

Received 14 October 2014 Accepted 27 October 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; metacyclophane; pyridinophane; transannular *p*-electronic interaction; C—H···N hydrogen bond; intermolecular short contact

CCDC reference: 1031274 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure of a four-layered [3.3](3,5)pyridinophane

Masahiko Shibahara,^a* Motonori Watanabe,^b Taisuke Matsumoto,^c Kenta Goto^d and Teruo Shinmyozu^d

^aDepartment of Chemistry, Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita 870-1192, Japan, ^bInternational Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, ^cEvaluation Center of Materials Properties and Function, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan, and ^dInstitute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. *Correspondence e-mail: mshiba@oita-u.ac.jp

The title compound, $C_{40}H_{46}N_2$ {systematic name: 12,30-diazaheptacyclo-[21.13.1.1^{5,19}.1^{6,18}.1^{10,14}.1^{24,36}.1^{28,32}]dotetraconta-1(37),5(40),6(41),10(42),11,13,-18,23,28,30,32(39),36(38)-dodecaene}, has *syn-anti-syn* geometry wherein the two outer [3.3]metacyclophane (MCP) moieties have a *syn* geometry, and contain the facing benzene and pyridine rings at dihedral angles of 26.26 (10) and 26.46 (10)°, respectively. The rings of the central [3.3]MCP unit are not parallel, but orientated at a slight angle of 2.66 (9)°. Three bridging methylene groups are disordered over two sets of sites in a 0.60:0.40 ratio. In the crystal, the molecules are linked by C–H···N interactions and intermolecular C–H··· π short contacts, generating a three-dimensional network.

1. Chemical context

[3.3]Metapyridinophanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989; Fronczek et al., 1989; Krüger, 1995). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969; Shinmyozu et al., 1986; Bottino et al., 1988). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis(halomethyl)pyridine. We have previously used freshly prepared 3,5bis(chloromethyl)pyridine as the coupling reaction to prepare 2,11-diaza[3.3](3,5)PyP (Satou & Shinmyozu, 2002). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supramolecules when [3.3](3,5)PyPs become coordinated. This occurs because the metacyclophanes (MCPs) have syn geometries and the nitrogen lone-pair electrons can readily coordinate with metals without steric hindrance being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclophanes using the (p-tolylsulfonyl)methyl isocyanide method (MCPs; Shibahara et al., 2007) and the (*p*-ethylbenzenesulfonyl)methyl isocyanide method (paracyclophanes; Shibahara et al., 2008). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supramolecules when they form complexes with transition metals. These new types of supramolecules could have uses as catalysts, inclusion hosts or nanometerscale materials.

research communications

2. Structural commentary

The molecular structure of the title compound (at 123 K) is shown Fig.1. The trimethylene bridges are highly flexible and disordered even at this temperature. The molecule has a *synanti–syn* geometry, in which the two outer [3.3]MCP moieties have a *syn* geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13–C18 planes) and 26.46 (10)° (between the C26– C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack *et al.*, 1985). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between

Figure 1

The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Short contacts of the title compound; $C-H\cdots\pi$ -type interactions between C6 and H11 and C35 and H49 (orange dashed lines) and short contacts between N1 and H9 and N2 and H50 (light-blue dashed lines).

the C13-C18 and C26-C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of $ca \ 15^{\circ}$ about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1-C8 and C15-C18 axes) and 2.49° (between the C28-C31 and N2-C36 axes), and the benzene rings overlap each other completely in this molecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15-C18 and C28-C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al., 2001).

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C8{-}H9{\cdots}{N1}^{i}\\ C36{-}H50{\cdots}{N2}^{ii} \end{array}$	0.95	2.43	3.373 (3)	173
	0.95	2.47	3.394 (3)	165

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

3. Supramolecular features

The crystal-packing diagram of the molecule (Fig. 2) shows that molecules are stacked alternately changing direction in the *bc* plane. Two types of intermolecular short contacts are observed. One is the $C-H\cdots\pi$ -type interactions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the *bc* plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the *a* axis (Table 1). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitrogen and hydrogen atom.

4. Database survey

The title compound is closely related to the four-layered [3.3]MCP, heptacyclo[21.13.1.1^{5,19}.1^{6,18}.1^{10,14}.1^{24,36}.1^{28,32}]dotetraconta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),-36(38)-dodecaene), which is the hydrocarbon-only parent molecule (Shibahara *et al.*, 2007), and its charge-transfer complex with tetracyanoethylene (Shibahara *et al.*, 2011, 2014). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a *syn–anti–syn* geometry like the letter ' ω ' in a ligand-free environment and have a geometry like the letter 's' when it forms a complex.

5. Synthesis and crystallization

The title compound was prepared as described by Shibahara *et al.* (2008) by a coupling reaction of 5,7,14,16-tetrakis(bromomethyl)[3.3]metacyclophane with 3,5-bis[2-isocyano-2-(tolylsulfonyl)ethyl]pyridine, which afforded four-layered [3.3](3,5)pyridinophane tetraone, which was converted to the four-layered[3.3](3,5)pyridinophane Shibahara *et al.*, 2009) by a Wolff–Kishner reduction. Purification of the crude product by silica gel column chromatography with CH₂Cl₂/EtOH (9:1; ν/ν , $R_f = 0.53$) gave the four-layered pyridinophane (12% isolated yield in two steps). Finally, the product was crystallized from CH₂Cl₂/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed).

¹H NMR (600 MHz, CDCl₃): δ 1.8–2.0 (*m*, 12H, CH₂CH₂CH₂), 2.4–2.7 (*m*, 24H, CH₂CH₂CH₂), 5.97 (*s*, 2H, ArH), 6.21 (*s*, 2H, ArH), 6.91 (*s*, 2H, ArH), 7.84 (*d*, *J* = 1.5 Hz, 4H, ArH). ¹³C NMR (150 MHz, CDCl₃) δ 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [*M*+H]⁺ calculated for C₄₀H₄₇N₂ 555.3739, found 555.3739. Analysis calculated for C₄₀H₄₆N₂: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.

