 2-back versus 0-back contrast of the EN-back task to capture 
short-term memory processes (Stark and Okado, 2003). For the SST, we 
examined rACC and OFC activation during the correct stop > correct go 
contrast, regions activated during successful inhibition during the SST 
(Casey et al., 2018). 

3.4. Statistical Analysis 

All analyses and graphics were conducted using the survey (Lumley, 
2010), lme4 (Bates et al., 2015), ggplot2 (Wickham, 2016), and base 
packages in R Statistical Software version 3.6.3 (R Core Team, 2020). 
Reproducible code is publicly available at (https://osf.io/d94kq/). 
Outliers were winsorized to + /- 3 SD from the mean. All dependent 

variables were normally distributed (Supplemental Fig. 1). 
First, to evaluate the generalizability of the recruited ABCD Study® 

sample to the target population, we compared unadjusted sample de-
mographic proportions to design-based estimates of population de-
mographic proportions. Unadjusted proportions ignore the complex 
design features of the study (i.e., study sites as PSUs) and do not adjust 
for the survey weights. Design-based estimates of the population pro-
portions account for the PSUs and survey weights, implementing Taylor 
Series Linearization (Binder, 1983) for variance estimation. We high-
light demographic groups where the sample and population proportions 
are significantly different, indicated by non-overlapping 95% confi-
dence intervals. Significant differences in sample versus population 
demographic proportions would implicate sampling biases due to 
coverage error, sampling error, and/or selection bias (Table 1). 

Second, to examine the effects of selection bias on in the analytic 
sample versus recruited sample, we conducted missing data analyses 
comparing participants with and without imaging data (sMRI, task- 
based EN-back and SST) on demographic, social-contextual, and 
study-level constructs. Welch’s two-sample t-tests were implemented for 
continuous variables, and chi-square difference tests were implemented 
for categorical variables. As most statistical tests will be significant in 
large sample sizes such as the ABCD Study® (Dick et al., 2021), we used 
the effectsize package (Ben-Schacar et al., 2021) to create measures of 
effect size for continuous (Cohen′ s d = ( M2− M1

SD− pooled)) and categorical 

(Cramers Phiɸ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

X2

(N)(dfsmaller)

√
) variables. Cohen’s conventions were used 

to interpret the size of the effect for Cramer’s ɸ and Cohen’s d (Aron 
et al., 2013; Cohen, 1988), where effect size judgements are dependent 
on degrees of freedom for Cramer’s ɸ (Fig. 3). 

Third, multivariable regression models were used to evaluate the 
associations between three measures of SER (i.e., caregiver education, 
household income, and neighborhood SER) and brain structure and 
function. We accounted for several confounding variables: youth sex, 
pubertal development, youth race-ethnicity, primary caregiver 

Fig. 2. Sample and Target Population Proportions of Sociodemographic Constructs in the ABCD Study® Note. N = 10,846–11,860. Fully-design-adjusted models 
cluster standard errors at site and apply population weights derived from the American Community Survey. Dashed boxes indicate estimates with non-overlapping 
confidence intervals. Measure information can be found in the Methods section and Supplemental Materials. 
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employment status, and scanner platform (1 = GE [n = 2962], 2 =

Phillips [n = 1512], 3 = Siemens [n = 7278]). Youth race-ethnicity is a 
social, not a biological, construct, which we adjust for because it is 
tightly linked to SER in the U.S. due to historical and current structural 
inequalities (McLoyd, 1998; Neblett Jr, 2019; Wilson, 2012) and, like 
the other control variables, is also related to the missing data. Structural 
MRI analyses additionally adjusted for total intracranial volume 
(subcortical regions only) and T1-weighted gray matter intensity 
(Pagliaccio et al., 2019). 

All multivariable models are presented in three forms: (1) model- 
based OLS linear regression, (2) model-based MLM, and (3) design- 
based linear regression. OLS models ignore the nested structure of the 
ABCD datasets and, instead of accounting for survey weights, include 
variables that were used to construct the survey weights as covariates. 
MLM models were estimated using maximum likelihood estimation in 
the lme4 package (Bates et al., 2015) to cluster SEs by study site; as in the 
model-based OLS models, variables used in the survey weighting pro-
cedure were included as covariates. Again, multi-level weights (i.e., 
which are not currently available in ABCD Study®) would be needed to 
appropriately weight MLM models (Pfeffermann et al., 1998). The 
design-based models account for complex sample design features (i.e., 
study sites as PSUs) and survey weights by implementing weighted least 
squares for point estimation and Taylor Series Linearization (Binder, 
1983) for variance estimation, using the survey package (Lumley, 2010). 

