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Use data augmentation for a deep 
learning classification model with chest 
X‑ray clinical imaging featuring coal workers’ 
pneumoconiosis
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Abstract 

Purpose:  This paper aims to develop a successful deep learning model with data augmentation technique to dis-
cover the clinical uniqueness of chest X-ray imaging features of coal workers’ pneumoconiosis (CWP).

Patients and methods:  We enrolled 149 CWP patients and 68 dust-exposure workers for a prospective cohort 
observational study between August 2021 and December 2021 at First Hospital of Shanxi Medical University. Two 
hundred seventeen chest X-ray images were collected for this study, obtaining reliable diagnostic results through the 
radiologists’ team, and confirming clinical imaging features. We segmented regions of interest with diagnosis reports, 
then classified them into three categories. To identify these clinical features, we developed a deep learning model 
(ShuffleNet V2-ECA Net) with data augmentation through performances of different deep learning models by assess-
ment with Receiver Operation Characteristics (ROC) curve and area under the curve (AUC), accuracy (ACC), and Loss 
curves.

Results:  We selected the ShuffleNet V2-ECA Net as the optimal model. The average AUC of this model was 0.98, and 
all classifications of clinical imaging features had an AUC above 0.95.

Conclusion:  We performed a study on a small dataset to classify the chest X-ray clinical imaging features of pneumo-
coniosis using a deep learning technique. A deep learning model of ShuffleNet V2 and ECA-Net was successfully con-
structed using data augmentation, which achieved an average accuracy of 98%. This method uncovered the unique-
ness of the chest X-ray imaging features of CWP, thus supplying additional reference material for clinical application.

Keywords:  Coal workers’ pneumoconiosis classification, Chest X-ray, Deep learning, ShuffleNet, ECA-Net, Data 
augmentation
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Introduction
Coal workers’ pneumoconiosis (CWP) is an occupa-
tional lung disease whose specific pathological changes 
include diffuse interstitial lung fibrosis [1] due to pro-
longed exposure to excessive quantities of respira-
tory coal dust. This condition can lead to irreversible 
and potentially fatal lung diseases, including chronic 
obstructive pulmonary disease, tuberculosis, chronic 
bronchitis, emphysema, and other lung diseases [2]. 

Open Access

†Hantian Dong and Biaokai Zhu have contributed equally to this work

*Correspondence:  XinriZhang@outlook.com

3 National Health Commission Key Laboratory of Pneumoconiosis, Shanxi Key 
Laboratory of Respiratory Diseases, Department of Respiratory and Critical 
Care Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang 
South Road, Taiyuan 030001, Shanxi, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-022-02068-x&domain=pdf


Page 2 of 14Dong et al. BMC Pulmonary Medicine          (2022) 22:271 

Although the prevalence of CWP has substantially 
decreased over the past few decades, according to 
recent research [2–4], the incidence in the eastern 
region of the United States and the state of Queens-
land in Australia has shown a worryingly increasing 
trend. In China, the prevalence of CWP appears high, 
with one report indicating that it constituted over 6% 
of all Chinese occupational diseases in the 2010s; spe-
cifically, over 13,000 miners were diagnosed with CWP 
in 2013 and 2014 [5]. Moreover, according to the China 
National Report of occupational diseases, CWP was 
one of the most prevalent types of pneumoconiosis 
among all age groups, and most pneumoconiosis cases 
were diagnosed among males [6].

