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Abstract

Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic

domestication, highlight a need for comprehensive characterization and utilization of

existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gos-

sypium barbadense L. cotton germplasm accessions were evaluated in two diverse environ-

ments (Uzbekistan and USA). These accessions were assessed for genetic diversity,

population structure, linkage disequilibrium (LD), and LD-based association mapping (AM)

of fiber quality traits using 108 genome-wide simple sequence repeat (SSR) markers. Analy-

ses revealed structured population characteristics and a high level of intra-variability

(67.2%) and moderate interpopulation differentiation (32.8%). Eight percent and 4.3% of

markers revealed LD in the genome of the G. barbadense at critical values of r2� 0.1 and

r2� 0.2, respectively. The LD decay was on average 24.8 cM at the threshold of r2� 0.05.

LD retained on average distance of 3.36 cM at the threshold of r2� 0.1. Based on the phe-

notypic evaluations in the two diverse environments, 100 marker loci revealed a strong

association with major fiber quality traits using mixed linear model (MLM) based association

mapping approach. Fourteen marker loci were found to be consistent with previously identi-

fied quantitative trait loci (QTLs), and 86 were found to be new unreported marker loci. Our

results provide insights into the breeding history and genetic relationship of G. barbadense

germplasm and should be helpful for the improvement of cotton cultivars using molecular

breeding and omics-based technologies.

Introduction

Cultivated cotton (Gossypium spp.) is the most important natural fiber worldwide. Fiber qual-

ity is a key factor for determining price and quality of cotton textile products, and is signifi-

cantly affected by different environmental factors [1]. In addition, genetic improvement of
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fiber quality is a challenge due to the narrow genetic base of modern cotton cultivars and the

existence of negative correlations between major fiber quality traits and key agronomic charac-

teristics [2, 3]. All of the above highlight a great need to study genetic resources preserved and

maintained in world cotton germplasm collections [4], and to use these resources in breeding

of superior cotton genotypes.

There are several major cotton germplasm collections in the world. One of the biggest and

richest germplasm collections is housed in Uzbekistan with extensive genetic diversity [4, 5].

In the Gossypium genus, genetic diversity exists in its genome with unique traits or sometimes

hidden elements, or genes that can have a positive impact on the expression of agronomic

traits and resistance to biotic and abiotic factors. Introduction of valuable traits in modern cot-

ton germplasm enriches and improves the diversity of cultivated cotton [4–8]. Genetic studies

and evaluations of cotton germplasm resources provide specific information on the degree of

phylogenetic relatedness of accessions in these collections and its/their representation. In addi-

tion, evaluations shed light on many questions of complex genetic traits that will eventually

allow the use of the genetic potential of cotton germplasm for introduction of important and

useful features/traits in modern cotton cultivars. For the introduction of important traits,

marker-assisted selection (MAS) is one of the key and valuable tools for the introduction and

introgression of useful traits.

Unfortunately, MAS in cotton lags behind other crops due to limited genetic polymorphism

of cultivated cotton germplasm as a result of the historical process of domestication [9–11].

This also complicates the process of genetic mapping of quantitative trait loci (QTLs) associa-

tions with traits of interest using DNA markers. Moreover, much of the molecular-genomic

researches including association studies and MAS focused on members of the species G. hirsu-
tum [12–20]. This species supplies around 95.5% of the cotton production worldwide. Studies

in other species unfortunately are limited as is the case with G. barbadense germplasm

resources [21].

The G. hirsutum (also known as Upland cotton) and G. barbadense [also known as Sea

Island, Egyptian, or extra-long staple (ELS) cotton] are the two main widely grown cotton spe-

cies. Although G. barbadense only accounts for around 4.5% of the cotton production world-

wide, this species is known for its superior fiber quality (length, fineness and strength). Its

fiber is highly valued in the premium textile market [22, 23]. G. barbadense is indigenous to

the northern part of South America and extends into Mesoamerica and the Caribbean [24]. In

the United States, modern elite G. barbadense cultivars trace their origins to the Sea Island cot-

tons developed on the coastal islands of Georgia and South Carolina that probably originated

from west Andean Peruvian germplasm [24, 25]. The Sea Island cotton production collapsed

in the USA under boll weevil (Anthonomus grandis Boheman) pressure in 1920 [7]. This Sea

Island pool contributed to the development of the Egyptian cottons which in the 1940s were

reintroduced into the USA as a part of the genetic base of the Pima gene pool by USDA-ARS

[22, 24].

Molecular marker technology and QTL-mapping approach using bi-parental mapping pop-

ulations resulted in a number of potential DNA markers for future breeding programs of cot-

ton through MAS [11]. A classic QTL-mapping using bi-parental population exploits the short

history of recombination and consequently QTL can only be localized to large chromosomal

regions. By contrast, mapping approaches that exploit linkage disequilibrium make use of all

recombination that have occurred during the breeding history resulting in much higher map-

ping resolution [26, 27]. The extent of genome-wide LD or allelic association is the key starting

point for association mapping (AM). Quantification of the LD extent and AM have been suc-

cessfully applied for many plant species [28, 29] including cotton [9, 30–33]. Recent LD-based
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studies of G. hirsutum germplasm resulted in association mapping of Verticillium wilt resis-

tance [18], salinity tolerance [31] and seed oil and protein contents [32].

Here, we for the first time report SSR marker-based genetic analyses of 288 G. barbadense
germplasm accessions of Uzbekistan germplasm collection, grown and phenotypically evalu-

ated in two diverse environments, Uzbekistan and USA. The molecular genetic characteristics

and diversity, population structure, the extent of LD, and association mapping of main fiber

quality traits of G. barbadense germplasm are reported based on genotypic data of a core set of

108 microsatellite markers, evenly distributed in the cotton genome. SSR marker loci were sta-

tistically associated with fiber quality traits specific to Uzbekistan and USA environments.

Mixed linear model (MLM) analysis, considering confounding effects of structured popula-

tion, detected 100 reliable SSRs, which were common and statistically significant in the two

distinct environments, Uzbekistan and USA. The results of this study are, to the best to our

knowledge, the first report on a genome-wide LD analysis and LD-based AM of fiber quality

traits using SSR markers in G. barbadense germplasm resources of Uzbekistan. In addition,

these findings are very useful for the application of association study in cotton and should

accelerate the development of superior cotton cultivars through MAS programs.

Materials and methods

Plant materials

The Uzbek cotton germplasm collection houses and preserves more than 7500 accessions of

different cotton species at the Institute of Genetics and Plant Experimental Biology (IG&PEB),

Academy of Sciences of Uzbekistan. Out of 7500 cotton germplasm accessions, G. barbadense
comprises approximately 13% with broad geographic and breeding coverage. A total of 288 G.

barbadense germplasm accessions from Central Asian (237), African (35) and American (16)

origin were selected from the Uzbek collection and used in this study, including for genome-

wide LD and association mapping analyses.

Phenotypic analyses in the Uzbekistan environment

Analyses of morpho-biological characteristics of these selected G. barbadense germplasm and

cultivars were performed in the field stations of the IG&PEB, Tashkent, Uzbekistan in 2010.

Standard field plots, irrigation and agronomic technologies were used for growing cultivars in

the Tashkent cultivation environment. Detailed information about weather data for specific

years can be obtained from the archive of the meteorology center (http://www.wunderground.

com). Ten plants of each cultivar were grown and self-pollinated by sealing flowers with florist

wire just before the flowers opened. Cotton fiber samples from self-pollinated cotton bolls

were harvested from field-grown plants in the beginning of October. At least 25 fully opened

self-pollinated cotton bolls were harvested from each group of cultivars (pooled from ten

plants per accession). Fiber quality traits of cultivars grown in Uzbekistan environment, such

as fiber length (FL), fiber strength (FS), fiber micronaire (FM), and fiber uniformity (FU),

were measured for 247 accessions (Table 1; S1 Data) by High Volume Instrument (HVI) of the

certified “SIFAT” agency, Tashkent, Uzbekistan.

Phenotypic analyses in the California environment

In 2010, the germplasm and cultivars were evaluated under the San Joaquin Valley environ-

ment of California, Shafter Research Station (35˚31’52” N 119˚16’41” W), Kern County, USA.

Accessions were grown in one-row plot, 5 by 1 meter, in a complete randomized design with a

plant density ranging from 40 to 50 plants per plot. To examine fiber quality traits, 50 open
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matured bolls were randomly harvested from different segments of the plant from different

plants of each plot. After processing using a saw gin, samples were sent to the USDA Cotton

Classing Laboratory, Visalia, CA for analyses. Fiber length (FL) in mm, fiber strength (FS) in

kN m kg-1, fiber micronaire (FM), and fiber uniformity (FU) in percentage were measured for

278 accessions (Table 1, S1 Data) by High Volume Instrument (HVI).