Subpopulation (i.e., youth with usable imaging data) analyses were 
implemented in the design-based framework to ensure that all survey 
design elements were used in variance estimation (West et al., 2008). To 
account for cases in which multiple children per family contributed 
usable imaging data, we used a genetically-independent sample (i.e., by 
selecting one random child per family) in all multivariable analyses 
(Supplemental Table 1), consistent with previous studies (e.g., Li et al., 

2021). Missing data was handled through listwise deletion. 
Of the original ABCD Study® sample of 11,878, our maximum ana-

lytic sample size was 11,860.3 Five participants could not be assigned a 
PSU (critical to design-based analyses). In addition, three participants 
noted their sex as “other”, and 10 participants were missing data on sex. 
As point estimation for a group of n = 3 (i.e., for “sex = other”) would be 
unreliable, we opted to remove these participants. Thus, fifteen partic-
ipants were removed from all analyses. Owing to missing imaging data 
and a small proportion of contextual and behavioral data, the analytic 
sample sizes were N = 10,846–11,860 for sample demographic pro-
portions and missing data analyses, and N = 5215 to 8107 for multi-
variable models investigating the associations between socioeconomic 
resources and structural and functional imaging metrics. 

4. Results 

4.1. How does the target population of 9–10-year-olds in the U.S. differ 
from the ABCD Study® respondent sample? 

Coverage, sampling, and non-response errors contributed to de-
mographic differences between ABCD participants and the target pop-
ulation of 9-10-year-old children living in the U.S. (Fig. 1). Fig. 2 
presents the unweighted sample proportions and design-based popula-
tion proportions (with adjustment for the complex sampling design and 
survey weights based on the American Community Survey) for several 
observed demographic characteristics. Most notably, the ABCD Study® 
sample, when unweighted, is over-represented by children of married 
caregivers (ABCD-67.9% versus ABCD-weighted-61.2%), high-income 
households earning > 400% of the federal poverty line (ABCD-42.1% 
versus ABCD-weighted − 29.9%), caregivers with a Masters, PhD, or 
other professional (e.g., JD, MD) degree (34.3% versus 29.1%), Biracial 

Fig. 3. Missing Data Patterns in ABCD imaging data Note. N = 11,162–11,860. Missing data analyses compared youth with and without valid imaging data on the 
measures listed above. For continuous measures (e.g., pubertal development), independent samples t-tests were implemented and Cohen’s d was calculated as a 
measure of effect size. For categorical measures (e.g., caregiver education), χ2 difference tests were implemented and Phi ɸ was calculated as a measure of effect size. 
See Supplemental Table 1 for reasons for data loss. All results, including for data loss on the Stop Signal Task, can be found in Supplemental Tables 2 and 3. 
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or Multiracial children (10.4% versus 5.7%), and Black children (14.9% 
versus 13.2%). By contrast, the ABCD Study® sample is under- 
represented by children from low-income households earning < 100% 
of the FPL (15% versus 19%) or 100–200% of the FPL (14.6% versus 
20.1%), Hispanic or Latino/a children (20.3% versus 23.9%), and chil-
dren of divorced (9.2% versus 12%) or never married (12.4% versus 
14.4%) caregivers. The implication of these sample – target population 
demographic differences are that the survey weights for children from 
lower income families, for example, will be larger and more variable 
than the weights for children from higher income families (Heeringa 
et al., 2017; Spencer, 2000). 

4.2. How does the analytic sample in sMRI and fMRI analyses differ from 
the ABCD Study® respondent sample? 

4.2.1. Selection Biases 
Demographic discrepancies between the sample and the target 

population are expected in survey research; these discrepancies can be 
adjusted for through the application of survey weights. However, this 
approach assumes among otherwise complete cases that item-level 
missingness for variables of interest is uncorrelated with the case-level 
survey weights that adjust for inclusion probabilities and survey unit 
nonresponse (Groves et al., 2009; Kish and Frankel, 1974). Unfortu-
nately, neuroimaging research is notorious for extensive data loss (e.g., 
discomfort with the scan may result in participants ending the session 
early or not participating at all; image sensitivity to movement may 
result in image artifacts and the removal of “high motion” participants). 
Supplemental Table 1 presents the flow of participants from initial 
recruitment through data analysis for each of several neuroimaging 
modalities. Most ABCD Study® participants attempted the structural 
MRI (sMRI) scan (97%), with an additional 7.8% lost during quality 
control. By comparison, more significant data loss was observed in the 
fMRI EN-back and SST tasks: 19–25% of the original participants had no 
fMRI image series, and an additional 24 – 29% were removed during 
quality control, leaving 61–53% of the original participants with usable 
task-based fMRI data. Understanding how this missing data is correlated 
with demographic, social-contextual, and study-level characteristics is 
key to understanding how individuals with usable imaging data differ 
from the overall sample and, thus, the target population. 