Although pneumoconiosis is prevalent and there are 
no effective therapies for the treatment of CWP, an early 
diagnosis can broadly prevent the development of com-
plications and aid in the development of early treatments 
for any that do arise. Currently, X-ray is the essential tool 
for suggesting whether there are any suspicious find-
ings of pneumoconiosis via the identification of subtle 
graphic patterns and features described in the Interna-
tional Labour Organisation (ILO) guidelines. The typical 
radiological features of CWP include small nodular inter-
stitial opacities in the upper zones; however, not all these 
features are exclusive to CWP [7]. A long-term evalua-
tion of CWP in America found that almost 40% of coal 
miners with radiographical interstitial changes had pre-
dominantly irregular opacities [8]; on X-ray images, these 
irregular opacities may also be features of mixed-dust 
pneumoconiosis (MDP), which, pathologically, manifests 
as a pneumoconiosis showing dust macules or mixed-
dust fibrotic nodules, with or without silicotic nodules, in 
an individual with a history of exposure to mixed dust [9]. 
The radiological findings of CWP with secondary lung 
disease might be similar to those seen in idiopathic pul-
monary fibrosis [7, 10]. In addition, the respiratory symp-
toms of CWP are nonspecific and mostly overlap with 
other coal dust-related conditions, such as chronic bron-
chitis, chronic obstructive pulmonary disease (COPD), 
and emphysema [11]. Many CWP and dust-exposed 
workers often choose general hospitals for treatments 
when they begin coughing and presenting with dysp-
noea. Generally, the imaging workup for chest diseases 
starts with a chest X-ray (CXR), but it has a limited role 
in diagnosing pulmonary complications of pneumoconi-
osis because of overlapping pneumoconiotic infiltration 
[12]. Patients with CWP experience many complications, 
such as chronic interstitial pneumonitis and pneumotho-
rax; hence, knowledge of the CWP imaging features on 
chest radiographs are important for improving the rates 
of early diagnosis and cure, especially considering the dif-
ficulties in recognizing and treating the disease.

Prior studies have reported encouraging results in 
medical image analysis with artificial intelligence (AI) 
[13–18]. Although they are unlikely to replace radi-
ologists for the foreseeable future, AI algorithms have 
achieved performance comparable to that of radiology 
experts in interpreting CXRs [19]. Deep learning (DL), 
a subdiscipline of AI, has emerged as a new solution for 
many medical image analysis problems, with remarkable 
success in classifying pneumoconiosis grade and explor-
ing the application of AI in detecting pneumoconiosis 
[20, 21]. The merits of DL lie in its ability to learn com-
plex imaging features or patterns inconspicuously with-
out purposefully identifying and extracting them, as tens 
of millions of features may be involved and analysed to 
obtain high-level features [18].

Many kinds of deep learning models, also known as 
deep convolutional structures, such as EfficentNet [22], 
VGGNet [23], ResNet [24], ZDNet [25], DenseNet [26], 
and GoogleNet [27], have been proposed that can pro-
vide peer-to-peer solutions for image feature extraction 
and are superior to traditional criteria in almost all image 
recognition tasks [13]. In the field of pneumoconiosis 
screening and staging, the core design of these experi-
ments mainly depended on massive datasets. Challenged 
by unadequate analysis of limited data, to address this 
problem, it is necessary to apply data augmentation to 
increase the additional data in our deep learning model, 
which could help DL model more generalisable and ulti-
mately improve performance on the model training.

In this paper, we proposed a deep learning classifica-
tion model based on the data augmentation technique 
that could steadily improve the ability of radiologists to 
interpret CWP chest radiographs by screening and dis-
covering the uniqueness of imaging features of CWP, 
thus potentially improving the comprehension of the 
clinical radiologic manifestations of pneumoconiosis.

Materials and methods
Patients and data collection
Patients with CWP or who were exposed to dust who 
voluntarily participated in the Coal Mining Workers’ 
Pneumoconiosis and dust exposure Cohort Study (CON-
DUCT) between 28 August 2021 and 12 December 2021 
were enrolled. CONDUCT was a CWP-based prospec-
tive cohort study conducted to understand the epide-
miological characteristics of CWP, to explore the related 
risk factors for pneumoconiosis in addition to dust and to 
encourage research on CWP in terms of early diagnosis, 
novel mechanisms and drug discovery.