Due to use of wild-type genotypes of plant material, available in ex situ germplasm collec-

tion and commonly used for research, no authority permission was required to evaluate cotton

germplasm resources in Uzbekistan and the USA. Plant material evaluated was not under the

control of relevant regulatory bodies concerned with wildlife protection, and the field studies

did not involve endangered or protected species. All field evaluations were conducted in the

experimental stations, a priori assigned for research activities, which did not require a specific

permission for conducting field evaluations.

Statistical analyses

Data were analyzed using analysis of variance (ANOVA) [34] for the different fiber values, and

correlations analyses were performed to examine the similarity of value-responses of the differ-

ent accessions and fiber traits in the two growing-environments, Uzbekistan and California.

SSR analysis

In total, 750 SSR primer pairs from different SSR collections were screened to detect polymor-

phisms among accessions. Genomic DNAs were isolated from leaf tissues of each germplasm

or cultivar using the method of Dellaporta et al. [35]. Each accession was genotyped using 108

polymorphic SSR marker primers distributed an average of 4 SSR markers per each cotton

chromosome. SSRs were chosen based on previous germplasm collection characterizations [9,

33], and based on information related to important QTLs and chromosome distribution.

Polymerase chain reaction (PCR) mixtures (10 μL) consisted of 1X reaction buffer, 1.5 mM

MgCl2, 0.2 mM dNTP, 0.3 μM primers, 25 ng template DNA, and 0.5 U Taq DNA polymerase

(Applied Biosystems, Foster city, USA). Amplification was carried out in a GeneAmp 9700

(Applied Biosystems), with an initial denaturation at 95˚C for 10 min, followed by 35 cycles of

1 min at 94˚C, 1 min at X˚C, and 1 min at 72˚C, plus a 5-min final extension at 72˚C. X˚C

Table 1. Descriptive statistics of fiber traits among G. barbadense accessions grown in the Uzbekistan and USA environments.

Traits No. of samples¶ Mean Min. 25 percentile Median 75 percentile Max. 10 percentile 90 percentile SD CV

Tashkent, Uzbekistan

Micronaire† 247 4.25 3.0 3.9 4.3 4.6 6.3 3.6 4.9 0.51 12.22

Strength 247 38.81 26.4 37.4 38.8 40.4 49.3 35.7 42.3 2.95 7.62

Length* 247 1.30 0.95 1.26 1.32 1.36 1.5 1.19 1.4 0.08 6.51

Uniformity** 247 84.74 78.9 83.8 84.8 85.9 88.6 82.7 86.6 1.60 1.89

California, USA

Micronaire 278 4.06 2.6 3.7 4.1 4.4 5.3 3.4 4.6 0.46 11.45

Strength 278 36.50 26.7 34.9 36.4 38.1 43.7 33.6 40.1 2.61 7.16

Length 278 1.36 1.0 1.32 1.36 1.41 1.58 1.26 1.45 0.08 6.04

Uniformity 278 87.30 81.6 86.5 87.5 88.3 90.0 85.5 89.0 1.42 1.63

¶Samples evaluated in Uzbekistan and the USA represented a set of initially chosen 288 G. barbadense accessions;
†Characteristics and fineness of the cotton fiber maturity determined by the air permeability of the fiber sample, expressed as an index;

*Length of HVI according to the standards specified in inches (1 inch = 25.4 mm);

** Percentage of the average fiber length to the average upper length

https://doi.org/10.1371/journal.pone.0188125.t001
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refers to the annealing temperature specified for each primer. The amplified products were

separated on 3% (w/v) high resolution agarose gels (GeneMate, Radnor, USA) and visualized

under UV light with ethidium bromide staining.

Genetic diversity and phylogenetic analyses

The amplified fragments of each SSR marker were scored based on fragment sizes (S2 Data).

Polymorphism information content (PIC) of SSR markers was calculated using the PowerMar-

ker software package [36]. The heterozygosity level of marker data was identified according to

an average similarity frequency of alternative alleles [37]. Allele frequencies were calculated

using SpaGeDi software [38]. Genetic distance and phylogenetic analyses of cotton cultivars

were performed using Neighbor Joining (N-J) algorithms in PAUP�4.0 [39]. Genetic variation

within and among predefined groups and pair-wise FST genetic distances were measured by

Analysis of Molecular Variance (AMOVA) [40–42] using ARLEQUIN 2.0 [43]. A Bayesian

partition method of genetic differentiation among population groups was applied using HICK-

ORY [44] software to direct estimation of FST without prior knowledge of inbreeding history

[45].

Population structure and kinship analyses

The population structure of the 288 G. barbadense germplasm and cultivars was assessed using

the model-based (Bayesian clustering) method implemented in STRUCTURE v2.3.3 [46]. The

number of subgroups (K) was set from 1 to 12 based on models characterized by admixture

and correlated allele frequencies. For each K, ten runs were performed separately, with

100,000 iterations carried out for each run after a burn-in period of 10,000 iterations. The true

number of sub-populations was estimated using the method proposed by Evanno et al. [47]

Accessions were assigned to a subgroup if the probability of membership was greater than 70%

[48]. A pairwise kinship (K-matrix) estimate for 288 G. barbadense accessions was calculated

according to Hardy [49] using the software package SpaGeDi [38].

Pair-wise linkage disequilibrium and LD decay

The genome-wide LD between pairs of SSR marker loci in the G. barbadense genome was stud-

ied according to Whitt and Buckler [48] using the software package TASSEL [50]. SSR alleles

with a 0.05 frequency in genotyped accessions were removed before conducting LD analyses

because minor alleles are usually problematic and biased for LD estimates between pairs of loci

[51, 52]. LD was estimated by a weighted average of squared allele-frequency correlations (r2)

between SSR loci. Loci were considered to be significant at p-values�0.005 among all possible

SSR loci. LD was evaluated with the rapid permutation test in 10,000 shuffles. Values of LD

between all pairs of SSR loci were plotted as triangle LD plots using TASSEL to estimate the

general view of genome-wide LD patterns and evaluate ‘block-like’ LD structures. The r2 values

for pairs of SSR loci were plotted as a function of map distances (cM), and LD decay (at r2

>0.1) was estimated [48].

Association mapping of fiber quality traits

Association mapping using the mixed linear model (MLM) and general linear models (GLM)

was performed for both environments and for the four major fiber quality traits data [fiber

length (FL), fiber strength (FS), fiber uniformity (FU), and fiber micronaire (FM); S1 Data].

To construct marker-fiber quality trait associations using SSR and fiber data (S1 and S2 Data),

the MLM test was performed according to Yu et al. [53] using the TASSEL software package

LD-mapping in long-staple cotton
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[50]. The MLM association test was simultaneously performed by accounting of multiple levels

of population structure (Q-matrix) and relative kinship among the individuals (K-matrix)

[50–55].

The 5% of ‘minor alleles’ filtered-SSR datasets were used for all association mapping mod-

els. Fiber trait data was imputed for missing data and normalized using algorithms imple-

mented in TASSEL before conducting an association mapping analysis. The MLM-derived p-

values were separately tested for multiple testing correction using pFDR test in QVALUE pro-

gram version 1.0 [56], Sidak procedure of Bonferroni adjustment, and pACT method of Con-

neely and Boehnke [57]. To reliably interpret the MLM-derived significant associations, a

minimum Bayes factor (BFmin) was calculated using the following formula:BFmin = -e�p�ln

(p) [33, 58, 59–61]. Moreover, the MLM-derived significant associations were also subjected to

comparisons with published literature information to judge obtained associations.

Results

Fiber quality properties of G. barbadense cultivars in the USA and

Uzbekistan environments

Due to missing research plots of some accessions and/or technical errors during HVI analyses,

major fiber trait measurements for 247 and 278 accessions were obtained in the Uzbekistan

and USA environments, respectively (Table 1). Herein, we reference 288 accessions as a total

number for the molecular set panel investigated in these two environments. A wide-range of

phenotypic variation in fiber quality traits such as FL, FM, FU, FS was observed in both envi-

ronments (Table 1).