Experimental details.	
Crystal data	
Chemical formula	$C_{40}H_{46}N_2$
Mr	554.79
Crystal system, space group	Triclinic, P1
Temperature (K)	123
a, b, c (Å)	6.1377 (15), 14.643 (4), 17.519 (4)
α, β, γ (°)	75.619 (16), 88.369 (17),
	86.755 (17)
$V(Å^3)$	1522.6 (7)
Ζ	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.52
Crystal size (mm)	$0.45 \times 0.30 \times 0.16$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
No. of measured, independent and	20167, 5396, 4455
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.070, 0.204, 1.07
No. of reflections	5396
No. of parameters	410
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
A A (Å −3)	rennement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm A}^{-5})$	0.42, -0.32

Computer programs: *RAPID-AUTO* (Rigaku, 1998), *SIR2011* (Camalli et al., 2012), *SHELXL2014* (Sheldrick, 2008), *Yadokari-XG 2009* (Wakita, 2001; Kabuto et al., 2009), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae et al., 2006), *publCIF* (Westrip, 2010) and enCIFer (Allen et al., 2004).

6. Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using a riding model: C-H = 0.95-0.99 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Science Research (C 25410050) from the Japan Society for the Promotion of Science (JSPS), Japan, and was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (IMCE, Kyushu University). MW thanks the World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529.
- Camalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351–356.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). *Inorg. Chem.* 28, 1419–1422.

research communications

- Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T. & Shinmyozu, T. (2001). *Eur. J. Org. Chem.* pp. 2487–2499.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, **51**, 218–224.
- Krüger, H.-J. (1995). Chem. Ber. 128, 531-539.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Muralidharan, S., Hojjatie, M., Firestone, M. & Freiser, H. (1989). J. Org. Chem. 54, 393–399.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Satou, T. & Shinmyozu, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 393-397.
- Semmelhack, M. F., Harrison, J. J., Young, D. C., Gutierrez, A., Rafii, S. & Clardy, J. (1985). J. Am. Chem. Soc. 107, 7508–7514.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749–3754.
- Shibahara, M., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). Acta Cryst. E70, o625–o626.
- Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865–2877.
- Shibahara, M., Watanabe, M., Suenaga, M., Ideta, K., Matsumoto, T. & Shinmyozu, T. (2009). *Tetrahedron Lett.* **50**, 1340–1344.
- Shibahara, M., Watanabe, M., Yuan, C. & Shinmyozu, T. (2011). *Tetrahedron Lett.* **52**, 5012–5015.
- Shinmyozu, T., Hirai, Y. & Inazu, T. (1986). J. Org. Chem. 51, 1551– 1555.
- Vögtle, F. & Schunder, L. (1969). Chem. Ber. 102, 2677-2683.
- Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/ yadokari.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 447-450 [doi:10.1107/S1600536814023691]

Crystal structure of a four-layered [3.3](3,5)pyridinophane

Masahiko Shibahara, Motonori Watanabe, Taisuke Matsumoto, Kenta Goto and Teruo Shinmyozu

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *RAPID-AUTO* (Rigaku, 1998); program(s) used to solve structure: *SIR2011* (Camalli *et al.*, 2012); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *Yadokari-XG 2009* (Wakita, 2001; Kabuto *et al.*, 2009); software used to prepare material for publication: *Yadokari-XG 2009* (Wakita, 2001; Kabuto *et al.*, 2009), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2006), *publCIF* (Westrip, 2010) and *enCIFer* (Allen *et al.*, 2004).

12,30-

Diazaheptacyclo[21.13.1.1^{5,19}.1^{6,18}.1^{10,14}.1^{24,36}.1^{28,32}]dotetraconta-1(37),5(40),6(41),10 (42),11,13,18,23,28,30,32 (39),36 (38)-dodecaene

Crystal data

 $C_{40}H_{46}N_2$ $M_r = 554.79$ Triclinic, *P*1 *a* = 6.1377 (15) Å *b* = 14.643 (4) Å *c* = 17.519 (4) Å *a* = 75.619 (16)° *β* = 88.369 (17)° *y* = 86.755 (17)° *V* = 1522.6 (7) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: Rotating anode Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ ω scans 20167 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.204$ S = 1.075396 reflections Z = 2 F(000) = 600 $D_x = 1.210 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 20167 reflections $\theta = 3.1-68.2^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 123 K Block, colorless $0.45 \times 0.30 \times 0.16 \text{ mm}$

5396 independent reflections 4455 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -17 \rightarrow 17$ $l = -21 \rightarrow 20$