In the study reported here, we collected workers with 
confirmed CWP and dust-exposed workers from coal 
mines around Taiyuan City complicated with cough, 
dyspnoea, or other symptoms. Most of the patients were 
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initially treated at a local tertiary-A integrated hospital 
for CXR assessment. Among the coal mining workers 
with the chronic respiratory symptoms listed above, we 
identified those who participated in CONDUCT after 
obtaining permission from the Taiyuan City Center for 
Disease Control and Prevention and provided them with 
yearly clinical systematic health checks. We classified the 
imaging features listed in the corresponding examination 
reports and extracted features from the target regions 
of the pneumoconiosis CXR images using the enhanced 
ShuffleNet V2 combined with ECA-Net based on deep 
learning. This model was used for target region classifica-
tion training to perform clinical imaging feature classifi-
cation for CWP/dust-exposed workers and to explore the 
application of deep learning in imaging feature detection 
for CWP.

All CXRs analysed in our study were collected from 
the first of three yearly follow-up surveys from CON-
DUCT in 2021. All patients included in this study signed 
informed consent forms, and the Ethics Committee of 
the First Hospital of Shanxi Medical University approved 

the study (2020  K-K104). The database established by 
the cohort study was registered in the Chinese Clini-
cal Trial Registry (27/08/2021, ChiCTR2100050379). 
It included 217 anonymized CXRs, from male patients 
aged 35–80 years with cough, dyspnoea, or other symp-
toms; 149 patients were placed in the CWP group (whose 
stages are defined in Table  1), and the remaining 68 
patients were placed in the standard group (dust-exposed 
workers). For patients with multiple previous hospitaliza-
tions or visits, the data during this study were adopted. 
The duration of exposure to dust (for patients with a clear 
dust-exposure history) was more than 15 years, with an 
average of 28.95 ± 14 years. We present the patient base-
line characteristics of the different groups in Table 2.

Chest X‑ray acquisition
We obtained chest radiographs using a mobile X-ray 
system (Carestream, DRX-Revolution VX3733-SYS, 
America), with a tube voltage of 120–150 kVp, exposure 
time of 100 ms, and optimum source-to-image distance 
(SID) of 180 cm. After calibration, the industry standard 

Table 1  Definition of CWP stages (according to GBZ70-2015)

Summary of pneumoconiosis standard (CXR)

Dust-exposure workers (Coal Mining 
Workers with clear dust-exposure his-
tory)

No opacities discovered, or small opacities (Level 1 profusion) discovered in one subregion

CWP Stage I Small opacities (Level 1 profusion) discovered in two subregions at least, or small opacities (Level 2 profusion)
discovered in four subregions at most

CWP Stage II Small opacities (Level 2 profusion) discovered in four subregions at least, or small opacitie (Level 3 profusion) 
discovered

CWP Stage III Small opacities (Level 3 profusion) discovered in four subregions at least, or large opacities discovered

Table 2  Baseline characteristics

M: mean, SD: standard deviation, mMRC: modified Medical Research Council

All subjects Dust-exposed 
workers

CWP
Stage I

CWP
Stage II

CWP
Stage III

M (SD)

Age (yr), mean (SD) 55 (13) 48.7 (6.0) 60 (11) 57.9 (7.9) 56.3 (7.6)

Exposure duration (yr), mean (SD) 29.0 (14) 21.6 (7.5) 32.0 (10) 27.0 (14) 16.4 (1.5)

Dyspnoea (SD) 3 (9) 0 (3) 6 (9) 4 (11) 3.7 (2.1)

Cough (SD) 0.3 (6) 0 (3) 2 (9) 0 (7) 8.3 (4.6)

mMRC score (SD) 2 (2) 0 (2) 2 (2) 2 (0) 1.8 (0.8)

Industry type

Total 217 63 130 22 2

Mining (n) 63 32 26 5 0

Tunnelling (n) 105 29 60 14 2

Comprehensive digging (n) 17 0 16 1 0

Mixing (n) 19 2 15 2 0

Other (n) 13 0 13 0 0
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regulated by Digital Imaging and Communications in 
Medicine (DICOM) was required for the CXR images.