The coefficient of experimental variability of traits in California (USA) and Tashkent

(Uzbekistan) conditions ranged from as low as 1.63–1.89 (FU) and as high as 11.45–12.22

(FM) for the above traits. Thus, micronaire was the most variable (2.6 to 6.3) trait of all the

fiber quality parameters and showed similar values of coefficient of variation in both environ-

ments. The lower variations of micronaire values (2.6 to 3.4) were observed in California’s

environment, while in Tashkent, values shifted toward the high (from 4.6 to 6.3) values.

Fiber strength for all G. barbadense accessions in the Tashkent environment ranged from

270.0 to 503.5 kN m kg-1 (27.0 g/tex-1 to 50.35 g/tex-1) with an average value of 396.0 kN m

kg-1 (39.6 g/tex-1; SD = 29.6). In California, the FS had minimum and maximum values equal

to 273.0 and 446.0 kN m kg-1 (27.3 g/tex-1 to 44.6 g/tex-1) respectively, with an average of 373.0

kN m kg-1 (37.3 g/tex-1; SD = 26.1).

Moreover, comparisons of fiber traits among G. barbadense accessions from the four major

geographical groups (Uzbekistan, Turkmenistan, the United States, and Africa) showed varia-

tions in Tashkent and California environments (Table 2).

Fiber trait correlations

The correlation analyses of the fiber traits of G. barbadense germplasm and cultivars in Uzbeki-

stan and California environments (Table 3) showed the presence of significant positive and

negative relationships between the traits studied.

Positive correlation was observed between FL and FU, FL and FS, and FU and FS. The neg-

ative correlations were observed between FM and FS (not significant in California), FM and

FL, FM and FU in both environments. Significant trait correlations were observed between the

same fiber traits as well as among different fiber traits in Tashkent and California-grown acces-

sions (Table 4).

LD-mapping in long-staple cotton
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These trait-correlations revealed the importance of the environment influencing fiber

development. Similar results or similar pattern of variability for fiber traits were observed

based on the analysis of variance (ANOVA), in which environmental growth condition

impacted the fiber trait differences. ANOVA also revealed that the differences between these

groups (Uzbekistan and California) strictly depended on fiber traits’ growing conditions

(Table 5).

Table 3. Correlations between fiber traits of G. barbadense cultivars in the Tashkent and California

environments.

Fiber traits FM FS FL

Tashkent, Uzbekistan

FM 1

FS -0.258** 1

FL -0.560** 0.505** 1

FU -0.297** 0.634** 0.610**

California, USA

FM 1

FS -0.068 1

FL -0.427 ** 0.155* 1

FU -0.241 ** 0.219** 0.774**

* Correlation is significant at a value r� 0.05;

** Correlation is significant at a value r � 0.001; FM—fiber micronaire, FS—fiber strength, FL—fiber length,

FU—fiber uniformity

https://doi.org/10.1371/journal.pone.0188125.t003

Table 2. Comparison of fiber traits among various geographical groups of G. barbadense cultivars evaluated in the Uzbekistan and USA

environments.

Germplasm origin Micronaire Strength Length Uniformity

Uzb USA Uzb USA Uzb USA Uzb USA

Africa Ẋ = 4.26

S = 0.59

Ẋ = 4.1

S = 0.44

Ẋ = 37.85

S = 3.77

Ẋ = 36.01

S = 3.21

Ẋ = 1.29

S = 0.10

Ẋ = 1.35

S = 0.11

Ẋ = 84.30

S = 1.91

Ẋ = 87.1

S = 1.72

Uzbekistan Ẋ = 4.31

S = 0.49

Ẋ = 4.1

S = 0.49

Ẋ = 39.08

S = 2.44

Ẋ = 36.78

S = 2.09

Ẋ = 1.31

S = 0.08

Ẋ = 1.36

S = 0.07

Ẋ = 84.89

S = 1.52

Ẋ = 87.3

S = 1.17

USA Ẋ = 4.38

S = 0.64

Ẋ = 4.0

S = 0.44

Ẋ = 38.39

S = 3.09

Ẋ = 36.83

S = 2.09

Ẋ = 1.28

S = 0.07

Ẋ = 1.35

S = 0.07

Ẋ = 83.66

S = 2.13

Ẋ = 87.2

S = 0.80

Turkmenistan Ẋ = 4.18

S = 0.51

Ẋ = 4.0

S = 0.47

Ẋ = 38.57

S = 3.11

Ẋ = 36.32

S = 3.01

Ẋ = 1.31

S = 0.09

Ẋ = 1.36

S = 0.09

Ẋ = 84.77

S = 1.57

Ẋ = 87.3

S = 1.61

Note:Ẋ—mean; S—variance. A number of accessions for Uzbekistan (247) and the USA (278) environments were as specified in Table 1.

https://doi.org/10.1371/journal.pone.0188125.t002

Table 4. Comparative analysis of fiber traits correlation depending on the growing conditions.

Environment_Fiber triats US_FM US_FS US_FL US_FU

UZB_FM 0.603(**) -0.144(*) -0.491(**) -0.374(**)

UZB_FS -0.096 0.520(**) 0.278(**) 0.280(**)

UZB_FL -0.372(**) 0.249(**) 0.689(**) 0.548(**)

UZB_FU -0.170(**) 0.267(**) 0.324(**) 0.339(**)

* Correlation is significant at p = 0.05;

** Correlation is significant at p = 0.001

https://doi.org/10.1371/journal.pone.0188125.t004
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Growing conditions have a direct impact on the performance of the fiber. In Uzbekistan, all

accessions showed low values of FL and FU, and high values of FM and FS. Thus, in California,

traits were observed to be most favorable for FL, FU, and FM in G. barbadense germplasm

studied. Several accessions with strong stability for a single trait and/or all traits in the Tash-

kent and California environments were identified (Table 6).

Marker analysis

From the 750 SSR primer pairs, 108 (14%) were found to be polymorphic among G. barba-
dense germplasm and cultivars. Identified 108 SSRs primer pairs amplified 301 marker loci in

our G. barbadense panel (S2 Data). The number of alleles ranged from 2 to 5 with an average

number of 2.78 allele per SSR. Sixty SSRs (55%) amplified three or more alleles. The majority

of SSRs (81%) were represented by two or three alleles on these accessions (Table 7). The

Table 5. ANOVA1 results of fiber traits depending on the growth in Uzbekistan (Tashkent) and the USA (California).

Statistical analyses FM FS FL FU

χ2;

p-value

18.84;

0.000014

97.10;

0.000000

57.62;

0.000000

244.92;

0.000000

F-Ratio;

p-value

23.15;

0.000002*
94.15;

0.000000*
57.88;

0.000000*
390.55;

0.000000*

Power (α = 0,05) 0.9977 1 1 1

SS country 5.61 724.10 0.397 892.66

SS S(A) 131.51 4176.40 3.726 1241.13

MS country 5.61 724.10 0.397 892.66

MS S(A) 0.24 7.69 6.86E-03 2.28

SS Total 137.12 4900.51 4.123 2133.79

DF country 1 1 1 1

DF S(A) 574 574 574 574

1to determine the statistical significance the F-value used for reliable level of α = 0.05.

*values are significant at α = 0.05

https://doi.org/10.1371/journal.pone.0188125.t005

Table 6. Samples having a strong stability in the Uzbekistan and USA.

Traits Number of cultivars Value

Fiber strength 92 > 37g/tex

Fiber micronaire 41 � 3.7�4.2

Fiber length 9 � 1.5 inches

Fiber uniformity 7 > 87%

Combination of all traits 7

https://doi.org/10.1371/journal.pone.0188125.t006

Table 7. A distribution of alleles among the 108 SSR markers.

Number of SSRs Alleles Total Alleles

48 2 96

40 3 120

15 4 60

5 5 25

Total: 108 301

https://doi.org/10.1371/journal.pone.0188125.t007
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average polymorphic information content (PIC) among the markers was 0.29 (SD = 0.16).

Mean heterozygosity (H) for all markers among the 288 accessions of G. barbadense was 0.33

(SD = 0.2), with the minimum and maximum values of 0.02 and 0.71, respectively. Of the 108

markers, in 49 (45.4%) markers, the heterozygosity values ranged from 0.02–0.25 and in 59

(54.6%) markers, the values ranged from 0.25–1.0.

Comparative analysis of heterozygosity and PIC values showed higher values in heterozy-

gosity over PIC in each of the markers with an average increase of about 10.1%. Analysis of the

distribution of frequencies of polymorphic alleles showed that the average frequency was 0.424

(SD = 0.33) with minimum and maximum values of 0.02 and 0.996, respectively. Out of 301

amplified/identified marker-alleles, 189 loci had a higher allele frequency than 5% and rest 113

loci turned out to be rare (� 5%) and created minor allele frequency (MAF) in the assessed

germplasm panel. Minimum, maximum and average values of minor allele frequency were

0.02, 0.05 and 0.028, respectively. Identified rare marker alleles occurred in 138 (~ 48%) acces-

sions. The number of rare alleles on these accessions ranged from 1 to 32.