410 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0985P)^{2} + 0.5512P] \qquad \Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F2. *R*-factor (gt) are based on *F*. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	-0.1497 (3)	0.89284 (14)	0.15093 (15)	0.0710 (6)	
N2	-0.3765 (3)	0.11241 (14)	0.34741 (14)	0.0686 (6)	
C1	-0.6871 (4)	0.71516 (16)	0.33718 (12)	0.0548 (6)	
H1	-0.6992	0.6659	0.3871	0.066*	
H2	-0.8360	0.7317	0.3161	0.066*	
C2	-0.5956 (4)	0.80319 (16)	0.35507 (13)	0.0611 (6)	
Н3	-0.6656	0.8121	0.4045	0.073*	
H4	-0.4377	0.7900	0.3652	0.073*	
C3	-0.6234 (4)	0.89604 (15)	0.29260 (14)	0.0568 (6)	
Н5	-0.7804	0.9087	0.2805	0.068*	
H6	-0.5757	0.9476	0.3146	0.068*	
C4	-0.4983 (3)	0.89824 (13)	0.21695 (14)	0.0489 (5)	
C5	-0.2702 (3)	0.89796 (15)	0.21396 (16)	0.0593 (6)	
H7	-0.1969	0.9017	0.2600	0.071*	
C6	-0.2568 (4)	0.88533 (16)	0.08720 (17)	0.0694 (7)	
H8	-0.1726	0.8797	0.0421	0.083*	
C7	-0.4813 (4)	0.88527 (14)	0.08282 (14)	0.0585 (6)	
C8	-0.6003 (3)	0.89542 (13)	0.14854 (13)	0.0505 (5)	
H9	-0.7551	0.9006	0.1466	0.061*	
C9	-0.5889 (6)	0.86779 (17)	0.01185 (15)	0.0813 (9)	
H10	-0.4757	0.8638	-0.0288	0.098*	0.6
H11	-0.6909	0.9221	-0.0105	0.098*	0.6
H12	-0.5535	0.9178	-0.0356	0.098*	0.4
H13	-0.7493	0.8692	0.0196	0.098*	0.4
C10	-0.5062 (11)	0.7705 (4)	0.0003 (3)	0.0600 (14)	0.4
H14	-0.5447	0.7669	-0.0533	0.072*	0.4
H15	-0.3450	0.7658	0.0034	0.072*	0.4
C11	-0.7216 (7)	0.7719 (3)	0.0321 (2)	0.0624 (10)	0.6
H16	-0.8340	0.7766	0.0728	0.075*	0.6
H17	-0.7987	0.7684	-0.0159	0.075*	0.6
C12	-0.5953 (5)	0.68650 (16)	0.05909 (12)	0.0624 (6)	
H18	-0.4697	0.6872	0.0223	0.075*	0.6
H19	-0.6855	0.6342	0.0546	0.075*	0.6

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20	-0.5686	0.6304	0.0375	0.075*	0.4
H21	-0.7554	0.6976	0.0628	0.075*	0.4
C13	-0.5062 (4)	0.66231 (13)	0.14222 (10)	0.0439 (5)	
C14	-0.3006 (4)	0.61736 (13)	0.15950 (11)	0.0465 (5)	
C15	-0.2239 (3)	0.60393 (13)	0.23604 (12)	0.0458 (5)	
H22	-0.0810	0.5762	0.2473	0.055*	
C16	-0.3447 (3)	0.62880 (13)	0.29652 (11)	0.0438 (5)	
C17	-0.5504 (3)	0.67436 (13)	0.27882 (11)	0.0410 (4)	
C18	-0.6270 (3)	0.68750 (13)	0.20271 (11)	0.0409 (4)	
H23	-0.7698	0.7152	0.1915	0.049*	
C19	-0.2635 (4)	0.6006 (2)	0.38046 (13)	0.0730 (8)	
H24	-0.1814	0.6546	0.3865	0.088*	0.5
H25	-0.3961	0.6001	0.4141	0.088*	0.5
H26	-0.3104	0.6488	0.4092	0.088*	0.5
H27	-0.1022	0.5927	0.3812	0.088*	0.5
C20	-0.3775 (7)	0.4969 (3)	0.4213 (2)	0.0438 (9)	0.5
H28	-0.4192	0.4961	0.4765	0.053*	0.5
H29	-0.5135	0.4949	0.3929	0.053*	0.5
C21	-0.1416 (7)	0.5230 (3)	0.4162 (2)	0.0446 (9)	0.5
H30	-0.1111	0.5271	0.4704	0.054*	0.5
H31	0.0001	0.5235	0.3876	0.054*	0.5
C22	-0.2538 (4)	0.4179 (2)	0.42155 (14)	0.0656 (7)	
H32	-0.2123	0.3718	0.4713	0.088 (18)*	0.5
H33	-0.4149	0.4262	0.4200	0.058 (13)*	0.5
H34	-0.3369	0.3655	0.4537	0.060 (13)*	0.5
H35	-0.1237	0.4216	0.4526	0.078 (15)*	0.5
C23	-0.1580 (5)	0.57678 (16)	0.10252 (13)	0.0699 (8)	
H36	-0.0159	0.5545	0.1277	0.084*	
H37	-0.1295	0.6282	0.0553	0.084*	
C24	-0.2510 (5)	0.49556 (16)	0.07572 (12)	0.0804 (9)	
H38	-0.1332	0.4667	0.0483	0.097*	
H39	-0.3658	0.5222	0.0367	0.097*	
C25	-0.3485 (5)	0.41715 (15)	0.14020 (12)	0.0644 (7)	
H40	-0.4924	0.4407	0.1565	0.077*	
H41	-0.3737	0.3632	0.1175	0.077*	
C26	-0.2098 (3)	0.38177 (13)	0.21302 (10)	0.0435 (5)	
C27	-0.0039 (3)	0.33628 (13)	0.21292 (11)	0.0448 (5)	
C28	0.1172 (3)	0.31807 (13)	0.28151 (12)	0.0443 (5)	
H42	0.2606	0.2902	0.2807	0.053*	
C29	0.0400 (3)	0.33839 (12)	0.35121 (10)	0.0392 (4)	
C30	-0.1672 (3)	0.38350 (12)	0.35142 (10)	0.0377 (4)	
C31	-0.2876 (3)	0.40213 (12)	0.28279 (11)	0.0396 (4)	
H43	-0.4307	0.4303	0.2835	0.048*	
C32	0.1769 (4)	0.30603 (15)	0.42464 (13)	0.0553 (6)	
H44	0.1901	0.3602	0.4484	0.066*	
H45	0.3255	0.2868	0.4090	0.066*	
C33	0.0864 (4)	0.22411 (16)	0.48715 (13)	0.0651 (7)	
H46	0.1605	0.2208	0.5373	0.078*	