Classification and segmentation
To build the CWP CXR imaging feature classification 
system, we invited three radiologists with 5–10 years of 
experience in interpreting CXR to create imaging diagno-
sis reports for all CXRs, which were subsequently inde-
pendently analysed. Then, two senior radiologists with 
over 10  years of experience reviewed these diagnostic 
results and made the final diagnostic decisions. During 
this period, the senior radiologists were not informed of 
any details of the CWP study.

The clinical CXR imaging features were confirmed 
based on the diagnostic reports by our experienced radi-
ology team and included the following: (A) pulmonary 
nodules; (B) pulmonary interstitial changes; (C) emphy-
sema; (D) pleural plaques; and (E) mediastinal masses. 
Previous research on pneumoconiosis classification pro-
posed handcrafted feature extraction from each region of 
interest (ROI) [28, 29]. To identify the target lung region 
in each CXR, we segmented the ROIs (shown in Fig. 1) 
from the lung field via screenshot while referencing the 
diagnosis reports. Moreover, these images were saved 
as JPEG images of appropriate size (at least 30 × 30 pix-
els). Of the 217 patients recruited in the study, one ROI 
was segmented from 171 patients each (171 ROIs) two 
ROIs were segmented from 22 patients each (44 ROIs), 
and three ROIs were segmented from the remaining 24 
patients each (72 ROIs). The ROIs were then assigned the 
following data labels: pulmonary nodules (n = 376), pul-
monary interstitial changes (n = 116), and emphysema 

(n = 28); pleural plaques and mediastinal masses were 
excluded, as they were severely underrepresented on the 
CXRs (n < 10). Finally, all imaging features were classified 
into three categories: A (pulmonary nodules), B (pulmo-
nary interstitial changes), and C (emphysema) (shown 
in Fig. 1). Table 3 shows the detailed distribution of the 
clinical CXR imaging features.

Deep learning CWP image data augmentation model
Due to the limitations of small datasets, Devnath et  al. 
[30] first proposed transfer learning with a convolu-
tional neural network (CNN) for the detection of pneu-
moconiosis disease on CXR. Subsequently, many studies 
[31, 32] confirmed CWP detection on CXR using data 
augmentation, which improved the quality of the deep 
CNN, increased the amount of training data, and outper-
formed other statistical and traditional machine learning 
approaches as well as radiologists. Considering the par-
ticular characteristics of medical images, we performed 
some additional information or data transformation 
on the original images to selectively highlight specific 
regions or suppress unimportant regions, thus enhancing 
the image data, making them more conducive to model 
training and avoiding overfitting the results of the model.

The flow chart of the method used in this study is 
shown in Fig. 2, and the confusion matrix of the accuracy 
of multiple models in Fig. 3. In this study, through com-
prehensive comparisons, the original ShuffleNet model 
was shown to possess higher classification accuracy and 
recall than the other models; thus, we chose it for modifi-
cation to further improve its performance.

Fig. 1  Original CXR a with identifying target lung region. We segmented b regions of interest (ROIs) classified into three types
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ShuffleNet
Practical integration of data augmentation is an impor-
tant discussion point regarding the development of 
future deep learning workflows [33, 34]. As our dataset 
contained 520 ROIs from a total of 217 images, it was 
essential to provide an adequate analysis of the limited 
data. ShuffleNet is an exceedingly computationally effi-
cient CNN model proposed by Zhang X in 2018, who 
designed this new model to perform two new operations, 
pointwise group convolution and channel shuffling, to 
significantly reduce the computational cost while main-
taining accuracy [35]. Compared with ImageNet clas-
sification and MSCOCO object detection, their study 
demonstrated the superior performance of ShuffleNet 
over other structures and highlighted the advantages of 
packet convolution in operational efficiency, especially 
for small datasets.

