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Lung ultrasound vs chest
 radiography in the
diagnosis of children pneumonia
Systematic evidence
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Abstract
Background: The aim of this meta-analysis was to evaluate the diagnostic value of lung ultrasound (LUS) in comparison to chest
radiography (CXR) in children with pneumonia.

Methods: Computer-based retrieval was performed on PubMed and EMBASE. Quality was evaluated according to the quality
assessment of diagnostic accuracy studies-2, and Meta-Disc was adopted to perform meta-analysis. Heterogeneity was assessed
using Q and I2 statistics. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals (CIs) as the
primary outcomes were calculated for each index test.

Results: Twenty two studies with a total of 2470 patients met the inclusion criteria. Our results showed that the pooled sensitivity,
specificity, and DOR for children with pneumonia diagnosed by LUS were 0.95 (95% CI: 0.94 to 0.96), 0.90 (95% CI: 0.87 to 0.92),
and 137.49 (95% CI: 60.21 to 313.98), respectively. The pooled sensitivity, specificity, and DOR for pediatric pneumonia diagnosed
by CXR was 0.91 (95% CI: 0.90 to 0.93), 1.00 (95% CI: 0.99 to 1.00), and 369.66 (95% CI: 137.14 to 996.47), respectively. Four
clinical signs, including pulmonary consolidation, positive air bronchogram, abnormal pleural line, and pleural effusion were most
frequently observed using LUS in the screening of children with pneumonia.

Conclusions: The available evidence suggests that LUS is a reliable, valuable, and alternative method to CXR for the diagnosis of
pediatric pneumonia.

Abbreviations: AUC = the areas under curve, CI = confidence interval, CT =Computed Tomography, CXR = chest radiography,
DOR = diagnostic odds ratio, DOR = diagnostic odds ratio, FN = false-negative, FP = false-positive, LUS = lung ultrasound, NLP =
negative likelihood ratio, PLR = positive likelihood ratio, QUADAS-2 = the quality assessment of diagnostic accuracy studies-2,
SROC = the summary receiving operating characteristic, TN = true-negative, TP = true-positive.
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1. Introduction
Pneumonia is a common infectious disease in children and the
main cause of death in children .[1] At present, the diagnosis of
pneumonia in children mainly depends on medical history,
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1

clinical manifestations, and related auxiliary examinations (e.g.,
chest X-ray), which have played an important role in the
diagnosis of pneumonia in children. However, chest radiography
(CXR) has several limitations. In detail, the results of CXR are
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greatly affected by internal and external factors such as the child’s
posture and reporting physicians. CXR cannot be discerned when
lung consolidation is <1.0cm.[2] This may be due to the fact that
chest radiographs are two-dimensional images of normal and
abnormal lobes superimposed, making it difficult to observe
small lesions.[3] Next, CXR is inconvenient and costly for
children to be examined. Additionally, the sensitivity of radiation
damage for children is at least 4 times that of adults.[4] Therefore,
some scholars are actively exploring and eager to find an
inspection method that can not only improve the accuracy of
diagnosis of pneumonia, but also reduce exposure to ionizing
radiation.
The lung is a gas-containing organ and has always been a blind

spot for ultrasound. In recent years, with the continuous
advancement of ultrasound diagnostic techniques, ultrasound
images have been used to analyze pleural and lung tissue
sonograms under pathological conditions. Therefore, it is
possible to apply ultrasound to the diagnosis of pneumonia. In
1986, Weinbeg et al initially proposed the use of type B
pulmonary ultrasound to evaluate pneumonia.[5] Due to the small
size of the lungs in children, changes in the lungs can easily reach
the pleura, making it easier to detect abnormal signs during lung
ultrasonography.[6] A large number of studies have investigated
the diagnostic yield of lung ultrasound (LUS) in children
pneumonia. However, these studies not only had wide variation
in sample size, but also conveyed inconclusive results. We
therefore pre-stated rigorous inclusion criteria and conducted a
meta-analysis involving available studies to systematically assess
the diagnostic yield of LUS in children with pneumonia.
2. Methods

2.1. Search strategy and selection criteria

Computer-based retrieval was performed on PubMed and
EMBASE from inception through October 2019 for eligible
studies with the following keywords
“ultrasonography” or “ultrasound” and “pneumonia” and

“children” or “childhood” or “pediatric”. All eligible trials were
published in English. Bibliographies of all potential studies, such
as reference lists, citation searches, and relevant systematic
reviews, were searched by hand. The present study was supported
by the Ethics Committee of BinzhouMedical University Hospital.
The present selection criteria were as follows:
1.
 population: children or pediatric patients (age<18 years) with
pneumonia based on a combination of clinical data,
laboratory results, and CXR;
2.
 study design: comparing the diagnostic value of LUS vs CXR
in the diagnosis of child pneumonia;
3.
 sufficient data: reported data allowing calculation of the true-
positive (TP), false-positive (FP), false-negative (FN), and true-
negative (TN) values.