H47	-0.0703	0.2395	0.4953	0.078*	
C34	0.1071 (4)	0.12618 (16)	0.47135 (15)	0.0628 (6)	
H48	0.2628	0.1108	0.4614	0.075*	
H49	0.0597	0.0795	0.5193	0.075*	
C35	-0.0238 (3)	0.11599 (13)	0.40259 (15)	0.0532 (6)	
C36	0.0739 (3)	0.11169 (14)	0.33139 (15)	0.0553 (6)	
H50	0.2286	0.1072	0.3271	0.066*	
C37	-0.0508 (4)	0.11380 (15)	0.26629 (16)	0.0595 (6)	
C38	-0.2743 (4)	0.11317 (17)	0.27859 (18)	0.0680 (7)	
H51	-0.3623	0.1133	0.2348	0.082*	
C39	-0.2509 (3)	0.11535 (15)	0.40745 (16)	0.0597 (6)	
H52	-0.3199	0.1171	0.4563	0.072*	
C40	0.0508 (5)	0.12235 (19)	0.18544 (18)	0.0774 (8)	
Н53	-0.0669	0.1207	0.1484	0.093*	0.6
H54	0.1502	0.0661	0.1876	0.093*	0.6
H55	0.2112	0.1122	0.1902	0.093*	0.4
H56	-0.0033	0.0728	0.1624	0.093*	0.4
C41	0.1840 (8)	0.2138 (3)	0.1500 (2)	0.0668 (11)	0.6
H57	0.3133	0.2097	0.1834	0.080*	0.6
H58	0.2389	0.2097	0.0972	0.080*	0.6
C42	0.0035 (11)	0.2064 (4)	0.1380 (4)	0.0637 (16)	0.4
H59	-0.1577	0.2140	0.1391	0.076*	0.4
H60	0.0441	0.1999	0.0844	0.076*	0.4
C43	0.0848 (5)	0.30389 (18)	0.14163 (14)	0.0708 (7)	
H61	-0.0378	0.3097	0.1049	0.085*	0.6
H62	0.1923	0.3497	0.1150	0.085*	0.6
H63	0.2463	0.2999	0.1430	0.085*	0.4
H64	0.0403	0.3516	0.0932	0.085*	0.4

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0479 (11)	0.0539 (12)	0.1144 (18)	-0.0067 (9)	0.0227 (11)	-0.0285 (12)
N2	0.0409 (10)	0.0638 (12)	0.1137 (18)	-0.0058 (9)	-0.0037 (11)	-0.0448 (12)
C1	0.0666 (14)	0.0559 (13)	0.0480 (11)	-0.0095 (11)	0.0150 (10)	-0.0248 (10)
C2	0.0778 (15)	0.0628 (14)	0.0530 (12)	-0.0038 (12)	0.0063 (11)	-0.0346 (11)
C3	0.0511 (12)	0.0500 (12)	0.0799 (15)	-0.0006 (9)	0.0029 (11)	-0.0369 (12)
C4	0.0444 (10)	0.0324 (10)	0.0750 (14)	-0.0021 (8)	0.0053 (10)	-0.0234 (10)
C5	0.0450 (11)	0.0454 (12)	0.0942 (17)	-0.0045 (9)	-0.0016 (11)	-0.0292 (12)
C6	0.0770 (17)	0.0441 (13)	0.0855 (18)	-0.0014 (11)	0.0254 (14)	-0.0165 (12)
C7	0.0746 (15)	0.0308 (10)	0.0663 (14)	0.0007 (10)	0.0092 (12)	-0.0069 (9)
C8	0.0471 (11)	0.0335 (10)	0.0720 (14)	-0.0005 (8)	-0.0029 (10)	-0.0155 (10)
C9	0.137 (3)	0.0452 (13)	0.0563 (14)	0.0068 (15)	-0.0120 (15)	-0.0034 (11)
C10	0.091 (4)	0.048 (3)	0.037 (3)	-0.008 (3)	-0.003 (3)	-0.002 (2)
C11	0.093 (3)	0.051 (2)	0.0446 (19)	0.011 (2)	-0.0237 (19)	-0.0144 (16)
C12	0.1004 (19)	0.0522 (13)	0.0364 (11)	-0.0181 (12)	-0.0042 (11)	-0.0109 (9)
C13	0.0676 (13)	0.0327 (9)	0.0324 (9)	-0.0112 (9)	0.0030 (8)	-0.0089 (7)
C14	0.0672 (13)	0.0309 (9)	0.0396 (10)	-0.0050 (9)	0.0170 (9)	-0.0068 (8)