Efficient channel attention (ECA)‑Net
Some researchers have claimed that a multiscale aug-
mentation strategy is crucial for data expansion and thus 
increasing the accuracy of classification modelss [20]. 
The channel attention mechanism has been proven to 
improve the accuracy of CNN models; however, the per-
formance improvement achieved by incorporating such 
sophisticated attention methods unavoidably increases 
the model complexity. In 2020, Wang et al. [36] proposed 

Table 3  Distribution of clinical CXR imaging features

ROI: Region of interest

CXR Imaging feature Lung zone Number 
of ROIs

Pulmonary nodules Top-right 83

Middle-right 77

Bottom-right 26

Top-left 112

Middle-left 55

Bottom-left 23

Total 376

Pulmonary interstitial changes Top-right 2

Middle-right 21

Bottom-right 24

Top-left 1

Middle-left 33

Bottom-left 35

Total 116

Emphysema Top-right 8

Middle-right 3

Bottom-right 4

Top-left 6

Middle-left 4

Bottom-left 3

Total 28

Fig. 2  Flowsheet clarifying the procedure of classifying CXR clinical features among CWP
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an efficient channel attention (ECA) module that only 
requires a handful of parameters while providing appar-
ent performance improvements. The ECA-Net mecha-
nism is a “plug-and-play”, lightweight attention module 
that generates channel attention by using fast 1D convo-
lution to ensure model efficiency and accuracy. Consid-
ering the superiorities of ECA-Attention, it can lead to 
significant model accuracy improvements despite the use 
of finite sample data, thus increasing the ability to classify 
imaging features.

Image data augmentation
Current studies [37, 38] suggest that image data aug-
mentation could be divided into two major categories: 
basic image manipulations and augmentation meth-
ods based on deformable techniques and DL-based 
approaches.This study applied augmentation technique 
based on basic image manipulation. To expand the 
ROI dataset and increase the robustness of the model, 
all ROIs were segmented manually, despite the poten-
tial lack of objectivity; it was necessary to perform 
image data augmentation in case of overfitting during 

the training process, which we summarize as follows. 
First, we performed k-fold cross-validation to split the 
original dataset into three groups: the training group 
accounted for 70% of the data, the validation group 
accounted for 20%, and the test group accounted for 
10%. Second, ROIs were randomly selected from differ-
ent groups in the original dataset and processed with 
all kinds of image dataset augmentation techniques 
(shown in Table 4). These operations yielded a total of 
over 12,000 training images were acquired.

Implementation details
All ROIs were divided into ten groups (ten-fold cross-
validation); the individual groups were separately 
adopted as test data, and the remaining nine groups 
were used for training in turn; thus, each round trained 
16 images. We set the initial learning rate to 0.0001, the 
number of training epochs to 30, and the classification 
output to three types. Through the PyTorch tool, the 
above steps could be performed adequately with one 
RTX 2080Ti GPU.

Fig. 3  Comparison of accuracy in CWP classification with different algorithms
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Table 4  Detailed classification of image dataset augmentation

Classification Image Data Augmentation Examples Description

Random 
Rotation

Image data can be enhanced via either 

random rotation (rotating the image at a 

random angle from 10°~45°) or fixed 

rotation (90°). The original dataset can be 

expanded three times through three 

random rotations.

Sharpness 
Enhancement

The algorithm first performs Gaussian 

filtering on the image, and then reduces 

the value to between 0 and 255 by 

subtracting the pixel value of the 

corresponding filtered image pixel value 

from the pixel value of the corresponding 

position of the original image to achieve a

sharpening effect. This helps clarify any 

blurred pixels on the original image and 

retains the most important information in 
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Table 4  (continued)

the pneumoconiosis images for 

recognition.

Random 
Horizontal Flip

Random flip is a very common data 

enhancement method and can be 

performed horizontally or vertically. 

Horizontal flip is the most commonly used 

in medical images, as it can simulate 

cardiopulmonary images in different 

poses and improve the ability of the model 

to classify images in different directions 

well.

