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The remarkable tolerance of bacterial biofilms to antimicrobial drugs underpins their role in

chronic and recurring infections. Staphylococcus aureus biofilms are embedded in an extracel-

lular matrix composed of self-produced extracellular polysaccharides, DNA, and proteins or

host-derived matrices such as fibrin, prompting speculation that limited drug diffusion into

biofilms contributes to tolerance. However, the slow- and non-growing phenotypes of biofilm

cells resemble those observed in the stationary growth phase, which is known to enrich for the

highly antibiotic-tolerant persister phenotype. Indeed, recent studies have revealed that the

antibiotic tolerance phenotypes of S. aureus biofilm and persister cells are strikingly similar

[1–5]. Here, we will explore the idea that biofilms are enriched with adherent persister cells

and that research into the biofilm and persister phenotypes has converged.

Why Do Biofilms Exhibit High-Level Antibiotic Tolerance?

The visible extracellular polysaccharide matrix encasing many bacterial biofilms, e.g., S. epider-
midis slime on infected medical devices or mucoid Pseudomonas aeruginosa recovered from

the lungs of patients with cystic fibrosis [6, 7], has prompted the hypothesis that impaired anti-

biotic penetration is an important determinant in biofilm tolerance to drugs and other toxins.

However, the relative contribution of impaired antibiotic penetration to biofilm tolerance

remains questionable. It has been demonstrated that antibiotics do penetrate the biofilm

matrix and reach the cells embedded within [8, 9] without always killing the bacteria [10]. Fur-

thermore, cells released from biofilms are more tolerant to antibiotics than planktonic cells

[11, 12], which strongly suggests that overall biofilm tolerance is not primarily the result of

impaired antibiotic penetration.

Overall, it appears that the biofilm matrix does not significantly control antibiotic penetra-

tion. Rather, these data indicate that the biofilm matrix is primarily a protective agent against

immune defenses during infection [13]. The altered physiology of biofilm cells reflects the

unique environmental milieu and high cell density, which is likely to limit nutrient and oxygen

availability and impact quorum sensing-regulated phenotypes [14]. These growth conditions

appear to force a subset of biofilm cells into a stationary and persister-like state. Cells in this

physiological state are primed to survive wide-ranging environmental assaults, including anti-

biotic challenge [2].
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How Similar Are Biofilm Cells, Stationary Phase Cells, and

Persisters?

The physiology of S. aureus biofilm cells bears striking similarity to that of S. aureus persister

cells. Persister cells are subpopulations of antibiotic-tolerant cells in an otherwise susceptible

population. Persisters are transient phenotypic variants, which exhibit drug susceptibility

upon subculture [15]. Similarly, cells that detach from antibiotic-tolerant biofilms and grow

planktonically also revert to a drug-susceptible state [11, 12].

Stationary phase cultures of S. aureus demonstrate remarkable antibiotic tolerance [1, 2, 16,

17]. By definition, stationary phase cells are slow- or non-growing, a characteristic shared by

biofilm cells and persister cells. Cells in such a metabolically inactive state are inherently more

tolerant to antimicrobial drugs that target actively growing cells. For example, beta-lactam

antibiotics are ineffective against cells that are not actively dividing and synthesizing new cell

wall peptidoglycan [18]. Like biofilms, cells from stationary phase cultures also exist in a high

cell density environment. At high cell densities, cells are likely to become starved of nutrients,

oxygen, or both, resulting in a drop in intracellular ATP.

Recently, we reported that intracellular ATP concentration appears to be the major deter-

minant of survival to antibiotic challenge for both stationary phase cells and persister cells in S.

aureus [17]. The same may also be true for biofilm-associated cells. The limited nutrient and

oxygen availability within the biofilm presumably results in reduced metabolic activity and a

lower energy state, which is a hallmark of persister cells that can survive exposure to most bac-

tericidal antibiotics.

It may be that low cell energy levels are the major determinant of antibiotic tolerance

in biofilm cells, persister cells, and stationary phase cells. For example, S. aureus initiates

expression of biofilm adhesins in response to a variety of external stresses, including nutrient

limitation, pH stress, osmotic stress, and sublethal antibiotic challenge [6, 19, 20]. Thus, bio-

film formation may also be viewed as a response by the bacteria to environmental stress that

not only promotes intercellular adherence but also imposes a selective pressure for metaboli-

cally inactive, energy-depleted cells that can survive hostile growth conditions, including

antibiotic challenge.

However, this does not imply that all biofilm and persister cells are physiologically identical,

but rather that the mechanism(s) underpinning the ability of otherwise susceptible S. aureus
cells to tolerate and survive antibiotic challenge may be essentially the same (Fig 1).

Does the Biofilm Mode of Growth Influence the Rate of Persister

Cell Production in S. aureus Populations?