2.2. Data extraction and quality assessment

All data were extracted from all trials by 2 independent
investigators (JHY and LP). The data included the first author,
publication year, country, number of patients, age and sex of
patients, LUS technique and operator, study design, blind, and
pneumonia diagnostic criteria. Disagreements among authors
were settled by discussion or a third investigator (YBG).
2

The quality of the studies was evaluated according to the
quality assessment of diagnostic accuracy studies-2 (QUADAS-
2).[7] The QUADAS-2 tool contains 4 key domains:
1.
 patient selection,

2.
 index test,

3.
 reference standard, and

4.
 flow and timing.

Each domain is assessed as “yes”, “unclear”, and “no” to
judge risk of bias. Furthermore, the first 3 domains are also
assessed as “high”, “Unclear”, and “low” concern to judge
applicability. We rated the quality assessment and risk of bias
using the RevMan 5.3.0 (Nordic Cochrane Centre). This
evaluation information is detailed in Supplemental Digital
Content (Fig. S1, http://links.lww.com/MD/F370), which is
contained in online appendices.
2.3. Statistical analysis

The present study was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses statement.[8] The DerSimonian-Laird random-effects
model was used to calculate the data as a forest plot of pooled
sensitivity, specificity, positive likelihood ratio (PLR) and
negative likelihood ratio (NLP), and diagnostic odds ratio
(DOR) with 95% confidence intervals (CIs) for LUS and CXR,
respectively. The summary receiving operating characteristic
(SROC) curve and the pooled diagnostic accuracy (Q∗ index) as
well as the area under curve (AUC) were also measured. The
SROC curve moves closer to the upper left corner of the larger
area under the curve, which indicates that the accuracy of
diagnostic tests is higher. Heterogeneity was evaluated using I2

statistics, and threshold effect was determined using the
Spearman correlation coefficient.[9,10] If I2 >50%, potential
sources of heterogeneity were identified by sensitivity analyses.
Furthermore, subgroup analyses were performed to explore
observed heterogeneity and examine the influence of various
exclusion criteria based on sample sizes (>100 vs �100), study
design (prospective vs. retrospective), blind or non-blind study,
LUS operator (expert vs non-expert), and ultrasound probe type
(linear vs convex). All meta-analyses were performed using
Meta-DiSc 1.4 (XI Cochrane Colloquium; Barcelona, Spain).[11]

Publication bias was inspected using Deeks funnel plot,[12]

which was analyzed using Stata 12.0 (Stata Corporation,
College Station, TX, USA). A Z-test was performed to
determine whether there was a statistical difference in the
overall sensitivity and specificity between LUS and CXR. A two-
sided P value of <.05 was considered to indicate statistical
significance.
3. Results

3.1. Bibliographic search results

A total of 1605 relevant articles were identified from the initial
search. After reviewing the titles and abstracts, 1555 were
excluded for duplicate studies and for various reasons (e.g.,
case reports, editorials, reviews, and or not using both LUS and
CXR). A detailed flowchart of the study selection is presented
in Figure 1. Finally, the remaining 22 eligible studies with a
total of 2470 patients were identified for the present meta-
analysis.[2–4,13–31]

http://links.lww.com/MD/F370


Figure 1. PRISMA flow diagram.
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3.2. Study characteristics and quality assessment

The main characteristics of the retrieved studies are shown in
Table 1. Table 1 shows that the sample size of 22 trials ranged from
47 to222, and all studieswere publishedbetween2008and2018.[2–
4,13–31] Of all the studies, only 2 studies[16,31] enrolled neonatal
patients, and 3 studies[18,19,26] did not report gender situations. In
terms of study design, 17 prospective studies[2–4,13,14,16,17,19,
20,22,23,25–27,29–31] and 5 retrospective studies[15,18,21,24,28] were
included in the present study. Next, 19 studies[2–4,13–20,22,23,25–30]

used blind methods and 3 studies[21,24,31] used non-blind methods.
Furthermore, ultrasonicprocedureswereperformedbyexperts in14
studies[3,13–16,18–21,23,24,28,30,31] and by non-experts, including
primary or temporary trainers in 8 other 8 studies.[2,4,17,22,25–
27,29] Finally, for the type of ultrasound probe, 11 studies[2,16–
19,22,25,26,28,29,31] used the linear probe, 3 studies[3,15,27] used the
convex probe, and 8 studies[4,13,14,20,21,23,24,30] used a linear probe
together with a convex probe.
Two authors (JHY and LP) agreed on each item of the

