
1/22https://apallergy.org

ABSTRACT

The increase of eosinophil levels is a hallmark of type-2 inflammation. Blood eosinophil 
counts act as a convenient biomarker for asthma phenotyping and the selection of biologics, 
and they are even used as a prognostic factor for severe coronavirus disease 2019. However, 
the circulating eosinophil count does not always reflect tissue eosinophilia and vice versa. 
The mismatch of blood and tissue eosinophilia can be seen in various clinical settings. For 
example, blood eosinophil levels in patients with acute eosinophilic pneumonia are often 
within normal range despite the marked symptoms and increased number of eosinophils 
in bronchoalveolar lavage fluid. Histological studies using immunostaining for eosinophil 
granule proteins have revealed the extracellular deposition of granule proteins coincident 
with pathological conditions, even in the absence of a significant eosinophil infiltrate. The 
marked deposition of eosinophil granule proteins in tissue is often associated with cytolytic 
degranulation. Recent studies have indicated that extracellular trap cell death (ETosis) 
is a major mechanism of cytolysis. Cytolytic ETosis is a total cell degranulation in which 
cytoplasmic and nuclear contents, including DNA and histones that act as alarmins, are 
also released. In the present review, eosinophil-mediated inflammation in such mismatch 
conditions is discussed.
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INTRODUCTION

Allergy, a hypersensitivity reaction initiated by specific immunologic mechanisms [1], is 
often associated with tissue eosinophilia [2]. In addition, eosinophil accumulation is also 
associated with malignancy, infection, and various homeostatic conditions. For example, 
eosinophils home into the uterus, which is regulated by the estrus cycle [3, 4]. Eosinophils in 
the blood can be readily counted. Although these cells form a minor (<5%) component of the 
circulating leukocyte population in the blood, larger numbers of tissue-dwelling eosinophils 
are present outside of the vasculature [5]. Nevertheless, the blood eosinophil count is an 
easy-to-access biomarker for various clinical applications. For asthma phenotyping and the 

Asia Pac Allergy. 2021 Jul;11(3):e30
https://doi.org/10.5415/apallergy.2021.11.e30
pISSN 2233-8276·eISSN 2233-8268

Current Review

Received: Feb 10, 2021
Accepted: Jul 10, 2021

*Correspondence to
Shigeharu Ueki
Department of General Internal Medicine and 
Clinical Laboratory Medicine, Akita University 
Graduate School of Medicine, 1-1-1 Hondo, 
Akita 010-8543, Japan. 
Tel: +81-18-884-6209
Fax: +81-18-884-6209
Email: shigeharu.ueki@gmail.com

Copyright © 2021. Asia Pacific Association of 
Allergy, Asthma and Clinical Immunology.
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Yui Miyabe 
https://orcid.org/0000-0003-0819-1625
Yoshiki Kobayashi 
https://orcid.org/0000-0003-3755-3074
Mineyo Fukuchi 
https://orcid.org/0000-0002-1161-9074
Akiko Saga 
https://orcid.org/0000-0002-0696-7525
Yuki Moritoki 
https://orcid.org/0000-0003-2822-3751
Praveen Akuthota 
https://orcid.org/0000-0001-6655-7520
Shigeharu Ueki 
https://orcid.org/0000-0002-3537-7735

Yui Miyabe  1, Yoshiki Kobayashi  2,3, Mineyo Fukuchi  1, Akiko Saga  1, 
Yuki Moritoki  1, Tomoo Saga1, Praveen Akuthota  4, and Shigeharu Ueki  1,*

1 Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School 
of Medicine, Akita, Japan

2Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Japan
3Allergy Center, Kansai Medical University, Hirakata, Japan
4Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA

Eosinophil-mediated inflammation in 
the absence of eosinophilia

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-0819-1625
https://orcid.org/0000-0003-0819-1625
https://orcid.org/0000-0003-3755-3074
https://orcid.org/0000-0003-3755-3074
https://orcid.org/0000-0002-1161-9074
https://orcid.org/0000-0002-1161-9074
https://orcid.org/0000-0002-0696-7525
https://orcid.org/0000-0002-0696-7525
https://orcid.org/0000-0003-2822-3751
https://orcid.org/0000-0003-2822-3751
https://orcid.org/0000-0001-6655-7520
https://orcid.org/0000-0001-6655-7520
https://orcid.org/0000-0002-3537-7735
https://orcid.org/0000-0002-3537-7735
https://orcid.org/0000-0003-0819-1625
https://orcid.org/0000-0003-3755-3074
https://orcid.org/0000-0002-1161-9074
https://orcid.org/0000-0002-0696-7525
https://orcid.org/0000-0003-2822-3751
https://orcid.org/0000-0001-6655-7520
https://orcid.org/0000-0002-3537-7735
http://crossmark.crossref.org/dialog/?doi=10.5415/apallergy.2021.11.e30&domain=pdf&date_stamp=2021-07-13