Based on our analyses, 38 SSR markers revealed high polymorphisms in this panel of long-

staple cotton. These SSRs produce enough polymorphisms and can be recommended for

molecular analyses of the G. barbadense genome (S1 Table). The chromosome locations of

most SSR markers and their positions on chromosomes were determined by the consensus

genetic map of tetraploid cotton reported by Blenda et al. [62].

Genetic distances and phylogeny of long-staple cotton germplasm

The average value of genetic distance (GD) among all 288 G. barbadense accessions was 0.19

with the smallest and largest distances of 0.01 and 0.67, respectively. The developed UPGMA

dendrogram revealed two main groups «A» and «B» with the GD threshold of> 50%, and

five clearly distinct subgroups (Fig 1). The GD between the groups "A" and «B» was 0.65. The

group "A" was genetically diverse, and samples within the group "A" were much different from

each other. The average GD between samples in the group "A" was 0.31; for example, the acces-

sions in this group were similar with an average of 69%, representing a wide genetic diversity.

Based on the fact that if GD between local populations of a single species is usually less than

0.05 [63–65], the samples belong to the same population group [66]. While if the distance is

greater than 0.05 or 5% the individuals or accessions are likely to belong to different popula-

tion subgroups. Thus, group “A” was separated. The group "A" was observed to be composed

of two sub-groups G1 and G2. The GD between these subgroups was 0.40. The sub-group G1

predominantly consists of accessions of Africa-Egyptian genotypes (Giza, Barakat), and sub-

group G2—American genotypes (Pima S1).

The group "B" included 273 cultivars or 94.8% of the analyzed accessions. The group con-

sisted of accessions from different geographical regions of the world. The average GD in this

group was much lower than in the group "A". Thus, minimum and maximum GDs in the

group "B" were 0.01 and 0.65, respectively, with a mean of 0.18. Group "B" consisted of sub-

groups G3, G4 and G5. Subgroup G3 includes nine samples (5 African, 3 Uzbekistan, and 1

China). The genetic distance between samples in the subgroup G3 varied from 0.22 to 0.38

with a mean of 0.31. The sub-group G4 is the largest, containing 254 accessions with average

GD of 0.18. The subgroup included samples from many geographic regions. The last group G5

is represented by the Central Asian germplasm.

Molecular diversity and structure of the G. barbadense panel

In order to confirm the phylogenetic analysis and to support the population structure analysis,

the principal component analysis (PCA) of SSR marker data was performed. PCA reduced the
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dimensionality of data and displayed all 288 G. barbadense accessions in a "two-dimensional"

space, unlike the phylograms above. In addition, it more clearly reflects the grouping of sam-

ples and differences at the genetic level. As a result of PCA, it was determined that the first

twelve components explained 51% of the variations. Of them the PC1 explains 15% of the vari-

ance, and clearly delineates the population into two subpopulations—large and small (Fig 2).

The PC2 causes a 5% dispersion of 273 samples split into two main subpopulations overlap-

ping subgroups, conventionally designated as Group A and Group B (Fig 2 and Table 8).

Group A includes 108 accessions, which included most represented accessions from Uzbeki-

stan—81 (75%), and group B comprises 165 accessions, in which the majority of genotypes are

accessions from Turkmenistan—99 (60%; Fig 2 and Table 8).

Analysis of Molecular Variation (AMOVA)

To assess the genetic differentiation among and within predefined groups of a whole panel of

288 G. barbadense accessions, the Wright‘s index Fst (pair wise) was analyzed using statistical

analysis of AMOVA. The genetic differentiation among and within groups were significant

(p� 0.001), where 67.2% of total genetic variation was attributed to the difference within sub-

populations, while the genetic variation between the predefined groups accounted for 32.8% of

the total genetic variation (Table 9). Pairwise comparisons of the Fst index between the three

Fig 1. The UPGMA dendrogram of 288 G. barbadense accessions, constructed using the genotype of 301 polymorphic

SSR alleles. Horizontal lines denote thresholds of genetic distances. Groups A and B are obtained on the basis of differences

in > 50%, whereas subgroups G1, G2 and G3 obtained based on the upper boundary distinctions in 40%, and the subgroups G5

and G4—the upper bound of 20%.

https://doi.org/10.1371/journal.pone.0188125.g001
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groups revealed that the greatest genetic differentiation was present between the African group

and the Turkmen group (Fst = 0.58; p< 0.001), and a little less variation, between the African

and Uzbek group (Fst = 0.57; p< 0.001) (Table 10). Low-moderate genetic differentiation was

found between the Uzbek and Turkmen subpopulation (Fst = 0.117).

Fig 2. Principal component analysis, of 288 G. barbadense cultivars in the space of two main coordinate jointly by SSR genotypes. PC—the

main components; (A) and (B)—subgroups represented in the majority of varieties of Uzbekistan (UZ) and Turkmenistan (TM), respectively. (Mix)—

represented by the most genetically differentiated samples from several geographic regions i.e., from Turkmenistan (8), Africa (3), Uzbekistan (3), and

American (1). UZ—Uzbekistan, TM—Turkmenistan, TJ—Tajikistan, AF—Africa, US—US, SA—South America AZ—Azerbaijan and ME—Middle East.

https://doi.org/10.1371/journal.pone.0188125.g002

Table 8. Differentiation of 288 G. barbadense accessions based on genetic and principal component analysis.

Germplasm origin Subpopulation 1 Subpopulation 2

Subgroup A Subgroup B

Uzbekistan 81 24 4

Turkmenistan 17 99 7

US 3 11 1

Africa 6 25 3

other 1 6 -

Total: 108 165 15

https://doi.org/10.1371/journal.pone.0188125.t008
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Population structure and kinship

The model-based approach revealed the presence of at least two main subpopulations (Fig 3,

K2). These two subpopulations share accessions of the total panel, 5.2% and 94.8%, respec-

tively. Further expansion of the total population allowed us to divide it into three subpopula-

tions, where a small mixed cluster remained unchanged (5.2%), and a large cluster was divided

into two sub-populations sharing 37.5% and 57.3% of accessions, respectively (Fig 3, K3). The

results of the structured population of G. barbadense 288 accessions were consistent with the

phylogenetic analysis. Accessions, based on the genetic profile, clearly were divided into sam-

ples of mixed (accessions from all regions), Uzbek (UZ) and Turkmen (TM) cotton accessions.

The pairwise kinship analysis revealed that the majority of the pairs of cotton accessions

(56%) had zero kinship values, whereas 22–23% of the pairs had a pairwise kinship value of

0.01–0.05 and 10% of the accession pairs had 10–20% relatedness. Only about 1.3% accessions

had a pairwise kinship value of�25%.

Table 9. The AMOVA results.

Source of variation df Sum of squares Variance Components Percentage of variation p-value

Among populations 2 1312.320 11.769 32.797 �0.001

Within populations 285 6791.922 24.115 67.203 �0.001

Total 287 8104.242 35.884

https://doi.org/10.1371/journal.pone.0188125.t009

Table 10. Pair-wise comparisons of Fst values specific to each ecotype.

Origin Africa Uzbekistan Turkmenistan

Africa 0.00000

Uzbekistan 0.57568 0.00000

Turkmenistan 0.58432 0.11723 0.00000

https://doi.org/10.1371/journal.pone.0188125.t010

Fig 3. Summary plots of Q-matrix for the G. barbadense germplasm inferred from STRUCTURE

analysis. K2—the division into two subpopulations:a small (green) and large (red). K3—further expansion of

subpopulations on ecotypes (consistent with the results shown in Fig 2). Mix- represented by the most

genetically differentiated samples from several geographic regions. UZ—Uzbek, and TK—Turkmen cotton

accessions.

https://doi.org/10.1371/journal.pone.0188125.g003
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Linkage disequilibrium (LD) and LD decay

The SSR data with 5% MAF removed set of 189 alleles were used to evaluate the extent of LD

at genome level that detected pairwise LD in 17766 locus pairs in the G. barbadense panel. At

significant threshold values (r2�0.05 and p�0.005), 16.8% (4576) of SSR marker pairs showed

significant LD. By increasing the threshold to substantially higher values, r2�0.1 (p<0.001)

and r2�0.2 (p<0.0001), LD was maintained in 2188 (8%) and 1187 (4.3%) of pairwise combi-

nations of SSR markers, respectively. The linear plot of triangular graph of pairwise genome-

wide LD between markers revealed significant LD blocks. This information is necessary to cal-

culate to support the association mapping with the average distance of LD decay.