4.2.2. Missing data patterns 
We next evaluated how participants with and without usable imag-

ing data differed on demographic (i.e., child sex and race-ethnicity, 
caregiver marital status and education, household income, number of 
traumatic brain incidents, youth internalizing and externalizing be-
haviors), social-contextual (i.e., lead exposure risk, neighborhood 
disadvantage, neighborhood safety, school quality, family conflict), and 
visit (i.e., number of scanning sessions and/or task runs, survey weight) 
characteristics (Fig. 3). Summary results from the sMRI and fMRI EN- 
back analyses are presented in the main text; results are available in 
table format for all analyses in Supplemental Tables 2 and 3. Participants 
without usable sMRI and fMRI EN-back data were more likely to identify 
as Black or African American, live in low-income households, have 
caregivers with a high school degree or lower, have unmarried care-
givers, live in a Census tract marked by greater lead exposure risk and 
neighborhood disadvantage, and report lower neighborhood safety and 
school quality (Fig. 3). Group differences in having usable task-based 
fMRI data were generally larger than group differences in having valid 
sMRI data, likely owing to greater fMRI data loss (Supplemental 
Table 1). Youth without usable fMRI EN-back data also had greater 
caregiver-reported internalizing and externalizing behaviors, were more 
pubertally-advanced, more likely to be male, and were more likely to 
have a primary caregiver who was unemployed (Fig. 3). For fMRI data 
loss, the largest observed effect sizes were for youth race-ethnicity, 
caregiver marital status and education, household income, youth 
externalizing behaviors, lead exposure risk, and neighborhood 

disadvantage (Fig. 3). Lastly, participants without usable sMRI data had 
more scanning sessions (i.e., their MRI data was collected over two 
versus one scanning session), whereas participants without valid fMRI 
EN-back data had fewer task runs (both medium-sized effects). Collec-
tively, our missing data analyses revealed that socioeconomically- 
disadvantaged youth were less likely to have usable structural and 
functional imaging data than their peers. 

Given the relatively extensive fMRI EN-back and SST data loss, we 
also examined how youth with and without usable fMRI data differed on 
youth emotion ratings from pre- and post-scan questionnaires (Supple-
mental Table 4). That is, might how children feel before and after the 
scan help to explain why some youth provided usable data or not? 
Before and after the MRI protocol, youth rated the degree to which they 
felt different emotions (e.g., relaxed, upset, happy) on a 5-point Likert 
scale (1 = not at all; 5 = very much). Here, we highlight significant 
group differences that were at least of small effect (Cohen’s d > 0.20, for 
continuous variables). After the MRI scanning session, youth without 
valid EN-back or SST data reported feeling more scared, upset, and sad 
(0.21 < d < 0.30). There were no meaningful (i.e., d > 0.20) group 
differences in pre-scan ratings (Supplemental Table 4). 

Our last attempt to understand missing fMRI data patterns focused 
on associations with participant-reported study features within the 
ABCD-SD subsample (N = 989). Using Welch’s two-sample t-tests, we 
examined whether caregivers’ perceptions of the study protocol were 
linked to whether their child(ren) provided usable imaging data at 
baseline (Supplemental Table 5). Among families who participated in 
ABCD-SD on a different day as the baseline ABCD visit, caregivers of 
youth without imaging data were more likely to rate the consent form as 
unclear (d = 0.25), that they felt uncomfortable with the staff (d = 0.24), 
and that the questions asked of them were uncomfortable (d = 0.25). 

Results from these missing data analyses suggest that youth with and 
without valid imaging data differ on a variety of demographic, social- 
contextual, affective, and feedback-based measures. Therefore, it is 
important to ask whether systematic missingness impacts our ability to 
make population-level inferences. A straightforward way to evaluate 
this question is to examine whether missingness is associated with the 
survey weight. In the baseline ABCD Study® imaging data, youth 
without usable neuroimaging data had larger population weights than 
youth with valid neuroimaging data; this pattern was observed for sMRI 
data (t[711.26] = 2.42, p < 0.05), fMRI EN-back data (t[10811.99] =
4.90, p < 0.001), and fMRI SST data (t [9588.08] = 4.11, p < 0.001). 
Despite these significant group differences, however, the effects were 
small in magnitude (d = 0.10), suggesting that, at least in the sample 
identified here, missing data approaches (e.g., imputation) may not be 
necessary to generate population-based estimates. 

4.3. Comparison of analytic approaches 

In addition to instances where missing data is associated with survey 
weights, a researcher’s analytic approach may impact inferences to a 
target population. To compare analytic approaches, we examined a 
research question of great interest to developmental neuroscientists: 
how are socioeconomic resources (SER) associated with youth brain 
structure and function? 

4.3.1. sMRI 
Table 2 displays parameter estimates for household income (3 

dummy codes: > 400% of the federal poverty line as the reference 
group), caregiver education (5 dummy codes: graduate or professional 
degree as the reference group), and neighborhood disadvantage 
(continuous measure; Taylor et al., 2020) in models predicting bilateral 
hippocampal volume, total cortical volume, and total cortical surface 
area. Across modeling frameworks, household family income and care-
giver education were stronger predictors of sMRI metrics than neigh-
borhood disadvantage. As expected, the standard errors of each 
parameter were generally larger in design-based analyses than in 
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model-based analyses (i.e., either in OLS or MLM models). Exceptions 
were in models predicting hippocampal volume, where some standard 
error estimates were smaller in design-based analyses; this may indicate 
that the post-stratification adjustments reduced the sampling variance of 
these particular estimates. 