Conflict of interest
MF received grant support from 
GlaxoSmithKline Japan Research Grants 
2018; PA has received research support 
and consultancy fees from and has been 
on advisory boards for AstraZeneca and 
GlaxoSmithKline; SU received honoraria 
for lectures from AstraZeneca and 
GlaxoSmithKline as well as grant support from 
AstraZeneca, Novartis, and Maruho. The rest 
of the authors have no conflicts of interest.

Author Contributions
Conceptualization: Shigeharu Ueki, Yui 
Miyabe, Mineyo Fukuchi, Yoshiki Kobayashi. 
Investigation: Yui Miyabe, Mineyo Fukuchi, 
Yoshiki Kobayashi. Project administration: 
Akiko Saga, Yuki Moritoki, Tomoo Saga, 
Shigeharu Ueki. Writing - original draft: Yui 
Miyabe, Mineyo Fukuchi, Yoshiki Kobayashi, 
Shigeharu Ueki. Writing - review & editing: 
Yui Miyabe, Mineyo Fukuchi, Praveen 
Akuthota, Akiko Saga, Yuki Moritoki, Tomoo 
Saga,Shigeharu Ueki.

selection of biologics, the blood eosinophil count is the best-established biomarker [6]. In 
patients with severe chronic obstructive diseases, blood eosinophil counts are associated 
with the risk of exacerbations and the benefit of inhaled corticosteroid use [7]. A lower blood 
eosinophil count is also useful as a poor prognostic factor for severe coronavirus disease 2019 
(COVID-19) [8, 9].

Eosinophils develop in the bone marrow and are released into blood circulation once they are 
maturated. Circulating eosinophils can subsequently transmigrate into the gastrointestinal 
tract, lungs, adipose tissue, thymus, spleen, lymph nodes, and mammary glands, where they 
exert various essential homeostatic functions [10, 11]. The life span of eosinophils is unclear, 
but it has been estimated to be less than 1 week under homeostatic conditions [12]. The 
tissue presence of eosinophils is determined by their recruitment, retention, and clearance 
[13]. Therefore, tissue eosinophilia can be caused by increased migration, prolonged survival, 
impaired phagocytic clearance, or decreased luminal entry [14].

The activation status of eosinophils is mainly tuned by receptors expressed on their cell 
surfaces. As a short-lived, nondividing cell, eosinophil “activation” has been recognized as 
the release of bioactive mediators into the extracellular milieu [15]. This is in contrast to 
lymphocytes, for which “activation” usually means proliferation and clonal expansion of 
antigen-specific lymphocytes [16]. The multifaceted role of eosinophils is evidenced by their 
range of cell densities and cell-derived mediators.

SECRETORY MECHANISMS OF EOSINOPHILS

Because eosinophils are a rich source of bioactive mediators, the simplified hypothesis is 
that the amount of eosinophil-derived inflammatory mediators in the microenvironment 
is the primary cause of eosinophilic inflammation. Eosinophils contain approximately 200 
granules per cell [17]. These granules contain 4 major cationic (basic) proteins, that is, major 
basic protein (MBP), eosinophil-derived neurotoxin (EDN), eosinophil cationic protein 
(ECP), and eosinophil peroxidase (EPO), which play important roles in eosinophil-mediated 
inflammation [18]. Granule-stored cytokines in human eosinophils are released by 3 
secretory processes: classical exocytosis, piecemeal degranulation, and cytolysis/extracellular 
trap cell death (ETosis) [5, 19].

Classical exocytosis is a granule secretory system in which intracellular granules fuse with 
the plasma membrane and release their entire contents extracellularly via a secretory pore. 
This mechanism is not usually observed in vivo. In compound exocytosis, granules fuse to 
each other, forming large channels within the cytoplasm, and the cells then secrete the entire 
intragranular contents of multiple granules [18].