QUADAS-2. The risk-of-bias analyses suggested that 19 trials[2–
4,14–23,25–29,31] were followed with low risk in terms of patient
3

selection, index test, reference standard, flow, and timing. Three
other studies[13,24,30] were followed with a high risk of the index
test. In addition, all trials were followed with high concern
regarding applicability. The detailed quality assessment of the 22
studies is illustrated in Figure S1, http://links.lww.com/MD/F370.

3.3. Diagnostic accuracy of LUS and CXR

The overall diagnostic sensitivity was 0.95 (95%CI: 0.94 to 0.96;
x2=51.89; I2=59.5%; P= .0002) and 0.91 (95% CI: 0.68 to
0.82; x2=61.49; I2=95.1%; P= .0000) (Fig. 2), and the overall
diagnostic specificity was 0.90 (95% CI: 0. 87 to 0.92; x2=
116.76; I2=82%; P= .0000) and 1.00 (95% CI: 0.99 to 1.00;
x2=16.10; I2=0.0%; P= .7640) (Fig. 3) for children pneumonia
diagnosed by LUS and CXR, respectively. Heterogeneity was
significant in terms of pooled sensitivity for the 2 arms. Next,
sensitivity analyses were performed to further explore the
potential source of heterogeneity across studies. Further exclu-
sion of any single study did not resolve the heterogeneity, and the
pooled sensitivity ranged from 0.95 (95% CI: 0.94 to 0.96; x2=
43.71; I2=54.2%) to 0.95 (95% CI: 0.94 to 0.96; x2=51.77;
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Figure 2. Forest plots of the pooled sensitivity for children pneumonia diagnosed by LUS and CXR.
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I2=61.4%), 0.91 (95% CI: 0.89 to 0.92; x2=124.42; I2=
83.9%) to 0.91 (95% CI: 0.90 to 0.93; x2=142.63; I2=86.0%)
for LUS and CXR, respectively. Next, threshold effect analysis
showed that the Spearmans correlation coefficients were �0.390
(P= .073) and �0.421 (P= .051) for LUS and CXR, which
suggested that no diagnostic threshold effect existed for
pneumonia diagnoses. Moreover, the heterogeneity among
studies could mainly result from clinical and methodological
differences.
The pooled PLR, NLR, and DOR were 8.67 (95% CI: 3.98 to

18.89), 0.07 (95%CI: 0.05 to 0.10), and 137.49 (95% CI: 60.21
to 313.98) for LUS, respectively. Correspondingly, the pooled
PLR, NLR, and DORwere 19.96 (95%CI: 10.42 to 38.24), 0.09
(95%CI: 0.06 to 0.14), and 369.66 (95% CI: 137.14 to 996.47)
for CXR, respectively. The above results are detailed in the
Supplemental Digital Content (Fig. S2, http://links.lww.com/
Figure 3. Forest plots of the pooled specificity for c

6

MD/F372, Fig. S3, http://links.lww.com/MD/F373, and Fig. S4,
http://links.lww.com/MD/F375). Additionally, the 2 SROC
curves are presented in Figure 4, which shows that the AUC
and Q∗ index with a standard error (SE) of 0.9817 (0.9405±
0.0122) and 0.9866 (0.9505±0.0125) for LUS and CXR (Fig. 5),
respectively.
Specifically, the Z-test for the overall sensitivity and specificity

suggested that there was no statistical difference between LUS
and CXR (all P> .05). In other words, LUS and CXR have
similar sensitivity and specificity.
3.4. Subgroup analyses

We performed subgroup analyses using a random effects model
to explore the heterogeneity of sensitivity and examine the
influence of various exclusion criteria based on sample sizes
hildren pneumonia diagnosed by LUS and CXR.

http://links.lww.com/MD/F372
http://links.lww.com/MD/F372
http://links.lww.com/MD/F373
http://links.lww.com/MD/F375


Figure 4. Summary receiving operating characteristic curve and Q∗ index for LUS and CXR.