To reveal LD decay in G. barbadense genome, LD decay scatter plots of r2 vs. genetic dis-

tance (cM) was generated to estimate LD decay using curvilinear regression (Fig 4). Results

revealed that LD decay in G. barbadense genome was on average of 24.8 cM at the threshold of

r2�0.05. The genome-wide LD decay (r2�0.1) was 3.36 cM in G. barbadense (Fig 4). These

findings suggested the possibility of performing an efficient LD-based association mapping in

the germplasm accessions of G. barbadense presented here.

Association mapping (AM) of fiber traits

AM analysis of SSR loci with fiber quality traits of 247 and 278 G. barbadense accessions,

grown and evaluated in the two different ecological and geographical environmental condi-

tions, Tashkent (Uzbekistan) and California (USA), respectively, was performed using

Fig 4. Scatter plot of significant r2 values and genetic distance (cM) (p<0.001) of locus pairs on whole genome of G. barbadense germplasm.

https://doi.org/10.1371/journal.pone.0188125.g004
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TASSEL software. According to the results, fiber traits varied from 1.6 to 11.4% in the USA

and from 1.9 to 12.2% in the Uzbekistan environments. Therefore, not all markers associated

with fiber traits in a single eco-geographic region showed association in both environments.

However, a set of 100 markers retained a strong correlation and was significantly associated

(MLM; p�0.05) in both environments (Tashkent and California). For example, for fiber

length, 22 markers showed significant associations: to 12—with micronaire, 41 and 25 with the

strength and uniformity, respectively (Table 11 and Fig 5). Moreover, at critical values of mini-

mum BF�0.13 11 SSRs retained strong associations with fiber traits (Table 11), of them 3

markers with FM (BNL3441_225, BNL3601_175, NAU2913_250), 2 with FS (BNL4003_150

and GH39_125), 4 with FL (BNL3599_200, GH75_130, NAU2913_275, NAU2913_250) and 2

with FU (BNL3902_200 andBNL3601_175).

When all fiber trait-associated SSR markers from our study were compared to reported SSR

markers in previously published QTL-mapping studies, 14 SSRs [19, 67–76] revealed the same

trait associations identified in our study (Tables 11 and 12). The remaining 86 SSR markers

were identified for the first time in this study (Table 12).

Table 11. Summary of SSR markers showed significant association with each of the trait studied in the Uzbekistan (UZB) and USA environments.

Traits Number of markers with significant associations* Markers associated with traits at BF�0.13 1

UZB USA Common markers** UZB USA Common markers**

Micronaire 30 (3) 28 (3) 12 (3) 9 6 (1) 3

Strength 62 (9) 59 (6) 41 (5) 6 3 (1) 2

Length 31(6) 36 (7) 22(6) 10 (1) 2 4

Uniformity 47(0) 42 (1) 25 8 5 2

Note:

* The table shows the markers that showed a significant association (p�0.05) on the basis of MLM analysis 1.000 times permutation. In parentheses is the

number of matched SSR markers associated with the described fiber traits, which are reported in other studies;

**the markers showed similar associations in both conditions.—Evaluation of these parameters in Uzbekistan and the United States have not performed.
1BF—Bayes factor (likelihood ratio), where the value of BF�0.13 correspond to strong (z = 2.17) evidence against the null hypothesis (Ho) [59, 65, 66].

https://doi.org/10.1371/journal.pone.0188125.t011

Fig 5. Result of association mapping of fiber quality traits in a particular region. Markers showed signisicant association

(MLM; p�0.05) both in Uzbekistan (Uzb.), and the United States (US) environments.: FL-fiber length, FM- micronaire, FS- fiber

strength, FU- uniformity.

https://doi.org/10.1371/journal.pone.0188125.g005
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Table 12. SSR markers showed significant fiber trait-association (MLM; p�0, 05) in both environments (USA and Uzbekistan).

# SSR marker* USA Uzbekistan Match ** Chromosome*** Association with other traits (reference)

F (MLM) p (MLM) F (MLM) p (MLM)

Fiber length

1 BNL1421_220 5,3046 0,0221 4,5953 0,0331 [71] 13; 18 FL, FS, FE [77]

2 BNL1421_250 8,7632 0,0034 10,3148 0,0015 [71] 13; 18 FL, FS, FE [77]

3 BNL1495_150 7,4088 0,0070 11,1068 0,0010 [75] 13; 18 FE [78]; FL, FS, FE [77]; Lint% [72]

4 BNL1521_170 20,2535 0,0000 17,2683 0,0000 [19] 24; 15 FS [19,79]; FM, FE [70]; FM [21]

5 BNL1611_190 11,1161 0,0010 7,0728 0,0084 - 19 Lint index

6 BNL1705_200 13,6747 0,0003 8,1739 0,0046 [76] 21 FF; FE [76]; Lint% [80]

7 BNL3171_250 11,2913 0,0009 10,7198 0,0012 [81] 14; 21 FS, FL [81]; NSPB [82]

8 BNL3398_190 13,7112 0,0003 7,8360 0,0055 - 3; 13

9 BNL3442_130 7,3967 0,0070 5,1340 0,0244 - 11 FS [81]

10 BNL3599_2001 14,5256 0,0002 16,0080 0,0001 - 12; 25; 26 Near (2cM) the CF44ss gene, differential expressed during fiber

development [83]

11 BNL3599_225 14,0670 0,0002 12,6243 0,0005 - 12; 25; 26

12 BNL3902_200 10,5747 0,0013 4,0639 0,0450 - 15 FM, FF [70,19]; FE, FS [78]

13 BNL625_260 7,5997 0,0063 9,1459 0,0028 - 11

14 GH118_150 14,4985 0,0002 13,6357 0,0003 9

15 GH39_100 8,4011 0,0041 5,9578 0,0154 [75] 8

16 GH58_150 11,2451 0,0009 7,3450 0,0072 - 9

17 GH75_1302 3,9857 0,0470 7,2289 0,0000 - 1

18 GH77_130 15,6853 0,0001 12,1496 0,0006 - 25

19 GH83_150 14,4985 0,0002 13,6357 0,0003 - 5

20 NAU2913_2752 28,0884 0,0000 33,1437 0,0000 - 26

21 NAU2913_2501 10,9679 0,0011 7,3916 0,0072 - 26

22 TMB1660_200 4,7863 0,03 4,0461 0,0459 - 13

Micronaire

23 BNL1317_200 5,3110 0,0221 4,4295 0,0364 [,19,2,

70]

9; 23 FL; FS; FF; FM; FE [70,19,84–87]; [21,86,88,89]; [19,84,85,88];

[70]; Lint% [72]; Phe, Val, Ile [83]

24 BNL1611_250 4,6319 0,0324 4,3260 0,0386 - 19 Lint index

25 BNL2655_170 4,5173 0,0346 7,1258 0,0081 [89] 24 -

26 BNL2655_180 6,5472 0,0111 7,2491 0,0076 [89] 24 -

27 BNL3171_270 4,7169 0,0309 5,5791 0,0190 - 21 FS, FL [81]; NSPB [82]

28 BNL3441_2251 4,4178 0,0366 5,5588 0,0192 [78] 3 Seed Yield, Lint Yield [76]

29 BNL3599_200 4,569 0,0338 4,6125 0,0331 - 12; 25; 26 -

30 BNL3601_150 7,1592 0,0081 4,3647 0,0382 - 22 -

31 BNL3601_1752 14,7358 1,69E-04 7,7107 0,0001 - 22 Maturity, Wall thickness [72]

32 BNL3792_275 3,7064 0,0558 3,9364 0,0489 8 -

33 BNL3977_200 7,3660 0,0071 6,4973 0,0114 - 19 -

34 NAU2913_2501 6,8974 0,0092 22,7003 0,0000 - 26 -

Fiber strength

35 BNL1521_170 4,4852 0,0352 11,4486 0,0008 [19] 24 FS [79]; FM [21]; FM, FE [70]

36 BNL1667_275 6,3563 0,0124 10,2118 0,0016 - 15 -

37 BNL2590_300 9,5001 0,0023 12,4752 0,0005 - 9; 23 -

38 BNL2632_250 5,9613 0,0154 9,6192 0,0022 - 11; 21 -

39 BNL2960_170 5,0139 0,0261 5,6441 0,0183 - 10 FL, FE [75]

40 BNL2967_180 4,5632 0,034 10,5314 0,0014 - 12 -

41 BNL3071_150 3,9221 0,0488 6,6112 0,0108 20; 10 -

42 BNL3259_210 6,9678 0,0089 10,0291 0,0017 [81] 3; 14 -

43 BNL3408_150 7,5481 0,0065 6,9507 0,0089 - 3 -

44 BNL3442_130 9,8947 0,0019 9,0888 0,0029 - 11 -

(Continued)
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Table 12. (Continued)