Piecemeal degranulation is thought to be the main degranulation process used by 
eosinophils. In piecemeal degranulation, the granule contents are selectively mobilized 
into small round vesicles and tubular structures termed eosinophil sombrero vesicles. The 
tubular eosinophil sombrero vesicles express cytokine receptor chains that are bound by 
cytokine ligands, such as interleukin (IL)-4 [5]. These vesicles become fused with the plasma 
membrane and release their granule-derived contents into extracellular spaces [20, 21]. 
Ultrastructure of exocytosis and piecemeal degranulation show an emptying of the secretory 
granules or lucent areas in the core of intact eosinophils [18].
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Cytolysis or ETosis is a recently recognized type of programmed cell death that is 
characterized by the dissolution of nuclear and plasma membranes and release of chromatin 
fiber called an extracellular trap [22-24]. In eosinophils, ETosis-derived cell-free extracellular 
granules express functional receptors on their membranes [18, 19, 25, 26]. Upon activation 
by ligand stimulation, the granules release their contents, which include EDN [27, 28]. 
Eosinophil ETosis (EETosis) is considered to contribute to the sterilization and trapping of 
pathogens by extracellular traps, granule proteins, and nuclear-derived components, all of 
which have cytotoxicity [29, 30].

BIOACTIVE MEDIATORS OF EOSINOPHILS

The functions of the major mediators derived from human eosinophils are summarized in  
Table 1. MBP is localized in the core of specific granules, while EDN, ECP, and EPO are 
localized in the matrix of specific granules [31-33]. Although all 4 of these granule proteins 
have toxicity for helminth parasites [34], each has various biological activities in addition 
to its antimicrobial activity. MBP-2 and EPO are distributed only in eosinophils [35, 36], 
whereas the other granule proteins are found in additional cells and tissues [37-39]. 
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Table 1. Eosinophil-derived mediators
Eosinophil Mediators Cell 

distribution
Functions Selected references

Eosinophil-
specific

MBP1/2 Granule 
core

Toxic to cells and tissues Gleich GJ, et al. J Immunol 1979;123:2925–7. [46]
Toxic to helminth parasites Hamann KJ, et al. J Immunol 1990;144:3166–73. [34]

Butterworth AE, et al. J Immunol 1979;122:221–9. [162]
Toxic to bacteria Lehrer RI, et al. J Immunol 1989;142:4428–34. [41]
Disrupts the lipid bilayer membrane Gleich GJ, et al. Annu Rev Med 1993;44:85–101. [163]
Inhibits the Muscaline 2 receptor Jacoby DB, et al. J Clin Invest 1993;91:1314–8. [49]
Induces mediator release from basophils and mast cells O'Donnell MC, et al. J Exp Med 1983;157:1981–91. [42]

Fujisawa D, et al. J Allergy Clin Immunol 2014;134:622–33.e9. [43]
Zheutlin LM, et al. Int Arch Allergy Appl Immunol 1985;77:216–7. [164]

Induces IL-8 production from eosinophils Kita H, et al. J Immunol 1995;154:4749–58. [45]
Induces detachment of tracheal epithelial cells Hastie AT, et al. Am Rev Respir Dis 1987;135:848–53. [47]
Induces cessation of ciliary activity
Induces platelet activation Rohrbach MS, et al. J Exp Med 1990;172:1271–4. [44]
Induces amyloid deposition Soragni A, et al. Mol Cell 2015;57:1011–21. [165]

EDN Granule 
matrix

Toxic to helminth parasites Hamann KJ, et al. J Immunol 1990;144:3166–73. [34]
Has RNase2 activity Slifman NR, et al. J Immunol 1986;137:2913–7. [166]
Induces the Gordon phenomenon Fredens K, et al. J Allergy Clin Immunol 1982;70:361–6. [167]
Induces dendritic cell activation Yang D, et al. J Exp Med 2008;205:79–90. [57]
Induces MMP9 expression and apoptosis in 
keratinocytes

Amber KT, et al. Exp Dermatol 2018;27:1322–7. [67]

ECP Granule 
matrix

Has RNase3 activity Gullberg U, et al. Biochem Biophys Res Commun 1986;139:1239–42. [61]
Slifman NR, et al. J Immunol 1986;137:2913–7. [166]