C15	0.0492 (11)	0.0328 (10)	0.0515 (11)	-0.0034 (8)	0.0065 (9)	-0.0036 (8)
C16	0.0559 (11)	0.0379 (10)	0.0379 (10)	-0.0118 (9)	-0.0004 (8)	-0.0080 (8)
C17	0.0536 (11)	0.0360 (9)	0.0370 (9)	-0.0121 (8)	0.0084 (8)	-0.0147 (8)
C18	0.0478 (10)	0.0337 (9)	0.0434 (10)	-0.0084 (8)	0.0026 (8)	-0.0123 (8)
C19	0.0617 (14)	0.105 (2)	0.0419 (12)	-0.0207 (14)	-0.0051 (10)	0.0048 (12)
C20	0.065 (2)	0.041 (2)	0.0260 (16)	0.0018 (18)	0.0066 (16)	-0.0124 (15)
C21	0.062 (2)	0.043 (2)	0.0361 (19)	-0.0004 (18)	-0.0067 (17)	-0.0238 (16)
C22	0.0569 (13)	0.101 (2)	0.0585 (14)	-0.0181 (13)	0.0111 (11)	-0.0554 (15)
C23	0.105 (2)	0.0451 (12)	0.0507 (13)	0.0090 (12)	0.0363 (13)	-0.0029 (10)
C24	0.159 (3)	0.0534 (13)	0.0282 (10)	0.0263 (16)	0.0051 (13)	-0.0161 (10)
C25	0.110 (2)	0.0449 (12)	0.0435 (12)	0.0036 (12)	-0.0247 (12)	-0.0202 (10)
C26	0.0670 (13)	0.0339 (9)	0.0330 (9)	-0.0082 (9)	-0.0032 (8)	-0.0133 (7)
C27	0.0641 (12)	0.0366 (10)	0.0388 (10)	-0.0132 (9)	0.0129 (9)	-0.0181 (8)
C28	0.0466 (10)	0.0359 (10)	0.0554 (12)	-0.0076 (8)	0.0077 (9)	-0.0202 (9)
C29	0.0490 (10)	0.0314 (9)	0.0393 (10)	-0.0099 (8)	-0.0017 (8)	-0.0108 (8)
C30	0.0502 (10)	0.0349 (9)	0.0322 (9)	-0.0092 (8)	0.0044 (7)	-0.0151 (7)
C31	0.0488 (10)	0.0334 (9)	0.0401 (10)	-0.0028 (8)	-0.0016 (8)	-0.0153 (8)
C32	0.0626 (13)	0.0455 (11)	0.0574 (13)	-0.0127 (10)	-0.0183 (10)	-0.0080 (10)
C33	0.0859 (17)	0.0526 (13)	0.0535 (13)	-0.0114 (12)	-0.0261 (12)	-0.0020 (10)
C34	0.0543 (13)	0.0446 (12)	0.0803 (16)	-0.0028 (10)	-0.0135 (11)	0.0036 (11)
C35	0.0433 (11)	0.0291 (9)	0.0860 (16)	-0.0004 (8)	-0.0084 (10)	-0.0114 (10)
C36	0.0391 (10)	0.0331 (10)	0.0970 (17)	0.0025 (8)	0.0045 (11)	-0.0240 (11)
C37	0.0520 (12)	0.0411 (11)	0.0972 (18)	-0.0018 (9)	-0.0017 (12)	-0.0399 (12)
C38	0.0522 (13)	0.0585 (14)	0.108 (2)	-0.0025 (11)	-0.0110 (13)	-0.0475 (14)
C39	0.0447 (11)	0.0446 (12)	0.0938 (17)	-0.0024 (9)	0.0033 (11)	-0.0253 (12)
C40	0.0780 (17)	0.0647 (17)	0.110 (2)	-0.0023 (13)	0.0105 (15)	-0.0612 (17)
C41	0.084 (3)	0.069 (3)	0.050 (2)	0.018 (2)	0.014 (2)	-0.0262 (19)
C42	0.071 (4)	0.064 (4)	0.075 (4)	-0.011 (3)	0.022 (3)	-0.053 (3)
C43	0.0954 (18)	0.0707 (16)	0.0608 (14)	-0.0262 (14)	0.0334 (13)	-0.0428 (13)

Geometric parameters (Å, °)

N1—C5	1.327 (3)	C21—H30	0.9900
N1—C6	1.342 (3)	C21—H31	0.9900
N2—C39	1.332 (3)	C22—C30	1.512 (2)
N2—C38	1.341 (3)	С22—Н32	0.9900
C1—C17	1.518 (2)	С22—Н33	0.9900
C1—C2	1.539 (3)	С22—Н34	0.9900
C1—H1	0.9900	С22—Н35	0.9900
C1—H2	0.9900	C23—C24	1.527 (4)
С2—С3	1.524 (3)	С23—Н36	0.9900
С2—Н3	0.9900	С23—Н37	0.9900
С2—Н4	0.9900	C24—C25	1.532 (3)
C3—C4	1.507 (3)	C24—H38	0.9900
С3—Н5	0.9900	C24—H39	0.9900
С3—Н6	0.9900	C25—C26	1.518 (3)
C4—C8	1.378 (3)	C25—H40	0.9900
C4—C5	1.399 (3)	C25—H41	0.9900

С5—Н7	0.9500	C26—C31	1.394 (2)
C6—C7	1.383 (4)	C26—C27	1.395 (3)
С6—Н8	0.9500	C27—C28	1.392 (3)
C7—C8	1.381 (3)	C27—C43	1.519 (2)
C7—C9	1 507 (4)	C_{28} C_{29}	1 391 (3)
	0.9500	C_{28} H_{42}	0.0500
$C_0 = C_1 O_1$	1.544 (6)	$C_{20} = C_{20}$	1,200(2)
C_{9}	1.344(0)	$C_{29} = C_{30}$	1.399(3)
	1.021 (5)	C29—C32	1.516 (3)
C9—H10	0.9900	C30—C31	1.390 (2)
С9—НП	0.9900	C31—H43	0.9500
С9—Н12	0.9900	C32—C33	1.528 (3)
С9—Н13	0.9900	C32—H44	0.9900
C10—C12	1.512 (6)	C32—H45	0.9900
C10—H14	0.9900	C33—C34	1.524 (3)
С10—Н15	0.9900	С33—Н46	0.9900
C11—C12	1.416 (4)	С33—Н47	0.9900
C11—H16	0.9900	C34—C35	1.509 (3)
С11—Н17	0.9900	С34—Н48	0.9900
C12—C13	1.521 (3)	C34—H49	0.9900
C12—H18	0.9900	$C_{35} - C_{36}$	1 383 (3)
C12—H19	0.9900	$C_{35} - C_{39}$	1.305(3) 1.395(3)
C12 H20	0.9900	C_{36} C_{37}	1.395(3)
C12 H21	0.9900	$C_{36} = U_{50}$	0.0500
C12 $C12$ $C19$	0.9900	C30—1150	1 292 (2)
C12 - C14	1.300(3)	$C_{37} = C_{38}$	1.383(3)
C13—C14	1.395 (3)	$C_{3}/-C_{40}$	1.510 (4)
	1.397 (3)	C38—H51	0.9500
C14—C23	1.517 (3)	С39—Н52	0.9500
C15—C16	1.386 (3)	C40—C42	1.325 (7)
C15—H22	0.9500	C40—C41	1.591 (5)
C16—C17	1.399 (3)	C40—H53	0.9900
C16—C19	1.516 (3)	C40—H54	0.9900
C17—C18	1.391 (3)	C40—H55	0.9900
C18—H23	0.9500	C40—H56	0.9900
C19—C21	1.350 (5)	C41—C43	1.396 (5)
C19—C20	1.691 (5)	C41—H57	0.9900
С19—Н24	0.9900	C41—H58	0.9900
С19—Н25	0.9900	C42—C43	1.555 (6)
C19—H26	0.9900	C42—H59	0.9900
C19_H27	0.9900	C42 - H60	0.9900
C_{20} C_{22}	1 347 (4)	C42_H61	0.9900
C20 H28	0.0000	C43 H62	0.9900
C_{20} H_{20}	0.9900	C_{73} -1102 C_{42} -162	0.9900
C_{20} $-\Pi_{29}$	0.9900	C_{43} — Π_{03}	0.9900
U21	1./01 (5)	U43—H04	0.9900
C5—N1—C6	116.8 (2)	C30—C22—H32	110.3
C39—N2—C38	116.6 (2)	C21—C22—H32	110.3
C17—C1—C2	114.26 (18)	С30—С22—Н33	110.3
C17—C1—H1	108.7	С21—С22—Н33	110.3