Notably, model-based analytic approaches (i.e., OLS or MLM) over- 
estimated the coefficients for household income and under-estimated 
the coefficients representing the associations of caregiver education on 
total cortical volume and total cortical surface area, compared to the 
point estimates in design-based analyses (Table 2). In models predicting 
hippocampal volume, the point estimates for household income dummy 
variables were larger in design-based analyses, whereas model-based 
analyses (i.e., OLS, MLM) overestimated the coefficients of caregiver 
education (i.e., Less than high school, compared to Graduate or pro-
fessional degree). The implication of these results is that the decision to 
leverage model-based versus design-based approaches might change a 
researcher’s interpretation of which component of SER more strongly 
relates to metrics of structural brain development. 

Collectively, these results highlight discrepancies in the magnitude 
of the associations between socioeconomic resources and sMRI metrics 
across modeling frameworks. That parameter estimates were similar 
across model-based approaches – unweighted OLS models (which ignore 
the sampling design and do not apply sampling weights) and multi-level 
models (which cluster standard errors by study site and similarly do not 

apply sampling weights) – suggests that model-based multi-level models 
may not sufficiently account for the sampling design and selection biases 
through clustering standard errors by site. MLMs also do not account for 
survey weights. 

4.3.2. Task-based fMRI 
Associations between SER and neural activation during the EN-back 

and SST tasks were much weaker and largely non-significant (Supple-
mental Tables 7 and 8). Model-based analyses (i.e., OLS and MLM) 
revealed significant associations between having a caregiver with less 
than a high school degree (compared to having a caregiver with a 
graduate or professional degree) and greater rACC and mOFC reactivity 
to negative versus neutral facial expressions in the EN-back task, and less 
rACC reactivity to Correct Stops versus Correct Gos in the SST task. The 
point estimates were similar or identical in magnitude in model-based 
MLMs and model-based OLS models. Compared to model-based ana-
lyses, point estimates in design-based models were sometimes larger (e. 
g., associations between caregiver education and amygdala to negative 
versus neutral facial expressions in the EN-back task) and sometimes 
similar in magnitude (e.g., associations between household income-to- 
needs and lOFC activation in the 2-back versus 0-back EN-back condi-
tion). Thus, at least for the fMRI measures examined using publicly- 
available tabulated ABCD Study® imaging data, there were in-
consistencies in whether implementing model-based (without survey 

Table 2 
Comparison of parameter estimates in design-based and model-based analyses of SES – sMRI associations.   

Model-Based OLS Model-Based MLM Design-Based  

B SE B SE B SE 

Hippocampal volume       

< 100% FPL -29.98* 13.81 -30.23* 13.90 -36.26 12.56 
100 – 200% FPL -24.00* 12.19 -24.85* 12.27 -32.97 12.09 
200 – 400% FPL -9.59 8.74 -9.72* 8.79 -8.08 10.46 
Less than High School -36.14 21.29 -40.14 21.39 -33.63 14.79 
High School or Equivalent -26.85 15.49 -29.44 15.52 -30.51 12.98 
Some College -3.74 12.70 -4.72 12.72 -0.009 10.70 
Associates or Occupational -8.02 12.18 -9.27 12.20 -9.90 11.26 
College -16.43 8.87 -16.62 8.89 -19.83 7.48 
Neighborhood disadvantage Removed from model; did not degrade model fit 

Total cortical volume       

< 100% FPL -11789.17*** 2177.38 -12623.06*** 2241.72 -9269.80 3751.60 
100 – 200% FPL -5531.05** 1892.16 -5989.68** 1937.08 -4767.90 2846.20 
200 – 400% FPL -2899.23* 1352.79 -3338.09* 1373.38 -3606.30 2265.10 
Less than High School -11606.03*** 3201.11 -11192.27*** 3368.60 -13738.30 4136.70 
High School or Equivalent -13920.08*** 2360.64 -12909.50*** 2423.41 -14183.80* 2325.90 
Some College -7835.98*** 1949.11 -7197.18*** 1976.02 -8475.30 2759.60 
Associates or Occupational -10560.95*** 1860.56 -9715.94*** 1886.20 -10366.90* 1604.20 
College -5490.06*** 2360.64 -5463.23*** 1369.46 -5274.20 1335.00 
Neighborhood disadvantage -275.36** 93.45 -245.43** 97.90 -335.10 122.30 

Total cortical surface area       

< 100% FPL -3379.73*** 695.83 -3390.08*** 699.67 -2705.88 1006.10 
100 – 200% FPL -1707.19** 601.28 -1692.14** 604.58 -1441.71 888.38 
200 – 400% FPL -1021.19* 426.75 -1009.19* 428.67 -1215.95 696.60 
Less than High School -3906.24*** 1048.51 -3353.30** 1051.45 -4259.32 1481.15 
High School or Equivalent -3834.17*** 758.68 -3439.68*** 756.57 -3852.77 678.07 
Some College -2337.87*** 619.10 -2164.10*** 616.92 -2540.75 736.86 
Associates or Occupational -2919.19*** 590.11 -2664.99*** 588.84 -2929.89 477.92 
College -1342.37** 428.31 -1278.93** 427.52 -1330.64 374.06 
Neighborhood disadvantage -74.16* 29.82 -74.21** 30.52 -89.97 34.10 