Induces the Gordon phenomenon Fredens K, et al. J Allergy Clin Immunol 1982;70:361–6. [167]
Toxic to helminth parasites McLaren DJ, et al. Parasite Immunol 1981;3:359–73. [62]

Hamann KJ, et al. J Parasitol 1987;73:523–9. [54]
Cytotoxic Rosenberg HF and Dyer KD. J Biol Chem 1995;270:7876–81. [168]
Toxic to bacteria Lehrer RI, et al. J Immunol 1989;142:4428–34. [41]
Induces amyloid-like aggregation Torrent M, et al. PLoS Pathogens 2012;8:e1003005. [56]
Induces mediator release from basophils and mast cells Zheutlin LM, et al. Int Arch Allergy Appl Immunol 1985;77:216–7. [164]
Inhibits TNF-α production by human macrophages Pulido D, et al. FEBS J 2016;283:4176–91. [60]
Induces MMP9 expression and apoptosis in 
keratinocytes

Amber KT, et al. Exp Dermatol 2018;27:1322–7. [67]

Induces plasminogen activation
Enhances factor XII-dependent reactions Dahl R and Venge P. Thromb Res 1979;14:599–608. [65]

Venge P, et al. Thromb Res 1979;14:641–9. [64]

(continued to the next page)



Nevertheless, these granule proteins characterize eosinophil-mediated inflammation with 
their abundance.

Major basic protein
There are 2 types of MBP: MBP-1 and MBP-2. MBP-1 is more potent and more widespread 
compared with its homologue MBP-2, which is only present in eosinophils [35]. MBP is rich 
in arginine and has strong basicity [40]. It mediates cytotoxicity for bacteria by increasing 
the permeability of cell membranes [41]. Both MBP and EPO induce histamine release from 
basophils and mast cells, and histamine release in mast cells occurs through the Mas-related 
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Eosinophil Mediators Cell 
distribution

Functions Selected references

EPO Granule 
matrix

Toxic to helminth parasites Hamann KJ, et al. J Immunol 1990;144:3166–73. [34]
Toxic to bacteria Migler R, et al. Blood 1978;51:445–56. [75]

Wang JG, et al. Blood 2006;107:558–65. [77]
Toxic to tumor cells Jong EC and Klebanoff SJ. J Immunol 1980;124:1949–53. [76]
Induces tissue factor and thrombosis Wang JG, et al. Blood 2006;107:558–65. [77]
Binds to the surface of microorganisms and enbhances 
phagocytosis

Ramsey PG, et al. J Immunol 1982;128:415–20. [78]

Mediates mucus plugging of the airways Dunican EM, et al. J Clin Invest 2018;128:3:997–1009 [79]
Inactivates of leukotrienes Henderson WR, et al. J Immunol 1982;128:2609–13. [81]
Induces histamine release from mast cells Henderson WR, et al. J Exp Med 1980;152:265–79. [80]

Fujisawa D, et al. J Allergy Clin Immunol 2014;134:622–33.e9 [43].
Galectin-10 Peripheral 

cytoplasm
Forms Charcot-Leyden crystals Ueki S, et al. Blood 2018;132:2183–7. [84]
Promotes allergic inflammation Persson EK, et al. Science 2019;364:4295. [85]
Regulates the proliferative capacity and suppressive 
function of CD25+ Treg cells

Kubach J, et al. Blood 2007;1;110:1550–8. [169]

Involved in the secretory response via 
lysophospholipase activity

Weller PF, et al. J Leukoc Biol. 2020;108:105–12. [87]

Induces granuleogenesis and vesicular transport of 
granule proteins

Grozdanovic MM, et al. J Allergy Clin Immunol 2020;146:377–89.e10. [88]

Nonspecific 
for 
eosinophil

Histones Nucleus Promotes apoptosis Barrero CA, et al. Am J Respir Crit Care Med 2013;188:673–83. [91]
Gilthorpe JD, et al. F1000Res 2013;2:148. [92]

Stimulates neurogenesis Mishra B, et al. J Neurosci 2010;30:12400–13. [170]
Regulates macrophage migration and endocytosis Brix K, et al. J Clin Invest 1998;102:283–93. [171]
Regulates neutrophil migration Xu J, et al. Nat Med 2009;15:1318–21. (in mice) [172]
Cytotoxic to endothelial cells Bosmann M, et al. Faseb J 2013;27:5010–21. [173]