C2—C1—H1	108.7	H32—C22—H33	108.6
C17—C1—H2	108.7	С20—С22—Н34	105.3
C2—C1—H2	108.7	С30—С22—Н34	105.3
H1—C1—H2	107.6	С20—С22—Н35	105.3
C3—C2—C1	117.46 (19)	С30—С22—Н35	105.3
С3—С2—Н3	107.9	H34—C22—H35	106.0
С1—С2—Н3	107.9	C14—C23—C24	115.7 (2)
C3—C2—H4	107.9	C14—C23—H36	108.4
C1 - C2 - H4	107.9	C24—C23—H36	108.4
H3-C2-H4	107.2	C14—C23—H37	108.4
C4-C3-C2	114 39 (17)	C_{24} C_{23} H_{37}	108.4
C_{4} C_{3} H_{5}	108 7	H36_C23_H37	107.4
$C_2 = C_3 = H_5$	108.7	$C_{23} C_{24} C_{25}$	107.4 116 52 (17)
$C_2 = C_3 = H_5$	108.7	$C_{23} = C_{24} = C_{23}$	108.2
$C_{4} = C_{3} = H_{6}$	108.7	$C_{25} = C_{24} = H_{158}$	108.2
	107.6	$C_{23} = C_{24} = H_{20}$	108.2
	107.0	С25—С24—Н39	108.2
$C_8 = C_4 = C_3$	110.5 (2)	C25—C24—H39	108.2
$C_8 - C_4 - C_3$	122.13 (19)	H38—C24—H39	107.3
C5-C4-C3	121.2 (2)	C26—C25—C24	115.1 (2)
NIC5C4	124.2 (2)	C26—C25—H40	108.5
NI—C5—H7	117.9	С24—С25—Н40	108.5
С4—С5—Н7	117.9	C26—C25—H41	108.5
N1—C6—C7	124.4 (2)	C24—C25—H41	108.5
N1—C6—H8	117.8	H40—C25—H41	107.5
С7—С6—Н8	117.8	C31—C26—C27	118.34 (17)
C8—C7—C6	116.8 (2)	C31—C26—C25	117.50 (19)
C8—C7—C9	121.8 (2)	C27—C26—C25	124.01 (18)
С6—С7—С9	121.3 (2)	C28—C27—C26	118.03 (16)
C4—C8—C7	121.1 (2)	C28—C27—C43	120.2 (2)
С4—С8—Н9	119.4	C26—C27—C43	121.71 (19)
С7—С8—Н9	119.4	C29—C28—C27	123.65 (18)
C7—C9—C10	109.2 (3)	C29—C28—H42	118.2
C7—C9—C11	113.0 (2)	C27—C28—H42	118.2
С7—С9—Н10	109.0	C28—C29—C30	118.22 (17)
C11—C9—H10	109.0	C28—C29—C32	118.96 (18)
C7—C9—H11	109.0	C30—C29—C32	122.72 (17)
С11—С9—Н11	109.0	C31—C30—C29	118.05 (16)
Н10—С9—Н11	107.8	C31—C30—C22	120.01 (18)
C7—C9—H12	109.8	C29—C30—C22	121.79 (17)
С10—С9—Н12	109.8	C30—C31—C26	123.58 (18)
C7—C9—H13	109.8	C30—C31—H43	118.2
C10-C9-H13	109.8	C26—C31—H43	118.2
H12_C9_H13	108.3	C_{29} C_{32} C_{33}	114 53 (17)
$C_{12} - C_{10} - C_{9}$	115 1 (4)	$C_{29} = C_{32} = H_{44}$	108.6
C12 - C10 - H14	108 5	C_{33} C_{32} H_{44}	108.6
C9_C10_H14	108.5	C_{29} C_{32} H45	108.6
C_{12} C_{10} H_{15}	108.5	C_{33} C_{32} H_{45}	108.6
C9_C10_H15	108.5	H44_C32_H45	107.6
	100.0	1111 032 1173	10/.0