# SSR marker* USA Uzbekistan Match ** Chromosome*** Association with other traits (reference)

F (MLM) p (MLM) F (MLM) p (MLM)

45 BNL3452_180 7,1697 0,0079 8,7972 0,0033 [81] 3; 11 -

46 BNL3479_240 11,6504 0,0008 7,4832 0,0067 - 13; 18 -

47 BNL3482_130 7,7441 0,0058 4,4109 0,0368 [72] 26; 20 ELO [33]; MIC, BW, seed index [72]

48 BNL3590_225 6,3393 0,0125 10,0275 0,0017 - 2; 17 Lint%, BN [80]

49 BNL3599_200 4,9390 0,0272 11,2787 0,0009 - 12; 26 -

50 BNL3955_175 7,1704 0,0079 15,7115 0,0001 - 6; 17; 22 -

51 BNL3955_200 5,3898 0,0211 4,7147 0,0309 - 6; 17; 22 -

52 BNL3992_170 11,6470 0,0008 14,6615 0,0002 - 5 -

53 BNL3994_120 14,2212 0,0002 4,7149 0,0309 - 4; 22; 26 -

54 BNL3994_130 5,5912 0,0189 4,4562 0,0359 - 4; 22; 26 -

55 BNL4003_1501 5,3124 0,0221 10,2666 0,0015 - 17 -

56 BNL4061_200 12,8342 0,0004 7,2074 0,0078 - 13 -

57 BNL625_260 18,7211 0,0000 18,2298 0,0000 - 11 -

58 CM209_120 9,1795 0,0027 6,4197 0,0119 - 9 Node number, resistance to V. dahlia [90]

59 CM209_150 4,9767 0,0266 4,5798 0,0334 - - -

60 GH107_250 4,8334 0,0289 5,2264 0,0231 - 4 -

61 GH110_140 9,1454 0,0028 7,4042 0,0070 - 20 -

62 GH117_160 11,2309 0,0009 18,7498 0,0000 - 4 -

63 GH117_170 12,2549 0,0006 15,2407 0,0001 - 4 -

64 GH118_150 20,3746 0,0000 24,2525 0,0000 - 9 -

65 GH171_250 9,2628 0,0026 9,7270 0,0020 - 24 -

66 GH200_150 7,6600 0,0061 19,2938 0,0000 - 22 -

67 GH39_100 17,4070 0,0000 17,7736 0,0000 - 6 -

68 GH39_1251 14,8501 0,0002 5,5328 0,0195 - 6 -

69 GH58_150 18,7026 0,0000 24,3992 0,0000 - 10 -

70 GH75_150 7,9448 0,0052 11,8654 0,0007 - 1 -

71 GH77_130 14,0671 0,0002 15,6514 0,0001 - - -

72 GH82_190 14,8755 0,0001 20,6424 0,0000 - 12; 6 -

73 GH83_150 20,3746 0,0000 24,2525 0,0000 - 5; 21 -

74 NAU2709_150 19,9144 0,0000 23,9373 0,0000 - 23 -

75 NAU3620_150 11,3272 0,0009 10,2668 0,0015 - -

Fiber uniformity

76 BNL1495_135 8,0936 0,0048 4,6559 0,0320 - 13 FE [78]; FL, FS, FE [77]; FY [72]; FL [75]

77 BNL1521_170 16,9956 0,0001 17,4674 0,0000 - 24 -

78 BNL1611_190 12,8852 0,0004 17,3193 0,0000 - 19 -

79 BNL2590_300 3,9382 0,0484 6,2594 0,0131 - 9 -

80 BNL2960_170 6,4625 0,0117 5,3490 0,0216 - 10 FL, FE [75]

81 BNL2967_200 7,8402 0,0055 5,8171 0,0166 - 12 -

82 BNL3398_190 10,0170 0,0018 17,7981 0,0000 - 3 -

83 BNL3599_200 18,9071 0,0000 15,2568 0,0001 - 12 -

84 BNL3599_225 16,0116 0,0001 9,1933 0,0027 - 12 -

85 BNL3601_1751 12,2255 0,0006 4,6528 0,0320 - 22 -

86 BNL3902_2001 7,7856 0,0057 13,9393 0,0002 - 15 -

87 BNL3955_175 9,0779 0,0029 16,1893 0,0001 - 6; 17; 22 -

88 BNL4061_200 6,9722 0,0088 3,9938 0,0468 - 13 -

89 BNL625_260 6,4257 0,0119 8,5918 0,0037 - 11 -

90 GH107_250 4,1634 0,0424 7,9804 0,0051 - 4 -

91 GH118_150 14,3306 0,0002 16,9257 0,0001 - 9 -

(Continued)
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Discussion

Gathering information about genetic diversity and population structure is essential for provid-

ing insights into the breeding history and genetic relationship of crop germplasm. In this

research, the first SSR marker-based molecular genetic study was conducted of G. barbadense
cotton germplasm from the Uzbekistan cotton collection. It is believed that 10–30% of acces-

sions may be enough to represent 70–90% of the genetic diversity of a whole germplasm collec-

tion [91]. The 288 accessions studied here represent almost 29% of the entire long-staple

cotton genetic collection preserved in IG&PEB, Tashkent, Uzbekistan.

Assessment of G. barbadense accessions revealed a wide range of diversity in fiber quality

traits within specific environments and between environments indicating the existence of use-

ful genetic variation for these traits within the collection. Correlations of fiber quality traits

between the USA (California) and Uzbekistan (Tashkent) environments demonstrated differ-

ent performance of the same long-staple cotton accessions, which reflects the effect of the envi-

ronment on the development of fiber quality traits. This should be taken into account when

breeding for these traits. Nevertheless, several accessions were identified with stable fiber trait

performance in both environments (Table 6). By definition, stability is the ability of an acces-

sion or genotype to show minimum variability in the interaction with the environment [92].

Thus, identified stable G. barbadense accessions that demonstrated the best values for single or

all fiber traits in both (USA and Uzbekistan) environments should be primarily considered for

breeding programs.

Genetic diversity analysis revealed a narrower genetic base of long-staple cotton germplasm

based on SSR markers compared to Upland (G. hirsutum) cotton. This result is consistent with

earlier studies [9, 33, 19, 93–95]. In addition, the genetic diversity was observed to be lower

than previous reports from other studies of G. barbadense germplasm [95–99]. An explanation

for this finding could be that previous studies used small sample size and/or low numbers of

markers. Another explanation of this phenomenon is that in this study the majority of G. bar-
badense accessions from the IG&PEB Uzbek germplasm collection belong to Uzbekistan and

Turkmenistan cotton germplasm that are closely related genetically and historically [5].

Table 12. (Continued)

# SSR marker* USA Uzbekistan Match ** Chromosome*** Association with other traits (reference)

F (MLM) p (MLM) F (MLM) p (MLM)

92 GH39_125 7,6613 0,0061 9,8348 0,0019 - 6 -

93 GH58_150 14,4281 0,0002 14,8799 0,0001 - 10; 9 -

94 GH77_130 14,1736 0,0002 11,3857 0,0009 - - -

95 GH77_175 5,0152 0,0261 8,9700 0,0030 - - -

96 GH82_190 14,4588 0,0002 21,1300 0,0000 - 6 -

97 GH83_150 14,3306 0,0002 16,9257 0,0001 - 4; 21 -

98 NAU3620_150 11,5049 0,0008 8,8581 0,0032 - 5 -

99 NAU3860_250 4,2711 0,0399 3,9286 0,0487 - 12; 26 -

100 NAU5015_180 10,4259 0,0014 4,7976 0,0295 - 5 -

*—SSRs with significant (�0,05) fiber trait associations;

**—The same marker-trait association matched with other studies (reference),

***—Chromosome location of SSR marker;
1—Marker showed significant association at Bayes factor BF�0,15 [61],
2—Marker with very strong association at BF�0,02; FL—fiber length; FS—fiber strength; FE—fiber elongation; FM—fiber micronaire; Lint%—lint yield, Phe

-phenylalanine, Val—valine, Ile- isoleucine, NSPB—number seeds per boll.

https://doi.org/10.1371/journal.pone.0188125.t012
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In this context, comparison of accessions for all clusters showed that the Turkmen cultivars

have wider introgression/selection compared to the Uzbek accessions. The presence of groups

(clusters) is a reflection of the genetic differentiation of populations as a result of the introduc-

tion of genes of genetically distinct forms. Thus, according to the cluster analysis, it can be

hypothesized that studied G. barbadense collection was formed by the introduction/introgres-

sion of African (including Egyptian), African-American and American genotypes. In addition,

the genetic relationship, identified between each of the studied accessions, is important for

selecting breeding material and in the creation of improved germplasm and cultivars. It is also

important to notice that as a result of many years of breeding, the population of G. barbadense
cultivars formed genotypes specific to agro-ecological conditions of the Central Asian region,

and clearly was traced by the genetic isolation of the Uzbek and Turkmen cultivars.