Allam R, et al. J Am Soc Nephrol 2012;23:1375–88. [174]
Toxic to bacteria Hirsch JG. J Exp Med 1958;108:925–44. [90]
Stimulates TLR signaling pathways Huang H, et al. Hepatology 2011;2:54:999–1008. [93]

Semeraro F, et al. Blood 2011;118:1952–61. [95]
Kawano H, et al. Lab Invest 2014;94:569–85. [94]

Induces NLRP3 Inflammasome activation Allam R, et al. Eur J Immunol 2013;43:3336–42. [96]
Huang H, et al. J Immunol 2013;191:2665–79. [97]

Promotes thorombin generation Fuchs TA, et al. Blood 2011;118:3708–14. (in mice) [98]
Ammollo CT, et al. J Thromb Haemost 2011;9:1795–1803. [99]

Induces platelet aggregation Lam FW, et al. Thromb Res 2013;132:69–76. [101]
Carestia A,et al. Thromb Haemost 2013;110:1035–45. [100]

dsDNA Nucleus Contributes to microbial pathogen containment Kaplan MJ and Radic M. J Immunol 2012;189:2689–95. [89]
Stimulates autoimmune responses Garcia-Romo GS, et al. Sci Transl Med 2011;3:73ra20. [104]

Kessenbrock K, et al. Nat Med 2009;15:623–25. [105]
Hakkim A, et al. Proc Natl Acad Sci USA 2010;107:9813–8. [175]
Lande R, et al. Sci Transl 2011;Med3:73ra1. [106]

Induces vascular damage Villanueva E, et al. J Immunol 2011;187: 538–52. [102]
Gupta AK, et al. FEBS Lett 2010;584:3193–3. [103]

Promotes thorombosis Fuchs TA, et al. Proc Natl Acad Sci USA 2010;107:15880–5. [176]
MBP1/2, major basic protein 1/2; IL-8, interleukin-8; EDN, eosinophil-derived neurotoxin; MMP9, matrix metallopeptidase 9; ECP, eosinophil cationic protein; 
TNF, tumor necrosis factor; EPO, eosinophil peroxidase; TLR, Toll-like receptor; dsDNA, double-stranded DNA.

Table 1. (Continued) Eosinophil-derived mediators



gene X2 receptor [42, 43]. MBP is also known to be involved in the activation of neutrophils 
and platelets [44] and to induce IL-8 production by eosinophils themselves [45]. According 
to an in vitro study, MBP causes damage to various cells and tissues, such as the intestine, 
spleen, skin, and tracheal epithelium [46]. Furthermore, MBP induces the detachment of 
airway epithelium and arrest of ciliary activity, which may be related to the pathogenesis of 
severe asthma [47]. MBP-stimulated normal human bronchial epithelial cells have elevated 
expression levels of endothelin-1, transforming growth factor (TGF)-α, TGF-β, platelet-
derived growth factor, matrix metallopeptidase 9, and fibronectin, which suggests that 
MBP affects the composition of the extracellular matrix and turnover of airway epithelium 
[48]. MBP was also suggested to enhance bronchoconstriction in asthma through blocking 
muscarinic M2 receptors, followed by eliminating the negative feedback and increasing the 
release of acetylcholine [49].

Eosinophil-derived neurotoxin
The RNase superfamily member EDN, encoded in humans by the gene RNASE2, is the 
second-most abundant protein in the human eosinophil proteome out of the 7,086 proteins 
identified by proteomics of peripheral blood eosinophils [50]. EDN can be isolated not only 
from eosinophils but also from neutrophils as well as the liver, spleen, kidney, and urine 
[38, 51-53]. In neutrophils, EDN is present in the neutrophilic granules, as demonstrated by 
immunoelectron microscopy [38]. EDN has limited toxicity for helminth parasites compared 
with MBP and ECP [34, 54], but this protein is active against RNA viruses. Additionally, EDN 
is 100-fold more ribonucleolytically active compared with ECP [55]. Intrathecal injection of 
EDN or ECP into rabbits causes the death of cerebellar Purkinje fibers, which is known as 
the Gordon phenomenon [56]. A recent report has shown that EDN can act as an alarmin, is 
involved in the activation of dendritic cells through the TLR2–MyD88 signaling pathway, and 
activates the type-2 immune response [57].