Exposure of planktonic staphylococcal cells to subinhibitory antibiotic concentrations induces

biofilm formation [21–23]. In addition, sub-MIC (minimum inhibitory concentration) antibi-

otics and other external stresses enrich for drug-tolerant persister cells [15]. These observa-

tions may be important in linking the phenotypes of antibiotic tolerance and biofilm matrix

production. Although antibiotics penetrate and reach high concentrations within the biofilm,

penetration dynamics are influenced by the matrix [8, 10]. Together with the limited nutrient

and oxygen availability, the establishment of an antibiotic concentration gradient may add an

additional selective pressure for cells within the biofilm to enter a persister state upon encoun-

tering sub-MIC levels of the antibiotic, allowing them to survive the subsequent lethal concen-

tration. Relevant to this are studies showing that the extracellular matrix deployed by S. aureus
biofilms under different growth conditions, plus the age and cell density of the biofilm, signifi-

cantly influences the ability of antibiotics such as rifampicin, daptomycin, vancomycin,

gentamicin, and fosfomycin to kill biofilm cells [3, 4]. For instance, rifampicin can exhibit
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significant activity against fibrin-dependent biofilms grown in Roswell Park Memorial Insti-

tute (RPMI) media but not against FnBP/eDNA biofilms produced by the same strain in rich

culture media [4]. It is therefore conceivable that the relative numbers of persister cells vary in

different types of biofilm. These observations support the idea that environmental conditions

(nutrient availability, oxygen concentration, cell density, and sub-MIC antibiotic levels) regu-

late expression of biofilm adhesins and the type of biofilm matrix produced, which influences

the rate at which cells in the biofilm enter the persister state and, accordingly, the antibiotic tol-

erance of the biofilm.

Can the Shared Features of Persister and Biofilm Cells Be

Exploited to Better Treat Chronic Infections?

The phenotypic heterogeneity of biofilm cells, as outlined above, suggests that new treatment

approaches aimed at disrupting biofilms are not necessarily going to be effective against per-

sister cells. By contrast, new therapeutic approaches targeting persister cells should also have

potential against biofilms. For example, persister cells can be killed by the acyldepsipeptide

antibiotic ADEP4, which activates the nonspecific ClpP protease in an ATP-independent man-

ner [1]. ADEP4 is active against persisters, stationary phase cells, and biofilms [1]. Similarly,

the histidine kinase inhibitor NH125, which was shown to have significant antipersister activ-

ity at low concentrations, was able to kill biofilm cells and disrupt the biofilm matrix at high

concentrations [24]. In S. epidermidis, the minimum bactericidal concentration of ciprofloxa-

cin effective against biofilms can also kill most persister cells [25]. These data suggest that

Fig 1. Role of persister cells in biofilm antibiotic tolerance. Antibiotic-tolerant persister cells (depicted in red) are enriched in

stationary phase planktonic cultures and biofilms compared to exponential phase planktonic cultures, which are primarily composed of

antibiotic-susceptible cells (depicted in green). The antibiotic susceptibility phenotype of exponential phase cells correlates with high

levels of metabolic activity and ATP associated with abundant nutrients and oxygen. As cells enter stationary phase or become encased

in a biofilm matrix, nutrients and oxygen are depleted and the level of intracellular ATP is reduced. Exposure to antibiotics, most of which

target ATP-dependent processes, has no significant effect on metabolically inactive persister cells with low intracellular ATP levels.

doi:10.1371/journal.ppat.1006012.g001
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persister cell populations can also be used as a model to evaluate antibiofilm therapeutics.

Thus, recent reports that glucose can augment daptomycin-induced killing of S. aureus persist-

ers [26] or that the anticancer drug cisplatin [27] and cis-2-decenoic acid [28] have activity

against persisters may also be indicative of antibiofilm activity.

Future research into how antibiotic-tolerant persister cells contribute to treatment failures

of biofilm-associated infections can exploit advances in techniques to better study persister

cells. Reporter systems developed to label persister cells could be adapted and combined with

microscopy to investigate the proportion, distribution, and metabolic niche of persister cells

within heterogeneous biofilm populations, as well as their response to antibiotics. Like S.

aureus, the Pseudomonas aeruginosa biofilm phenotype is associated with antibiotic tolerance

[7]. Chronic biofilm-associated infections caused by P. aeruginosa are difficult to eradicate

with current antibiotic treatment regimens [7, 29], and it is feasible that such biofilms are also

enriched with persister cells. Intriguingly, mannitol augments tobramycin-induced killing of

P. aeruginosa persisters and biofilm cells [29] in a manner comparable to glucose-enhanced,

daptomycin-induced killing of S. aureus persisters [23]. Thus, despite differences in the mech-

anisms of persister cell formation in gram-negative and gram-positive bacteria, the role of per-

sister cells in biofilm tolerance may extend beyond S. aureus. Further insights into the shared

antibiotic tolerance mechanisms of persister and biofilm cells are needed to direct future

research into (and therapeutic options for) chronic and relapsing infections involving these

important phenotypic variants of S. aureus.
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