The average number of alleles per SSR marker (2.78) was higher than reported elsewhere

(1.72—[97]; 1,66—[98]; 1.60—[95]), and the average PIC value (0.29) was lower than the pre-

viously reported from the Chinese’s G. barbadense germplasm (0.32—[98], but close to values

reported for G. hirsutum germplasm (0.28 [18] and 0.30 [80]). On the other hand, the same

SSR marker set showed different fragment sizes and polymorphism compared to the G. hirsu-
tum accessions from the Uzbek germplasm collection, in which the average allele number was

higher (5.5) per SSR, whereas PIC value was much lower– 0.082 [33]. As a result, the selected

108 markers, used in this study, are highly suitable to detect allelic variation in G. barbadense
germplasm.

Population structure and differentiation of G. barbadense germplasm

To avoid spurious associations in LD-based AM, a detailed knowledge about population struc-

ture in a germplasm panel is of great importance. A model-based MLM approach using popu-

lation structure information [46] is the most reliable method to correct spurious associations.

However, under certain scenarios it is difficult to obtain accurate estimates of the actual num-

ber of subpopulations (K) [47, 93]. Generally, K is assumed to be the value with the highest

estimated LnP(D) generated by STRUCTURE [46]. The LnP(D) value in real data tends to

increase with increasing K and might not show a mode for the true K. Therefore, to avoid false

associations an ad hoc measure ΔK proposed by the Evanno et al. [38] approach was used to

detect the true K present in the SSR marker data.

The ad hoc measure ΔK [47] values proposed in this study indicated two groups as the most

biologically meaningful population structure of the 288 G. barbadense germplasm panel. Simi-

lar clustering results have been reported for population structure of long-staple germplasm

from other studies of G. barbadense [95, 97], including a recent comparative study of genome-

wide divergence and population demographic histories for G. hirsutum and G. barbadense
using genome-anchored SNPs [100]. In this study, several different methods (UPGMA cluster-

ing, PCoA, and Bayesian-based approach) were used to determine the level and pattern of

genetic diversity and population structure present in the G. barbadense germplasm accessions

based on SSR markers. Thus, grouping based on clustering analysis was an agreement with

available background information of these accessions. As a result, the methods adopted here

roughly reveal a similar level of population structure.

The AMOVA revealed a clear genetic structure of the germplasm accessions. The high vari-

ability of genetic loci within a population might be due to several factors. For example, wide-

spread species pollinated by insects have high intrapopulation variability [101]. The high

degree of cross-pollination patterns within the population serve as indicator of intensive

breeding events such as hybridization. On the other hand, from an evolutionary point of view,

domestication of long-staple cotton has been relatively recent (~ 2500 years BC) [102, 103]. It
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is known that a population that has passed through a bottleneck has a temporarily disrupted

mutation balance among the loci with an excess of heterozygosity [104]. The results of this

study re-highlight the presence of the bottleneck in the recent past of cotton domestication.

The introduction of cotton germplasm and cultivars to new environments leads to forma-

tion of novel allele combinations in different loci allowing their adaptability to local stresses.

This gives rise to several breeds within a gene pool. One example of this ‘cultivar-introduction’

is the "Acala" cultivar from the USA, which was introduced in Central Asia [105]. Analysis of

56 G. barbadense cultivars from China revealed 8% of genetic differentiation among popula-

tions (probably because a common cultivar-introduction) and 92% within populations [98]. In

our study, the level of inter-population differentiation was much higher and accounted for

32.8%, while within population variation was 67.2%. This was similar to results of Upland cot-

ton germplasm collection analysis where the genetic differentiation within and among popula-

tions of G. hirsutum accessions was 31.4% and 65.84%, respectively [106].

The AMOVA results demonstrate a significant correlation between genetic differentiation

of accessions and their geographic origin. In different populations of the same species, there is

always present historical evidence of interbreeding, even if an admixture does not exist at pres-

ent. According to Wright, an Fst>0.25 corresponds to a high level of genetic differentiation

[107,108]. In this study, the Fst value in the G. barbadense diverse germplasm was equal to 0.328

(p�0.001), indicating distinct population structure. Pairwise Fst analysis revealed strong differ-

entiation between African and Turkmenistan (Fst = 0.584), and African and Uzbekistan (Fst =

0.575) germplasm. The differentiation between Uzbekistan and Turkmenistan gene pools was

much lower (Fst = 0,117). This could be due to interbreeding events not only within a geo-

graphic niche, but also from similar introductions. This result also indicates that both gene

pools (Uzbekistan and Turkmenistan) arose from common ancestors with a tendency of slight

isolation, according to the ratio of allele frequencies identified in these groups or populations.

According to genetic relationship-patterns (Fig 1), it can be assumed that during initial

development of the “group B” germplasm, ancestors from the Egyptian and Egyptian-Ameri-

can or/and American gene pools might be involved. It was also interesting to notice that group

"A" was observed to be composed of two sub-groups G1 and G2, consisting of accessions of

Africa-Egyptian (Giza, Barakat) and American genotypes (Pima S1) (Fig 1). Even though G.

barbadense is indigenous to the northern part of South America and extends into Mesoamerica

and the Caribbean [24], the Egyptian-Giza and America Pima-S series have been reported to

have an interconnected breeding history. The Sea Island lineage also known as long-staple cot-

ton contributed to the development of the Egyptian cotton [7, 24, 25]. This was later reintro-

duced in the 1940s into the United States as a part of the genetic base of the Pima gene pool of

Pima-S series germplasm releases by USDA-ARS [22, 25]. This is the first report in which

molecular data and historic breeding records provide similar evidence for the G. barbadense
history. It could also be concluded that ancestors of the Egyptian and Egyptian-American or/

and American germplasm were used in the development of the Turkmen and Uzbek G. barba-
dense germplasm. Thus, our results provide important insights into the evolutionary and

breeding processes that influenced the structure of genetic variation within and among popu-

lations, which is the key point in association genetics studies.

Application of LD-based association mapping approaches

Association mapping (AM) is a very effective method of combining information on the geno-

type, phenotype, population structure and the LD in plants [28, 54]. The estimation of LD

decay during AM is of great importance. In this study, the first attempt to apply the LD-based

AM of fiber quality traits of G. barbadense germplasm from the Uzbek cotton collection was
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made. The most appropriate measure of the LD for AM studies in plants is the squared correla-

tion coefficient r2 [26], which also points to marker-trait correlation [26,109–111]. In this

study, 16.8% of SSR marker pairs showed significant pairwise linkage disequilibrium at

r2�0.05. At the higher values of r2�0.1 and r2�0.2, 8% and 4.3% of SSR marker pairs showed

significant LD, respectively. The value of r2�0.1 was a threshold for significant LD [112]. The

results differ from those obtained from studies of different G. hirsutum germplasm collections

[33, 80, 113, 114]. This indicates some differences in the formation of the LD pattern between

pairs of loci in the genomes of G. hirsutum and G. barbadense species, which requires detailed

comparative studies in the future.

The observed percentage of SSR loci in LD for G. barbadense genome in our study, as men-

tioned above (4.3–16.8%), is significantly lower than that of other crops such as corn, barley

and wheat, where the percentage of markers in LD has been reported at 49–57%, 52–86% and

45–100%, respectively [115–119]. The low level of pairwise LD between SSR loci might be due

to high levels of recombination rate in the genomes of allopolyploid cottons [120], as well as,

mutations and experimental hybridization in the recent history of cultivated cotton germplasm

[33]. In this study, an average genome-wide LD decay for G. barbadense accessions was

3.36cM at r2�0.1 and 0.6cM at r2�0.2. A recent study of 219 G. barbadense cultivars and land-

race accessions of widespread origin using the genome-wide SNPs suggested a genome-wide

LD decay was longer with an average of 128Kb compared to G. hirsutum with an average

decay of 117Kb [100]. The fast LD decay of G. barbadense germplasm illustrates the significant

potential for LD-based association mapping for agronomic traits. Taking into account that the

average length of recombination block in the genome of tetraploid cotton is around 5,200 cM,

with an average of 400kb per 1cM [121], the block size of ~ 5 cM is sufficient for reliable associ-

ation mapping [33]. Therefore, our findings suggest a great possibility for association mapping

of G. barbadense genome.