Eosinophil cationic protein
ECP, encoded in humans by the gene RNASE3, also belongs to the RNase superfamily. 
Compared with EDN, ECP is more cationic and more toxic to bacteria [58]. ECP can 
destabilize bacterial lipid bilayers and neutralize bacterial lipopolysaccharide, which 
contribute to the toxicity of ECP to bacteria [59, 60]. However, ECP has 125 times lower 
RNase activity compared with EDN [61]. Regarding the toxicity of ECP to Schistosoma mansoni, 
electron microscopy observation revealed that in ECP-treated S. mansoni, blebs were formed 
on the surface of the parasite and the surface of the parasite was ruptured [62]. The toxicity 
to helminth parasites of ECP is equivalent to the effect of MBP, but the effect of ECP is slower 
than that of MBP [54]. Like MBP, ECP mediates histamine release in basophils and mast cells 
[63]. ECP increases the activation of kallikrein, enhances factor XII, and shortens the blood 
coagulation time [64]. ECP is also involved in fibrinolysis via plasminogen enhancement [65]. 
Additionally, ECP inhibits microbial activity by forming amyloid-like aggregates on bacterial 
surfaces [66]. In a recent report, ECP and EDN both induced the expression of matrix 
metalloproteinase 9 in keratinocytes and triggered keratinocyte apoptosis, which suggests 
their potential as therapeutic targets for bullous pemphigoid [67].

Eosinophil peroxidase
EPO is highly cationic, heme-containing oxidoreductase that is similar to myeloperoxidase 
(MPO) in neutrophils [68]. Although EPO and MPO have 68.3% of the same amino acids 
[69], there are some differences in their functions; for example, EPO binds to antineutrophil 
cytoplasmic antibodies and is involved in renal fibrosis [70, 71]. EPO is taken up by 
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neutrophils, basophils, and mast cells, and EPO has a higher affinity for neutrophils 
compared with MPO [72, 73]. By acting as an oxidoreductase, halides are coactivated with 
reactive oxygen species to produce hypochlorous acid, which is highly toxic to helminth 
parasites and bacteria [74, 75] as well as toxic to tumor cells [76]. Hypothiocyanous acid 
(HOSCN) is produced by the oxidation of EPO and induces tissue factor activation, which 
suggests its involvement in thrombosis. HOSCN also activates the proinflammatory 
p65/p50 nuclear factor-κB pathway [77]. EPO binds to the surface of microorganisms, 
thereby facilitating macrophage phagocytosis even in microorganisms that are resistant 
to macrophage destruction [78]. EPO is associated with mucus plugging of the airways in 
asthma [79]. Similar to MBP and ECP, EPO induces mast cell degranulation [80]. EPO also 
inactivates leukotrienes B4, C4, and D4 [81].

Galectin-10 (Charcot-Leyden crystal protein)
Galectin-10 is a cytoplasmic protein that belongs to S-lectin family and the fifth most 
abundant protein in eosinophils [50]. It was originally recognized as Charcot-Leyden 
crystal (CLC) protein and later named galectin-10 because of its carbohydrate-binding 
domain, which is similar to those of other galectin family members. Galectin-10 is 
expressed predominantly on eosinophils but is also present on macrophages, basophils, and 
CD4+CD25+ regulatory T cells [82]. In unstimulated eosinophils, galectin-10 is localized in 
the peripheral cytoplasm [83]. During the process of EETosis, galectin-10 can redistribute 
in the cytoplasm and form CLCs intracellularly [84]. EETosis-mediated plasma membrane 
disintegration causes the extracellular release of galectin-10, resulting in the extracellular 
formation of CLCs [84]. Recent reports indicate that CLCs promote type-2 immunity [85] 
and also neutrophilic inflammation [86]. The full function of galectin-10 is still unclear, 
but reports suggest that this protein regulates the dynamic palmitoylation cycle [87] and is 
involved in vesicular transport systems and granulogenesis [88].