H14—C10—H15	107.5	C34—C33—C32	117.7 (2)
C12—C11—C9	116.1 (3)	C34—C33—H46	107.9
C12—C11—H16	108.3	С32—С33—Н46	107.9
С9—С11—Н16	108.3	С34—С33—Н47	107.9
C12—C11—H17	108.3	С32—С33—Н47	107.9
С9—С11—Н17	108.3	H46—C33—H47	107.2
H16—C11—H17	107.4	C35—C34—C33	114.42 (17)
C11-C12-C13	119.1 (2)	C35—C34—H48	108.7
C10-C12-C13	117.6 (3)	C33—C34—H48	108.7
C_{11} C_{12} H_{18}	107 5	C_{35} C_{34} H49	108.7
C_{13} C_{12} H_{18}	107.5	C_{33} C_{34} H_{49}	108.7
C11_C12_H19	107.5	H_{48} C_{34} H_{49}	107.6
$C_{12} = C_{12} = H_{10}$	107.5	$C_{26} = C_{25} = C_{20}$	107.0 117.2(2)
H18 C12 H10	107.5	$C_{30} = C_{33} = C_{34}$	117.3(2) 121.0(2)
118 - 12 - 119	107.0	$C_{30} = C_{33} = C_{34}$	121.9(2)
C10 - C12 - H20	107.9	C39 - C33 - C34	120.8(2)
C13—C12—H20	107.9	$C_{35} = C_{36} = C_{37}$	120.85 (19)
C10—C12—H21	107.9	C35—C36—H50	119.6
С13—С12—Н21	107.9	С37—С36—Н50	119.6
H20—C12—H21	107.2	C38—C37—C36	116.2 (2)
C18—C13—C14	118.27 (17)	C38—C37—C40	121.9 (2)
C18—C13—C12	120.13 (19)	C36—C37—C40	121.8 (2)
C14—C13—C12	121.57 (18)	N2—C38—C37	125.2 (2)
C13—C14—C15	118.04 (17)	N2—C38—H51	117.4
C13—C14—C23	124.8 (2)	С37—С38—Н51	117.4
C15—C14—C23	117.1 (2)	N2—C39—C35	123.7 (2)
C16—C15—C14	123.64 (19)	N2—C39—H52	118.1
C16—C15—H22	118.2	С35—С39—Н52	118.1
C14—C15—H22	118.2	C42—C40—C37	111.4 (3)
C15—C16—C17	118.06 (17)	C37—C40—C41	116.6 (2)
C15—C16—C19	120.7 (2)	С37—С40—Н53	108.1
C17—C16—C19	121.05 (19)	C41—C40—H53	108.1
C18—C17—C16	118.22 (17)	С37—С40—Н54	108.1
C18—C17—C1	118.57 (18)	C41—C40—H54	108.1
C16—C17—C1	123.10 (17)	H53—C40—H54	107.3
C13—C18—C17	123.63 (18)	C42—C40—H55	109.3
C13 - C18 - H23	118.2	C37—C40—H55	109.3
C17 - C18 - H23	118.2	C42 - C40 - H56	109.3
C_{21} C_{10} C_{16} C_{16}	128 5 (3)	$C_{12} = C_{10} = H_{50}$	109.3
$C_{16} = C_{19} = C_{10}$	120.3(3)	H55 C40 H56	109.5
$C_{10} = C_{19} = C_{20}$	104.8 (2)	$C_{43} = C_{40} = 1150$	100.0
$C_{21} = C_{19} = H_{24}$	105.2	$C_{43} = C_{41} = C_{40}$	120.0(3)
$C_{10} - C_{19} - H_{24}$	105.2	C43 - C41 - H57	107.2
$C_{21} = C_{19} = H_{25}$	105.2	C40 - C41 - H57	107.2
$U_{10} - U_{19} - H_{23}$	103.2	C40 = C41 = H58	107.2
$H_24 \rightarrow U_19 \rightarrow H_23$	105.9	U40-U41-H58	107.2
C16—C19—H26	110.8	$H_{2}/-C_{41}-H_{2}$	106.8
C20—C19—H26	110.8	C40—C42—C43	128.5 (5)
C16—C19—H27	110.8	C40—C42—H59	105.2
C20—C19—H27	110.8	C43—C42—H59	105.2