Yan et al. Medicine (2020) 99:50 www.md-journal.com
(>100 vs �100), study design (prospective vs. retrospective),
blind or non-blind study, LUS operator (expert vs non-expert),
and ultrasound probe type (linear vs convex). Table 2 shows the
detailed indication for subgroup analyses of LUS and CXR for
the pooled sensitivity, specificity, and DOR in all eligible studies.
Figure 5. Publ

7

3.5. Publication bias
Deeks funnel plot asymmetry test was used to evaluate the final
set of studies for potential publication bias. The slope coefficient
was associated with a P value of .70, which suggested symmetry
in the data and no publication bias (Fig. 5).
ication bias.
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4. Discussion

The current meta-analysis including 22 studies was conducted to
systematically evaluate the diagnostic value of LUS in compari-
son to CXR in children with pneumonia. Our results indicate that
LUS is a reliable, valuable, and alternative method to CXR and
could be considered as a first-line imaging modality for the
diagnosis of pediatric pneumonia.
To date, several systematic reviews and meta-analyses have

investigated the diagnostic value of LUS in children pneumo-
nia.[32–35] However, these meta-analyses only described data on
LUS, unilaterally analyzed the diagnostic value of LUS, and did
not analyze the diagnostic value of CXR for children with
pneumonia. From this point of view, the above meta-analyses did
not systematically compare the diagnostic value of LUS and
CXR, and they were also limited in the literature. Considering the
above limitations, we carried out the present meta-analysis
combining existing studies to increase the sample size, strengthen
our analyses, and produce more robust results to compare the
diagnostic value of LUS in comparison to CXR in children with
pneumonia.
In the present study, we mainly focused on evaluating the

diagnostic value of LUS in comparison to CXR in pediatric
pneumonia. Our results showed that the pooled sensitivity was
0.95, 0.91, specificity was 0.90, and 1.00, DOR was 137.49 and
369.66, and AUC was 0.9817 and 0.9866 for LUS and CXR,
respectively. The Z-test results suggested that there was no
statistical difference in the pooled sensitivity and specificity
between LUS and CXR (all P> .05), which suggested that the
sensitivity and specificity of LUS were not inferior to those of
CXR. Additionally, the 2 SROCs of LUS and CXR are presented
in Figure 4, which suggests that both LUS and CXR have a fairly
high diagnostic accuracy. Next, our sensitivity analyses did not
significantly alter the heterogeneity among studies for pooled
sensitivity. Threshold effect analysis showed that no diagnostic
threshold effect existed for pneumonia diagnoses, which
indicated that the heterogeneity among studies could be seen
as a result of clinical and methodological differences. Moreover,
the results of subgroup analyses indicated that LUS may appear
to be slightly higher than CXR, but the difference was not
statistically significant. Overall, those prospective blind studies
with expert operators should be more specific for LUS. It should
be noted that an ultrasound convex probe helps to improve the
sensitivity and specificity of LUS diagnosis in pediatric pneumo-
nia. However, more studies are needed to investigate these topics
of interest. Finally, 4 clinical signs, including pulmonary
consolidation, positive air bronchogram, abnormal pleural
line, and pleural effusion, were most frequently observed using
LUS in the screening of children pneumonia. Further research
should focus on these diagnostic signs of LUS for pediatric
pneumonia.
To be sure, there were several limitations to our study. First, the

child patients were heterogeneous with different regions, different
ages, and sex ratios. The experience of LUS operators was not
consistent and may interfere with the accuracy of pneumonia
diagnosis. Second, the design of the study was different, including
blind methods and prospective or retrospective studies. The
ultrasound system was not consistent and may interfere with the
LUS operators judgment. Third, the sample size was different,
and some studies with a wide variation in sample size were
incorporated into our analysis. Overestimation of the diagnostic
value is most likely to occur in smaller than in larger studies.
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Finally, several unpublished or missing data may increase the risk
of bias.
5. Conclusions

In summary, our results suggest that LUS is a reliable, valuable,
and alternative tool to CXR for children with suspected
pneumonia, and LUS should be considered as a first-line imaging
modality for the diagnosis of pediatric pneumonia. However,
considering the significant heterogeneity found across the
individual studies, further more methodologically rigorous
studies are needed to focus on the diagnostic accuracy of LUS
in pediatric pneumonia.
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