Gaussian Blur

Gaussian blur is a linear smoothing 

filtering algorithm for eliminating Gaussian 

noise and is a widely used noise reduction 

process in image processing. Pixels at 

different positions are given different 

weights, and a weighted average 

calculation is performed on the image.
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ShuffleNet V2 combined with ECA‑Net 
(ShuffleNet‑Attention)
The ShuffleNet-v2 network is an optimized version the 
ShuffleNet structure based on criteria such as optimal 
MAC, reduced network fragmentation, and reduced 
elementwise operations [39]. Several preliminary 
experimental results showed that using the original 
ShuffleNet for classification training always confused 
pulmonary interstitial changes with emphysema. To 
avoid causing feature misidentification, we chose Shuf-
fleNet V2 as the model backbone and combined it with 
the ECA-Net mechanism after each convolution layer, 
creating ShuffleNet-Attention (Additional fles 1, 2, 3, 
4). Through this combination of two models, the con-
volution layers of each block can be simplified, while 
more semantic information is conveyed to the feature 
layers. This reduced the computational complexity by 
more than 40% with respected the original network, 

markedly increasing the classification accuracy (from 
92 to 94%) more rapidly.

Evaluation metrics
As performance metrics for the model, accuracy, loss 
function, precision, recall, F1-score, the receiver operat-
ing characteristic (ROC) curve and the area under the 
ROC curve (AUC) were evaluated. The evaluation met-
rics involved in this study are calculated as follows:

Accuracy is defined here as the number of correctly 
classification of CWP clinical features divided by the 
total number of classification of CWP clinical fea-
tures evaluated. In deep learning classifcation tasks, 
the loss function is commonly applied to optimize the 

(1)Accuracy =
Total of all true classsification

Total of all images classsification

Table 4  (continued)

Image 
Histogram 
Equalization

Most pneumoconiosis images in the 

medical field are black and white images, 

and a histogram can be generated that 

reflects the grey pixel distribution pattern 

of the image, allowing the quality of the 

image to be judged accordingly.

Random 
Brightness

By randomly adjusting the HSV colour 

space in the image, the model can 

achieve a good learning effect even when 

the image exposure level differs across 

inputs.
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parameters of the model, which can improve the clas-
sifcation accuracy and promote the weights of catego-
ries with smaller samples effectively.

Recall is defined here as the proportion of correctly 
classification of CWP clinical features.

(2)Recall =
Total of all false positive classsifications (FP)

Total of all false positive classsifications (FP)+ Total of all true negative classsifications (TN)

(3)Precision =
Total of all true positive classsifications (TP)

Total of all true positive classsifications (TP)+ Total of all false positive classsifications (FP)

The precision measures the probability of making 
correct positive classification of CWP clinical features.

(4)F1 - score =
2× Precision× Recall

Precision+ Recall

Table 5  Performance of ShuffleNet v2, ResNet 50, GoogleNet, DenseNet 121 and ShuffleNet-Attention on the test set

Class A: pulmonary nodules, Class B: pulmonary interstitial changes, Class C: emphysema

Accuracy Recall F1-score Precision

Class A Class B Class C

Shufflenet-Attenion 0.96 0.97 0.96 0.96 0.92 0.93

Shufflenet v2 0.94 0.95 0.95 0.95 0.89 0.9

Resnet 50 0.9 0.94 0.93 0.93 0.85 0.84

Googlenet 0.91 0.94 0.92 0.92 0.91 0.82

Densnet 121 0.89 0.9 0.86 0.86 0.82 0.88

Fig. 4  The accuracy in classification with different models with epochs
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A high F1-score reflects good classification perfor-
mance, as it is the harmonic mean of precision and recall.
The F1 score reaches its highest value at 1 and his lowest 
value at 0.