Note. N = 7,698 - 8,107. Asterisks denote the statistical significance of a given parameter estimate against the null hypothesis (*p<0.05; **p<0.01; ***p<0.001). All 
models controlled for child sex, race-ethnicity, scanner type, and T1-weighted gray matter intensity. Hippocampal volume models also controlled for total intracranial 
volume. Covariates that were not significantly associated with the outcome were probed for removal by comparing model fit of nested models (with or without the 
covariate) using one-way ANOVAs. In all models, the removal of primary caregiver employment status did not degrade model fit (ps > 0.10). Pubertal development was 
similarly removed as a non-significant predictor in models predicting total cortical volume, but was included in models predicting hippocampal volume and total 
cortical surface area. Reference categories were specified as the most common group: >400% FPL (household income), graduate or professional degree (caregiver 
education). Estimated random effects of the model-based multilevel models: Hippocampal volume: between-site variance (SD) = 221.80 (14.89), residual variance 
(SD) = 91595.40 (302.65); Total cortical volume: between-site variance (SD) = 7561000.00 (8695.00), residual variance (SD) = 2063000000.00 (45425.00); Total 
cortical surface area: between-site variance (SD) = 5012471.00 (2239.00), residual variance (SD) = 201180284.00 (14184.00). 
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weights; clustering SEs by site in the case of MLM) versus design-based 
analyses (specifying site as PSUs and adjusting for survey weights) 
would alter the interpretation of study findings. 

5. Discussion 

Leveraging large, population-based datasets to study the developing 
brain raises several theoretical and analytical challenges for develop-
mental neuroscientists. In the current paper, we review distinctions 
between probability and non-probability sampling and several forms of 
selection bias that may influence population generalizability. Further, 
we examine the influence of different analytic approaches (i.e., design- 
based versus more commonly implemented model-based MLM or model- 
based OLS models) in evaluating the associations between socioeco-
nomic resources (SER) and brain structure and function in the ABCD 
Study®, a clustered probability sample of 11,878 9–10-year-olds in the 
United States. Our empirical analyses show that:  

1. There is sampling bias in the recruited ABCD Study® sample versus 
the target population of 9–10-year-olds in the United States, partic-
ularly with respect to caregiver education and household income;  

2. Missing data (i.e., youth with usable versus not usable sMRI and task- 
based fMRI data) is meaningfully associated with demographic and 
social-contextual constructs such that marginalized youth are under- 
represented in analytic samples;  

3. Although missing data in the analytic sample identified here was 
related to the ABCD Study® survey weights, the effect sizes were 
relatively small, suggesting that listwise deletion may not undermine 
population generalizability (again, at least in the analytic sample 
identified in this empirical demonstration);  

4. Design-based and model-based (OLS, MLM) analytic approaches 
differed in coefficients of SER-associations with brain structure and 
function, but it depended on the variable of interest and the outcome 
examined. 

5.1. Population Representation and Systematic Missing Data 

The ABCD Study® sample proportions by race-ethnicity, marital 
status, household income, education, and employment were signifi-
cantly different from the proportions in the target population of 9–10- 
year-olds in the U.S. For example, ABCD Study® respondents in the 
baseline survey were over-represented by youth from high-income, 
highly-educated (i.e., masters or professional degree), and/or married 
households. There was also a larger proportion of Black and Biracial or 
Multiracial youth, owing to purposeful oversampling in the original 
sampling design (Garavan et al., 2018), but fewer Hispanic and Asian 
youth. Sociodemographic discrepancies between respondents and the 
target population reflect error (in some cases, purposeful error, due to 
oversampling) at multiple stages of study design and recruitment 
(Table 1): between the sampling frame and the target population (i.e., 
coverage error), between the sampling frame and the selected sample (i. 
e., sampling error), and between the sample and the respondents (i.e., 
non-response error). Because the ABCD Study® implemented probabil-
ity sampling, however, the complex sampling design (i.e., with study 
sites as PSUs and constructed survey weights) can be leveraged to 
recapitulate the sociodemographic characteristics of the target popula-
tion. In non-probability convenience samples, by contrast, coverage 
error, sampling error, and non-response error are unknown, making it 
difficult or impossible to account for differences between the observed 
sample and the population to which a researcher is trying to generalize. 
Adoption of a complex probability sampling design stands as one of the 
greatest strengths of the ABCD Study®. 