Histones and double-stranded DNA
EETosis releases eosinophil extracellular traps, which are composed mainly of histones and 
double-stranded DNA, that is, chromatin fiber. Eosinophil extracellular traps are effective at 
trapping microbial pathogens because of their net-like structure [89]. A proteome analysis 
of human eosinophils indicated that histones ranked 3rd, 4th, 6th, and 15th in abundance 
among the top 15 proteins [50]. The cytotoxic effects to bacteria of histones have been 
known for more than 50 years [90]. Histones promote cell apoptosis [91, 92] and are involved 
in inflammation by stimulating Toll-like receptor signaling pathways [93-95] or NLRP3 
inflammasomes [96, 97]. Histones have also been recognized as inducers of the blood 
coagulation system [98-101]. Extracellular double-stranded DNA is known to cause vascular 
damage [102, 103] and thrombosis, and it can stimulate autoimmune responses, such as 
systemic lupus erythematosus [104-106].

Other cytokines and lipid mediators
Eosinophils are a rich source of cysteinyl leukotrienes (cysLTs). Leukotriene C4 and its 
metabolites, leukotriene D4 and leukotriene E4, have varied roles in mediating eosinophilic 
disorders, including host defense against parasites and allergic inflammation. CysLTs can 
activate eosinophils in an autocrine manner (they prolong survival), and induce reactive oxygen 
species production and EDN release from eosinophils [107, 108]. CysLTs are also involved 
in eosinophil differentiation and maturation in combination with IL-5 [109]. Additionally, 
extracellular eosinophil granules can release ECP in response to cysLT stimulation via cysLT 
receptors expressed on the granule membrane [110].
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Eosinophils store a wide array of cytokines, chemokines, and growth factors, including IL-4 
[111, 112], granulocyte macrophage colony-stimulating factor (GM-CSF) [113-115], and TGF-β 
[116-118]. IL-4 induces eosinophil migration into tissues via the expression of adhesion 
molecule vascular cell adhesion molecule-1 on endothelial cells [119]. Various stimuli, including 
calcium ionophore [113, 114] and fibronectin [115], can induce GM-CSF production in 
eosinophils. GM-CSF is involved in the type-2 response in allergic airway inflammation through 
activating dendritic cells and enhancing eosinophil survival in an autocrine manner [120, 121].

PERIPHERAL VERSUS TISSUE EOSINOPHILIA: LESSONS 
FROM ACUTE EOSINOPHILIC PNEUMONIA
Peripheral blood eosinophilia can assist in the diagnosis of eosinophilic inflammatory diseases, 
including eosinophilic pneumonia. Unlike the diagnostic criteria for chronic eosinophilic 
pneumonia with peripheral blood eosinophilia, the diagnostic criteria for acute eosinophilic 
pneumonia (AEP) do not require peripheral blood eosinophilia [122]. AEP is caused mainly 
by inhalational exposure, such as cigarette smoke, including electronic cigarettes or heated 
tobacco [123], and develops acutely along with respiratory failure. Peripheral blood eosinophilia 
may be absent at the onset of AEP, especially in smoking-related AEP [124].

We experienced a case in which bacterial pneumonia was suspected because of the 
patient's neutrophilia, and the results of a bronchoalveolar lavage led to the diagnosis of 
AEP. A 21-year-old woman had fever and dyspnea 1 week after smoking initiation. Upon 
hospitalization, she was febrile (39.6°C) and tachypneic with a reduced peripheral oxygen 
saturation (91%). Her arterial blood gases under room air were: pH, 7.44; PaO2, 55 mmHg; 
and PaCO2, 30 mmHg. Her chest x-ray showed bilateral ground grass attenuations mixed with 
consolidations and a slight pleural effusion.

The laboratory test revealed a white blood cell count of 23,400 cells/µL with neutrophilia (95.8%, 
22,417 cells/µL). Her serum C-reactive protein level was 8.2 mg/dL (normal, <0.3 mg/dL), IL-5 
level was 1,012 pg/mL (normal, <3.9 pg/mL), and ECP level was 68.9 µg/L (normal, <14.9 
µg/L), and her peripheral blood eosinophil count was only 94 cells/µL. Conversely, a marked 
elevation of eosinophils was observed in her bronchoalveolar lavage fluid (71% eosinophils 
in the differential cell count), leading to the diagnosis of AEP. A single administration of 
methylprednisolone (40 mg) and the cessation of cigarette smoking dramatically improved 
the symptoms of AEP. Notably, in parallel with the patient's improvement of bilateral 
pulmonary infiltration, her peripheral eosinophil counts reached up to 1,250 cells/µL on day 
9 (6 days after methylprednisolone administration) (Fig. 1A, B).