In order to help correctly evaluating the DL-model 
classifier integral performance, we evaluated the classi-
fied accuracy of CWP clinical features according to the 
receiver operating characteristic (ROC) curve and the 
area under the ROC curve (AUC).The ROC curve, which 
has been widely used in the field of medicine to evaluate 
the performance of deep learning diagnostic methods, is 
the plot of the true positive rate against the false negative 
rate at different threshold values, and the AUC is the area 
under the ROC curve and represents the quality of the DL 
model; a larger value indicates a better classification effect.

Results
We summarized the model evaluation results using the 
test dataset (Table 5), the accuracy in CWP imaging fea-
ture classification with different models (Fig. 3), the accu-
racy versus the training epochs (Fig.  4), and the model 
loss versus the epochs (Fig. 5). ShuffleNet V2 combined 
with ECA-Attention (ShuffleNet-Att) reached the mini-
mum value between epochs five and ten, slightly lower 
than the other models (Fig.  4). With sufficient training, 

the accuracy increased significantly after epoch 15, 
reaching more than 95% after epoch 25, while the loss 
curve (Fig.  5) reached its lowest point after epoch 25; 
thus, ShuffleNet-Attention ultimately achieved the best 
performance among these models.

Therefore, we selected ShuffleNet-Attention as the 
optimal model following this comparison and analysis. 

Fig. 5  The losses in classification with different models with epochs

Fig. 6  The ROC curve in classification with different models with 
epochs. Class A: pulmonary nodules, Class B: pulmonary interstitial 
changes, Class C: emphysema
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According to ROC curve analysis, the average AUC was 
0.98; more specifically, the model achieved an AUC of 
0.97 in classifying pulmonary nodules (Class A), 0.96 in 
classifying pulmonary interstitial changes (Class B), and 
1.0 in classifying emphysema (Class C), as demonstrated 
in Fig. 6.

Discussion
In the present study, we built a reliable model for classify-
ing pneumoconiosis clinical imaging features by utilizing 
potential deep learning algorithms and well-annotated 
chest radiographs. To identify the clinical CXR imaging 
features of pneumoconiosis patients and dust-exposed 
workers more quickly and effectively, a computer-aided 
classification system was constructed by combining Shuf-
fleNet V2 with ECA-Net.

Several previous studies have shown satisfactory per-
formance for radiologists in using automatic DL-based 
models for pneumoconiosis screening and staging with 
CXR images. Among these studies [18, 21], the good 
performances were primarily attributed to the size of 
the datasets, which contained approximately 2000 chest 
radiographs from multiple centres or devices. When 
comparing the performance with evaluation metrics for 
different DL algorithms in interpreting pneumoconiosis, 
among a range of options available, the studies selected 
the best one to learn the image features to obtain an 
accurate classification of the pneumoconiosis grade. It 
is still necessary to obtain larger datasets whose lesion 
appearances of interest vary significantly for deep learn-
ing, implying that massive datasets play a vital role in 
these studies. In another study by Zhang et al.[20], a total 
of 405 DR images were analysed for screening and stag-
ing pneumoconiosis. They performed extensive image 
augmentation with a limited amount of training data, 
which vastly reduced the influence of sampling condition, 
image contrast, and lung size and improved the accu-
racy of the model. However, unlike the above studies, our 
study focused specifically CWP and aimed to analyse its 
imaging features from the perspective of secondary pre-
vention to further improve the understanding of the dis-
ease in a clinical environment. In addition, CWP is the 
most common pneumoconiosis among dust-exposed 
workers; however, it is an entirely different disease from 
other pneumoconioses, such as silicosis. Even though 
their imaging features seem similar, there are consider-
able differences between CWP and other pneumoconio-
sis in terms of pathological characteristics, which makes 
specifically identifying CWP cases a challenge. We con-
sider it essential to analyse and explore essential variables 
based on clinical knowledge of CWP.