Discrepancies between the target population and the respondent 
sample, however, may be magnified in the context of missing data. 
Missing data analyses revealed that ABCD Study® youth respondents 

without usable imaging data (both structural and task-based functional 
MRI) at baseline were more likely to identify as Black or African 
American, live in low-income households, have caregivers with less than 
a high school degree, live in more socioeconomically-disadvantaged 
neighborhoods, and rate lower neighborhood safety and school qual-
ity. Thus, there was systematic missingness in the sample of usable 
imaging data, suggesting that parameter estimates using listwise dele-
tion may be biased without inclusion of these specific constructs as 
covariates (Schafer and Graham, 2002). In the context of a complex 
sampling design such as that employed by the ABCD Study®, however, 
missing data presents additional threats to generalizability. Chiefly, if 
the survey weights themselves are associated with missingness, 
parameter estimates are likely to be biased and additional missing data 
solutions are needed (Groves et al., 2009; Kish and Frankel, 1974). 

Our analyses revealed that youth without usable imaging data had 
larger survey weights than youth with usable imaging data. That is, 
youth who were underrepresented in the ABCD Study® baseline sample 
versus the target population (and, thus, were assigned larger population 
weights) were also more likely to be underrepresented in the analytic 
sample with usable imaging data. The magnitude of these effects was 
relatively small (Cohen’s d < 0.20), suggesting that population gener-
alizability remained intact using listwise deletion, at least in the analytic 
sample identified here. It may appear counterintuitive that some vari-
ables (e.g., household income) were meaningfully associated with 
missingness while the survey weight was not (Fig. 3). However, because 
the survey weight reflects an individual’s combined propensity of 
belonging to the ABCD Study® sample versus the target population 
across multiple sociodemographic variables, the magnitude of system-
atic missingness by survey weight may differ from that of individual 
variables. Given that researchers examine constructs with varying levels 
of missingness, use different quality control criteria for neuroimaging 
data inclusion, and the likelihood of missing data varies by imaging 
modality (e.g., resting-state fMRI versus sMRI), we emphasize that re-
searchers must empirically test whether both the survey weight and 
individual sociodemographic variables are associated with missingness 
in service to evaluating threats to population generalizability, rather 
than assume listwise deletion. 

5.2. Analytic approach may impact study interpretation 

Our last aim was to evaluate the influence of design-based and 
model-based analytic approaches on the associations between socio-
economic resources and multiple measures of brain structure and 
function in the ABCD Study® baseline sample. Compared to design- 
based analyses (i.e., which cluster SEs around the PSUs/study sites, 
and apply survey weights), model-based analyses (i.e., either using OLS 
models or MLM [cluster SEs by study site]; both include controls for 
constructs included in the survey weights but do not adjust for the 
survey weights themselves) under-estimated the coefficients of care-
giver education and over-estimated the coefficients of household income 
in models predicting total cortical volume and total cortical surface area. 
That is, although the directions of the estimated associations were 
consistent, the interpretation of which measure of SER exerted the 
largest effect differed across analytic frameworks. This could pose a 
challenge for researchers and policy-makers relying on large datasets 
like the ABCD Study® to weigh investments in varied social in-
terventions (e.g., unconditional cash transfers versus educational and 
occupational training programs). Less consistency was found in the 
comparison of analytic approaches in models linking socioeconomic 
resources to task-based fMRI. 

The multi-level modeling strategy is consistent with the dominant 
analytic approach among recent ABCD Study® data users (e.g., Paul 
et al., 2021; Rakesh et al., 2021). Yet, as demonstrated here in the 
example of SER-associations with sMRI metrics, multi-level modeling 
without multi-level weights was not sufficient to recapitulate the unbi-
ased target population parameters observed in design-based analyses. 
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This could be due to inaccurate model assumptions in the MLM frame-
work, the inability to include informative survey weights, or both. As 
previously outlined in the ABCD Study® sampling guide (Heeringa and 
Berglund, 2019), the publicly-available survey weights cannot be used 
in the multi-level modeling framework. To “weight” a multi-level model, 
weights are required at each level of the hierarchical data structure 
(Pfeffermann et al., 1998; Rabe-Hesketh and Skrondal, 2006). The ABCD 
Study® survey weights currently available reflect the aggregated weight 
(i.e., both the individual level-1 and the site level-2 weight are com-
bined). Early comparisons of the hybrid/model-based multi-level ana-
lyses with design-based analyses revealed few differences (Heeringa and 
Berglund, 2019), but these investigations were based on behavioral data 
with few missing observations. As the ABCD Study® sites were not 
chosen at random, the construction of 2-level survey weights requires 
additional assumptions that need to be evaluated before releasing dis-
aggregated weights to the public. Moreover, releasing disaggregated 
multi-level survey weights presents additional concerns for participant 
identification. With these considerations, we outline recommendations 
for ABCD Study® users below. 

5.3. Recommendations 

Based on these findings and the critical connection between sam-
pling, analytic approach, and generalizability, we have several recom-
mendations for analyzing data and interpreting research findings for 
researchers using the ABCD Study® and other population-based datasets 

with complex sampling designs (Table 3). 