H26C19H27	108.9	C40—C42—H60	105.2
C_{22} C_{20} C_{19} C_{12}	116 5 (3)	C_{43} C_{42} H_{60}	105.2
$C_{22} = C_{20} = C_{13}$	108.2	H59-C42-H60	105.2
$C_{12} = C_{20} = H_{20}$	108.2	C_{41} C_{43} C_{27}	100.9 120.9(3)
$C_{12} = C_{20} = H_{20}$	108.2	C_{1}^{-} C_{43}^{-} C_{27}^{-}	120.9(3)
$C_{22} = C_{20} = H_{20}$	108.2	$C_{27} - C_{43} - C_{42}$	113.0(3)
129 - 20 - 1129	108.2	$C_{41} = C_{43} = 1101$	107.1
1120 - C20 - 1129	107.3 115.7(2)	$C_{27} = C_{43} = 1101$	107.1
$C_{19} = C_{21} = C_{22}$	113.7 (3)	$C_{41} = C_{43} = 1102$	107.1
$C_{19} = C_{21} = H_{30}$	108.4	$C_2 / - C_{43} - H_{62}$	107.1
$C_{22} = C_{21} = H_{30}$	108.4	H01 - C43 - H02	100.8
C19 - C21 - H31	108.4	$C_{27} = C_{43} = H_{03}$	109.0
C22—C21—H31	108.4	C42—C43—H63	109.0
H30-C21-H31	107.4	$C_{27} - C_{43} - H_{64}$	109.0
$C_{20} = C_{22} = C_{30}$	127.9 (3)	C42—C43—H64	109.0
C30-C22-C21	106.9 (2)	H63—C43—H64	107.8
C17—C1—C2—C3	75.5 (3)	C19—C21—C22—C30	94.6 (3)
C1—C2—C3—C4	-66.0 (3)	C13—C14—C23—C24	-63.4(3)
C2—C3—C4—C8	107.4 (2)	C15—C14—C23—C24	113.0 (2)
C2-C3-C4-C5	-69.0(3)	C14—C23—C24—C25	-46.4(3)
C6—N1—C5—C4	-1.6(3)	C23—C24—C25—C26	-46.4(3)
C8—C4—C5—N1	-1.8(3)	C24—C25—C26—C31	111.4 (2)
C3-C4-C5-N1	174.8 (2)	C24—C25—C26—C27	-63.9(3)
C5—N1—C6—C7	1.9 (4)	C_{31} C_{26} C_{27} C_{28}	-3.2(3)
N1-C6-C7-C8	1.2 (3)	C_{25} C_{26} C_{27} C_{28}	172.08 (18)
N1—C6—C7—C9	-174.4(2)	C31—C26—C27—C43	174.58 (18)
C5-C4-C8-C7	5.0 (3)	C_{25} C_{26} C_{27} C_{43}	-10.1(3)
C_{3} C_{4} C_{8} C_{7}	-171.58(17)	C_{26} C_{27} C_{28} C_{29}	3.4 (3)
C6-C7-C8-C4	-4.8(3)	C43 - C27 - C28 - C29	-174.48(18)
C9-C7-C8-C4	170.89 (19)	C_{27} C_{28} C_{29} C_{30}	-3.0(3)
C8-C7-C9-C10	-1170(3)	C_{27} C_{28} C_{29} C_{32}	17357(17)
C6-C7-C9-C10	58.5 (4)	C_{28} C_{29} C_{30} C_{31}	2.5 (3)
C8-C7-C9-C11	-59.7(3)	C_{32} C_{29} C_{30} C_{31}	-173.94(16)
C6-C7-C9-C11	115 8 (3)	$C_{28} = C_{29} = C_{30} = C_{22}$	-173 11 (19)
C7—C9—C10—C12	73.5 (5)	C_{32} C_{29} C_{30} C_{22}	10.5 (3)
$C_{11} = C_{9} = C_{10} = C_{12}$	-314(3)	C_{20} C_{22} C_{30} C_{31}	-32.6(4)
C7-C9-C11-C12	-633(4)	$C_{21} = C_{22} = C_{30} = C_{31}$	-951(2)
C10-C9-C11-C12	34 1 (3)	C_{20} C_{22} C_{30} C_{29}	142.9(3)
C9-C11-C12-C10	-328(3)	$C_{21} = C_{22} = C_{30} = C_{29}$	80 4 (3)
C9-C11-C12-C13	73 3 (4)	C_{29} C_{30} C_{31} C_{26}	-27(3)
C9-C10-C12-C11	343(4)	$C_{22} = C_{30} = C_{31} = C_{26}$	173.01.(19)
C_{9} C_{10} C_{12} C_{13}	-743(5)	$C_{22} = C_{30} = C_{31} = C_{30}$	3 1 (3)
$C_{11} = C_{12} = C_{13} = C_{13}$	350(4)	$C_{25} = C_{26} = C_{31} = C_{30}$	-17256(18)
$C_{11} = C_{12} = C_{13} = C_{13}$	101.7(4)	$C_{23}^{23} = C_{20}^{20} = C_{31}^{23} = C_{30}^{23}$	-1080(2)
$C_{11} - C_{12} - C_{13} - C_{16}$	-1431(3)	$C_{20} = C_{20} = C_{32} = C_{33}$	684(3)
$C_{11} - C_{12} - C_{13} - C_{14}$	-763(4)	$C_{20} = C_{22} = C_{32} = C_{33}$	730(3)
C_{12} C_{13} C_{14} C_{15} C_{14} C_{15} C_{14} C_{15} C	-27(3)	$C_{2} = C_{3} = C_{3} = C_{3} = C_{3}$	-656(3)
$C_{13} = C_{13} = C_{14} = C_{15}$	2.7 (3) 175 31 (18)	$C_{32} = C_{33} = C_{34} = C_{35} = C_{36}$	105.0(3)
012-013-014-013	1/3.31 (18)	L33—L34—L33—L30	103.7(2)

C18—C13—C14—C23	173.67 (19)	C33—C34—C35—C39	-71.0 (3)
C12—C13—C14—C23	-8.3 (3)	C39—C35—C36—C37	4.7 (3)
C13—C14—C15—C16	3.1 (3)	C34—C35—C36—C37	-172.15 (18)
C23—C14—C15—C16	-173.58 (18)	C35—C36—C37—C38	-4.7 (3)
C14—C15—C16—C17	-3.5 (3)	C35—C36—C37—C40	171.67 (19)
C14—C15—C16—C19	171.89 (19)	C39—N2—C38—C37	2.1 (4)
C15—C16—C17—C18	3.5 (3)	C36—C37—C38—N2	1.3 (3)
C19—C16—C17—C18	-171.89 (19)	C40—C37—C38—N2	-175.1 (2)
C15—C16—C17—C1	-172.74 (18)	C38—N2—C39—C35	-2.2 (3)
C19—C16—C17—C1	11.9 (3)	C36—C35—C39—N2	-1.1 (3)
C2-C1-C17-C18	-106.2 (2)	C34—C35—C39—N2	175.7 (2)
C2-C1-C17-C16	69.9 (3)	C38—C37—C40—C42	67.1 (4)
C14—C13—C18—C17	3.1 (3)	C36—C37—C40—C42	-109.1 (4)
C12-C13-C18-C17	-174.99 (17)	C38—C37—C40—C41	116.7 (3)
C16—C17—C18—C13	-3.4 (3)	C36—C37—C40—C41	-59.5 (4)
C1—C17—C18—C13	172.93 (17)	C42—C40—C41—C43	37.8 (4)
C15—C16—C19—C21	-31.6 (4)	C37—C40—C41—C43	-56.7 (5)
C17—C16—C19—C21	143.6 (3)	C37—C40—C42—C43	69.5 (6)
C15—C16—C19—C20	-92.8 (2)	C41—C40—C42—C43	-37.3 (4)
C17—C16—C19—C20	82.4 (3)	C40—C41—C43—C27	61.4 (5)
C21—C19—C20—C22	-30.3 (3)	C40—C41—C43—C42	-31.4 (4)
C16—C19—C20—C22	96.1 (3)	C28—C27—C43—C41	43.8 (4)
C16—C19—C21—C22	-60.6 (4)	C26—C27—C43—C41	-133.9 (3)
C20—C19—C21—C22	23.4 (2)	C28—C27—C43—C42	94.5 (4)
C19—C20—C22—C30	-63.5 (4)	C26—C27—C43—C42	-83.3 (4)
C19—C20—C22—C21	23.7 (2)	C40—C42—C43—C41	43.5 (5)
C19—C21—C22—C20	-29.9 (3)	C40—C42—C43—C27	-67.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C8—H9…N1 ⁱ	0.95	2.43	3.373 (3)	173
C36—H50…N2 ⁱⁱ	0.95	2.47	3.394 (3)	165

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.