This study focuses on classifying pneumoconiosis clini-
cal imaging features for the following reasons: (1) Instead 

of screening and staging pneumoconiosis by only analys-
ing lung regions on chest radiographs, it may be more 
necessary and useful to focus on analysing the charac-
teristics of CWP with clinical eyes and classify pneumo-
coniosis clinical imaging features, as this may be more 
beneficial to the differential diagnosis of CWP and thus 
the early evaluation of the condition and the adminis-
tration of early treatment. (2) Due to the complexity of 
the multiple classifications in pneumoconiosis and the 
particularity of the diagnosis process, workers exposed 
to coal minerals have an increased risk of CWP. The pre-
diction models have high accuracy and were augmented 
with improvements in data extraction by deep learn-
ing techniques that include more clinically significant 
variables.

This study focuses on classifying pneumoconiosis clini-
cal imaging features for the following reasons: (1) Instead 
of screening and staging pneumoconiosis by only analys-
ing lung regions on chest radiographs, it may be more 
necessary and useful to focus on analysing the charac-
teristics of CWP with clinical eyes and classify pneumo-
coniosis clinical imaging features, as this may be more 
beneficial to the differential diagnosis of CWP and thus 
the early evaluation of the condition and the adminis-
tration of early treatment. (2) Due to the complexity of 
the multiple classifications in pneumoconiosis and the 
particularity of the diagnosis process, workers exposed 
to coal minerals have an increased risk of CWP. The pre-
diction models have high accuracy and were augmented 
with improvements in data extraction by deep learn-
ing techniques that include more clinically significant 
variables.

Our study has several limitations. First, this sample size 
might be too small to obtained more detailed features 
for deep learning. We attempted to define the clinical 
difference between dust-exposed workers and patients 
with different CWP stages by classifying various imag-
ing features. However, the sample size was 217 patients, 
which may have been too low. While this study had suf-
ficient power to discern classifying outcomes correctly 
among these groups, more sample sizes would be needed 
to verify the accuracy of our study in the future. Second, 
the noninclusion of specific imaging features in the DL 
model, such as the position of pleural plaques and medi-
astinal masses, was not analysed, as the algorithm was 
not specifically trained for those features due to their 
low incidence in our dataset. A pooled analysis using 
the data from these features may be more beneficial in 
expanding the knowledge for different aspects of CWP 
clinically.Third, compared with the pulmonary nodules 
and pulmonary interstitial changes dataset, it is possible 
that the emphysema dataset was not sufficiently large to 
demonstrate significant feature differences, which might 
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have contributed to the high accuracy for this classifica-
tion. Shorten C et  al. suggested that data augmentation 
cannot overcome all biases emerging in a small dataset; 
however, it can prevent overfitting by modifying limited 
datasets to better represent the characteristics of big 
data [33], which implies the need to obtain more imaging 
data for verification. After all, there are many limitations 
in identifying emphysema imaging features with chest 
radiographs. Computed tomography (CT) could provide 
more specific emphysema imaging features and should 
be analysed in future studies.

In addition, the clinical diagnosis of pneumoconiosis 
in China may be challenging. Hence, we believe that it 
remains crucial to better manage affected patients and 
to analyse valid clinical data. There may still be a lack of 
well-understood relationships between pneumoconiosis 
and imaging features on chest radiographs, and further 
research is needed.

Conclusion
In this study, we classified CXR clinical imaging fea-
tures of CWP using a deep learning technique on a 
small dataset, and a data augmentation model was suc-
cessfully constructed by combining ShuffleNet V2 and 
ECA-Net. ShuffleNet-Attention demonstrated the best 
performance among the different models investigated 
and achieved an average accuracy of 98% for the imag-
ing dataset. While this proposed method is incapable 
of screening and staging pneumoconiosis, the success-
ful data augmentation model could assist radiologists in 
discovering the uniqueness of imaging features of CWP 
by using chest radiographs, thus supplying more refer-
ences for clinical application.

Our study was part of a multicentre prospective 
cohort study; future work will be devoted to testing and 
verifying the application of the DL-based model in a 
clinical environment and obtaining more imaging data 
to support further research.
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