5.3.1. Conduct missing data analyses 
First, researchers must conduct and report missing data analyses by 

comparing their analytic sample to the original sample of 11,878 ABCD 
Study® respondents (Table 3). Due to variation in preprocessing pipe-
lines and behavioral data exclusions (Botvinik-Nezer et al., 2020), 
missing data patterns may differ from what we have presented here. 
Complete and incomplete data should be examined with respect to 
sociodemographic constructs (e.g., child sex, race-ethnicity, socioeco-
nomic resources, behavioral and/or cognitive outcomes), the survey 
weight, and other variables of interest. Group differences should be 
interpreted using effect size metrics rather than p-values, to avoid 
overestimating “meaningful” effects (Dick et al., 2021; Owens et al., 
2021). If survey weights are meaningfully associated with missing data, 
researchers must be explicit in the Methods and Discussion that this 
impacts the population generalizability of their results. In this case, re-
searchers can either (1) proceed with their analyses and include cova-
riates predictive of missingness but interpret results only with respect to 
the sociodemographic characteristics of analytic sample (i.e., be con-
strained and acknowledge that results may not generalize beyond the 
analytic sample), or (2) address missing data (e.g., imputation, full 
maximum-likelihood estimation) before proceeding with weighted an-
alyses that can be generalized to the target population. If the survey 
weights are not associated with missing data, analyses can proceed as 
planned with less concern for limitations on target population general-
izability (though, again, this may differ from analysis to analysis 
depending on the degree and pattern of missing data). 

5.3.2. Implement design-based analyses for descriptive inference and 
compare parameter estimates from design-based and model-based 
approaches in multivariable analyses 

For users interested in reporting population means and/or pro-
portions (e.g., incidence of traumatic brain injuries in 9–10-year-olds in 
the United States), only design-based analyses should be implemented. 
This includes any research question designed to report the “population 
prevalence” of a given construct in the ABCD Study® sample (e.g., 
incidental MRI findings: Li et al., 2021; substance use patterns: Lisdahl 
et al., 2021). For multivariable analyses, users are suggested to compare 
results in design-based models and model-based frameworks that adjust 
SEs around study sites (Heeringa et al., 2017). Model-based analyses 
that do not cluster SEs by study site (e.g., as in the OLS approach eval-
uated here) should rarely if ever be implemented, as these approaches 
ignore statistical dependence among observations. Comparisons be-
tween model- and design-based analyses should focus on point estimates 
rather than statistical significance because design-based analyses 
generally increase standard errors (as would be expected when ac-
counting for complex sampling designs and the sampling variance that 
they introduce). 

In cases where point estimates from design-based and model-based 
approaches differ, users should adopt the design-based results. One of 
the many advantages of using the ABCD Study® and other large 
population-based datasets is its ability to generalize to a broader pop-
ulation, with implications for policy and intervention. By relying on the 
random probability sampling design for population inference, design- 
based analyses will always produce point estimates that are unbiased 
with respect to the sampling design. Should point estimates from design- 
based and model-based approaches converge, users can report the 
model-based results with greater confidence in the generalizability of 
their point estimates. 

5.3.3. Adopt caution in interpretation of population generalizability 
"Representative" is a strong adjective to apply to any dataset 

(Compton et al., 2019; Heeringa and Berglund, 2019). In addition to 
biases in recruitment and sampling (Table 1), the descriptor “repre-
sentative” will vary by variable (e.g., how much missing data is there), 

Table 3 
Current and Future Directions.  

Increasing Generalizability in Non-Probability Samples 

Inclusive Recruitment and Retention Practices. Leverage long-standing strategies in 
developmental science used to increase the representation and voice of 
marginalized communities in research. Examples include: (1) building 
collaborations with and hiring staff who are culturally engaged and embedded 
within target communities, (2) ensuring continuity in staff over time, (3) 
communicating researcher motivations and demonstrating shared goals that 
address community needs, (4) including community members in study design, 
recruitment, and retention, and (5) implementing face-to-face recruiting strategies.  

Recommended Reading: Yancey et al., (2006). Effective recruitment and retention of 
minority research participants. Medin et al., (2017). Systems of (non-)diversity. Habibi 
et al., (2015). Developmental brain research with participants from underprivileged 
communities: Strategies for recruitment, participation, and retention. Rowley & 
Camacho, (2015). Increasing diversity in cognitive developmental research: Issues and 
solutions.  

Weighting Non-Probability Samples. Recent developments in survey methodology 
suggest it may be possible to calibrate a non-probability sample to a target 
population through the construction of survey weights using a “reference” 
probability sample (e.g., LeWinn et al., 2017).  

Recommended Reading: Elliott & Valliant, (2017). Comparing alternatives for 
estimation from nonprobability samples. Zhang, (2019). On valid descriptive inference 
from non-probability sample. Yang et al., (2020). Doubly robust inference when 
combining probability and non-probability samples with high dimensional data. Rueda 
et al., (2020). The R package NonProbEst for estimation in non-probability surveys. 