Several studies of the LD decay in a whole genome scale in diverse G. hirsutum germplasm

collections found that the LD decay varied from 25 to 5 cM at r2 threshold of 0.1 and from 6 to

1 cM at r2�0.2 [9, 18, 19, 33, 113, 122]. This indicates that the size of the LD blocks may vary

depending on the sample size and the population studied although the structure of LD haplo-

type blocks found to be considerably similar between G. hirsutum and G. barbadense [100].

Moreover, the composition of germplasm plays a key role in the LD variations, in other words

the genetic distance over which LD decays depends on the genetic diversity present in the

population [123]. Therefore, further characterization of the population structure and LD levels

in G. barbadense germplasm collected from all over the world will be a benefit for association

mapping of complex traits in long-staple cotton. In our study, the average size of the LD blocks

in the genome of G. barbadense is less than that of G. hirsutum, which suggests a greater

genetic variability. A large part of the genetic variability observed in modern G. barbadense
germplasm may be due to introgression with G. hirsutum [124]. This also may be due to inten-

sive breeding programs of Upland cotton that are ten times more than those dedicated to

G. barbadense accessions [125,126].

Fiber quality trait associated markers

Linkage mapping is a powerful tool for identifying the genetic basis of quantitative traits in

plants. However, association mapping is another effective approach for connecting phenotypes

and genotypes in plants when information on population structure and LD is available [54].

The LD-based AM has recently gained popularity among plant geneticists and become a

powerful approach to dissecting complex traits in many crops [28, 29]. In the current study,

a number of major fiber trait-associated SSR markers were identified in the two diverse
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environments of Uzbekistan and USA. Only markers that showed significant associations in

both GLM and MLM were considered for further analysis. Among them, 100 SSR markers

were associated with fiber quality traits in both environments. Furthermore, 14 SSRs associ-

ated with main fiber quality traits in our study coincided with reported fiber quality trait-asso-

ciated SSRs from QTL-mapping studies in various experimental populations (Tables 11 and

12). At the same time, an additional 86 yet-unreported in literature SSR markers, associated

with fiber quality traits in G. barbadense cotton germplasm, were detected (Table 12).

In a previous study of G. hirsutum germplasm, 25 fiber quality traits were significantly asso-

ciated with SSR markers in Uzbekistan and Mexican environments [33]. In analyses of 56 cul-

tivars of G. arboreum germplasm, 30 fiber trait-associated SSRs were identified [127]. Two

independent association-mapping studies of 99 and 241 cultivars from the Chinese G. hirsu-
tum germplasm collection, revealed 70 and 48 fiber quality trait-associated SSR markers,

respectively [19, 80]. Another AM study using 220 cultivars from the US Upland germplasm

collection identified 129 fiber trait-associated SSR markers [128]. Notably, several of the iden-

tified SSR markers were also reported by previous studies. For example, BNL1521 associated

with FL and FS in this study showed the same trait associations in Upland cotton [19]. In pre-

vious reports, this marker was also found to be associated with FM and FE [70], FS [79] and

FM [21]. Thus, BNL1521 is the high-priority candidate DNA marker for MAS in cotton breed-

ing to improve fiber quality traits.

Association of markers with two or more fiber quality traits indicates the close location of

some genes controlling these traits that have been repeatedly observed in many studies [21, 23,

75, 81, 129–131]. Analysis of chromosomal location of identified markers revealed clustering

of positively correlated fiber traits on the same chromosome segments (S1 Table). However,

two markers were negatively associated with correlated traits (FM-FL and FM-FU). Similar

findings were reported by Cai et al. [19] where two markers were associated with FM-FL and

FM-FS and were negatively correlated. This suggests the possibility of a joint transfer and

inheritance of these traits, thereby bypassing the obstacles in the form of negative correlations.

A fiber traits gene-cluster was identified near markers BNL1421 and BNL1495. The

BNL1421, associated with FL in this study, as well as, in a study of G. arboreum germplasm

[71], was associated with FE [78] and FY [72] in G. hirsutum and located within a chromosome

segment that is rich to fiber quality traits [77] (Table 12). The BNL1495, associated with FL in

this study, as well as, in a study of G. hirsutum germplasm [75], was also located within a group

of markers associated with FE [78]. Furthermore, an estimated distance between BNL1421 and

BNL1495 is ~1,8cM, implying the clustering of fiber quality genes within the selected chromo-

some segment. BNL1521, located on Ch24 and associated with FL in the current study and in a

study of G. hirsutum germplasm [19], were reported to be associated with FS [19, 79], FM [70,

74] and FE [70]. BNL1705 associated with FL in this study were also reported to be associated

with FL [76] and FY [80]. BNL1317 associated with FM herein was also associated with the

same fiber trait in other studies [8, 19, 21], FE [19], and FL [70].

Furthermore, BNL1317 was associated with a QTL for phenylalanine content [132], which

plays a key role in phenylpropanoid pathway during cotton fiber cell wall formation [133–

135]. Thus, BNL1317 is another high-priority candidate marker for MAS. Marker BNL3601,

significantly associated with FM (BF�0,02) in our study, was also reported to be associated

with fiber maturity and fiber cell wall thickness [62], that is directly related to micronaire

[136,137]. Therefore, these SSRs should be very useful for fiber quality improvement of cotton

cultivars by means of marker-assisted selection (MAS).

In this context, it should be noted that, so far, cotton lags behind on MAS application and

success compared to other crops [9,30, 33]. Many molecular markers tagged through numer-

ous traditional QTL-mapping studies, except those monogenically inherited resistance traits
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(e.g. [138, 139]), have had a limited success in cotton breeding programs [139]. This may be

primarily connected with (1) complexity and polyploidy of the cotton genome, (2) polygenic

and epigenetic nature of inheritance of many important QTLs including fiber traits, which are

greatly impacted from G by E interactions and (3) specificity of tagged molecular markers to a

bi-parentally-derived mapping population, making markers meaningless when other popula-

tions or genotypes are used [30, 139].

Differing from QTL-mapping approach, LD-based association mapping using germplasm

resources helps to associate more biologically meaningful markers in a large number of germ-

plasm accessions, shaped under many historic meiotic events [9, 30, 33, 123]. Therefore,

molecular markers associated with important traits using LD-based association mapping

should be efficient to be used in MAS programs. For instance, previous efforts on association

mapping in a large set of Upland cultivars and exotic landrace stock germplasm [9, 33] have

helped us to design a successful molecular breeding program in Uzbekistan. In a short time,

using SSR markers associated with fiber length, strength and micronaire traits, novel cotton

cultivars series “Ravnaq” (translates from Uzbek as “Advance”) with improved fiber quality

traits have been developed, which are currently under evaluation of State Variety Testing Sta-

tions of Uzbekistan [139, 140]. This exemplifies the usefulness of genome-wide association

mapping studies of cotton that should be highly efficient with application of recently devel-

oped genome-anchored SNPs [100] because of genome wide scale and considering many

alleles and genetic interactions.

Conclusions

Thus, in a set of 288 G. barbadense germplasm resources from the Uzbekistan cotton collec-

tion, for the first time, a genetic diversity, population structure, and the extent of genome-wide

linkage disequilibrium were assessed for Pima or extra-long staple cotton genome. Efforts have

helped to perform LD-based association mapping of fiber quality traits evaluated in two diverse

environments (Uzbekistan and USA) using a highly polymorphic set of simple sequence repeat

(SSR) markers. Results have provided important insights into the evolutionary and breeding

processes that influence the structure of genetic variation within a population and among pop-

ulations. Also, there is a lower level of LD compared to the Upland cotton genome or other

agricultural crops. Model based-association mapping efforts have further identified strongly

associated novel and previously reported SSR markers with major fiber quality traits. Results

should help to expand our knowledge of the breeding history and germplasm peculiarities of

Pima cotton. Identified SSR markers and candidate gene sequence associated fiber quality

traits in G. barbadense foster cotton improvement programs using marker-assisted selection.
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