Addressing Longitudinal Retention 

Construction of Longitudinal Survey Weights. Attrition from the baseline cohort is a 
potential source of added selection bias in longitudinal data analysis for population 
neuroscience studies. Statistical adjustment for complete “loss to follow-up” of 
baseline participants is typically performed by applying a further attrition weighting 
adjustment to the baseline weight – or otherwise recalibrating the retained sample 
to baseline sample characteristics (endogenous) or to external population 
benchmarks (exogenous). As an alternative to longitudinal weighting, various 
methods can be employed to impute the longitudinal missing data.  

Recommended Reading: Kalton & Flores-Cervantes, (2003). Weighting methods.  
Schmidt & Woll, (2017). Longitudinal dropout and weighting against its bias.  
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by subpopulation (e.g., is this subpopulation accurately reflected in the 
usable data), and by the extent to which the weighting methodology or 
model covariates capture factors that truly impact the outcome of in-
terest (both in terms of the variables and their functional form with the 
outcome). All approaches to statistical estimation and inference make 
assumptions. No study gets an uncontestable stamp of approval on the 
unbiasedness of its survey estimates. Design-based and model-based 
analyses may produce remarkably similar interpretations of study 
findings, and some researchers may choose to implement model-based 
analyses for particular reasons. The position that we take here is that 
researchers must empirically evaluate the degree of population infer-
ence that is possible given their analytic sample, research question, and 
statistical methodology. 

Thoughtful attention to probability sampling in the ABCD Study® is 
a dramatic improvement to the population generalizability and socio-
demographic representation of more traditional convenience sampling 
approaches (Nielsen et al., 2017). However, readers should note that 
there were necessary biases in the ABCD Study® sampling frame that 
must be considered in describing the sample: the study did not include 
children who were home-schooled, children attending school districts 
outside of one of the 21 catchments sites, or children with certain 
exclusion criteria (e.g., children born premature or of extreme low birth 
weight, children with medical or psychiatric conditions that would 
affect their ability to complete the assessments, children who already 
met criteria for an alcohol or substance use disorder). Thus, researchers 
should refrain from implying study findings from using ABCD Study® 
data (regardless of whether the analytic approach is design-based or 
model-based) are “representative” to “all children”; rather, we 
encourage ABCD Study® users to be specific about who the results are 
designed to generalize to (e.g., 9- and 10-year-olds in the United States 
who meet certain eligibility criteria). 

6. Future directions and conclusions 

The advent of Population Neuroscience (Falk et al., 2013; Paus, 
2010) and the inclusion of probability sampling in large-scale neuro-
imaging studies (Garavan et al., 2018; Tomlinson et al., 2020; White 
et al., 2013) holds great promise for increasing sociodemographic rep-
resentation in and population generalizability of human neuroscience 
research. We conclude by highlighting several ongoing areas of research 
that complement our discussion of population-based neuroscience 
(Table 3). First, we highlight existing recruitment, retention, and ana-
lytic practices shown to increase sociodemographic diversity even in the 
context of convenience sampling designs. This includes the long history 
of inclusive recruitment and retention practices in developmental sci-
ence that focuses on elevating the experiences of racial-ethnic margin-
alized communities in research. We also point readers to a growing 
literature evaluating the performance of survey weighting in 
non-probability samples. Second, an active area of inquiry in the ABCD 
Study® is the construction of longitudinal survey weights. Future data 
releases will undoubtedly include weights that account for sample 
retention and drop-out, information necessary for maintaining the 
population-level generalizability as the study sample is tracked over the 
next decade. Lastly, there is a growing discussion around what consti-
tutes a “meaningful” effect size (Dick et al., 2021; Owens et al., 2021). 
Although we use this term and reference existing benchmarks in the field 
(e.g., Cohen’s d), more research is needed, particularly in the context of 
large population-based studies. 

Population-based probability sampling in the ABCD Study® repre-
sents a major innovation in Population Neuroscience (Paus, 2010) by 
bringing together survey methodologists and developmental neurosci-
entists to increase the generalizability of human neuroscience research 
(Falk et al., 2013). Inclusion of children and families historically 
under-represented in human neuroimaging research is a major step 
forward and away from historical marginalization in brain and 
biomedical research (Dotson and Duarte, 2020; Qu et al., 2021). At the 

same time, without thoughtful use of this open-access dataset, studies 
may not be leveraging its strengths, and could come to erroneous con-
clusions. In broadening beyond these issues, Simmons et al. (2021) 
highlighted two considerations for ABCD Study® data users: acknowl-
edgment of the broader social context in which development occurs, 
with attention to oppression and inequality that intersects with identity 
(Neblett Jr, 2019); and the recognition that resilience and adaptation are 
common (Masten, 2001), and can be reflected at multiple levels of 
analysis (physiology, brain, behavior). We echo these considerations 
and add that sample composition and generalizability similarly factor 
into responsible use of open-access data from ABCD Study®. 
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