Before or during eosinophil movement, a cellular shape change related to migration 
is necessary [2]. We conducted an ex vivo eosinophil shape change assay by using flow 
cytometric measurement of autofluorescence/forward scatter on cells stimulated with 
cigarette smoke extract [125]. A clear shape change was induced in the patient's eosinophils 
at the onset, and such changes were not reproduced in cells taken from the patient after the 
resolution of AEP or in eosinophils from a normal donor (Fig. 1C). Thus, it can be speculated 
that eosinophils have the potential to accumulate in the lung at the onset of AEP.

IL-5 plays a critical role in an eosinophilopoiesis, chemokinesis/chemotaxis, integrin 
activation, and survival prolongation via apoptosis inhibition [6]. In our case, the initially 
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elevated serum IL-5 level was associated with AEP disease severity, despite the peripheral 
blood eosinophil counts being in the normal range. Interestingly, serum IL-5 levels have been 
shown to inversely correlate with peripheral blood eosinophil counts in patients in the initial 
state of AEP [126]. This is likely caused by the rapid migration of blood eosinophils to the 
lungs, as illustrated in Fig. 2A. Notably, the pathological condition of asthma was recreated 
in lung-specific IL-5 transgenic mice but not in “systemic” IL-5 transgenic mice [6]. Tissue-
specific overproduction of IL-5 might play an important role in the pathogenesis of AEP by 
recruiting eosinophils from the peripheral blood into the lungs.

In patients with atopic asthma, sputum eosinophil counts and serum IL-5 levels increase 
after allergen inhalation, whereas blood eosinophil counts decrease for 12 hours [127, 
128]. The intravascular residence time of radiolabeled eosinophils in healthy volunteers is 
approximately 25 hours, although it can be 1.5 hours in a patient with tissue eosinophilic 
inflammation [129, 130]. Accumulated eosinophils might directly induce eosinophilia 
through the production of eosinophil chemoattractants, such as leukotriene B4 [131] and C-C 
chemokine ligand 4 [132]. These data suggest that a dynamic shift of circulating eosinophils 
into the tissue can occur.

Transient blood eosinophilia after systemic corticosteroid administration is another 
interesting feature of the present case. This phenomenon has been reported previously; 
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Fig. 1. Clinical course of a case with AEP. 
(A) Dynamics of blood eosinophil counts. Values indicate the peripheral white blood cell (WBC) counts (green 
line) and eosinophil (Eo) counts (blue line). On day 2, the patient was treated with an intravenous administration 
of methylprednisolone (mPSL). (B) Chest x-ray on day 2 (before performing a bronchoalveolar lavage and mPSL 
administration) and day 9 (6 days after treatment). (C) Response of eosinophils to cigarette smoke extract (CSE). 
CSE was prepared as described by a previous report [161]. Peripheral whole blood cells stimulated with CSE for 10 
minutes and red blood cells were lysed using BD FACS Lysing Solution (BD Biosciences, San Jose, CA, USA). The 
eosinophil shape change induced by CSE was evaluated using a FACScan flow cytometer (BD Biosciences). Values 
shown are the % of control buffer. HV, healthy volunteer.



serum IL-5 rapidly falls into the normal range within 10 days [126], whereas peripheral blood 
eosinophil counts increase with radiographic and clinical resolution during the following 
days [126, 133, 134].

Corticosteroids have various potent anti-inflammatory effects on allergic inflammation. 
They can induce eosinophil apoptosis directly as well as can indirectly, by inhibiting the 
production of survival factors including IL-5 [135, 136]. In addition, corticosteroids enhance 
the phagocytic capacity of macrophages and airway epithelial cells [136, 137]. Apoptotic 
eosinophils are intact when they are recognized and engulfed by phagocytes, so they do 
not induce inflammation [138]. As illustrated in Fig. 2B, after the treatment of AEP with a 
systemic steroid, eosinophilic lung inflammation is resolved, likely through the clearance of 
apoptotic eosinophils in the lungs. It is also conceivable that the decreased recruitment of 
blood eosinophils into the lungs results in a transient blood eosinophilia.

The mismatch of circulating and tissue eosinophilia is not limited to AEP. For instance, 
we have also experienced a case in which a patient with GM-CSF-producing lung cancer 
showed no clinical manifestations or evidence of tissue eosinophilia despite having marked 
blood eosinophilia (>30,000 cells/µL) [139]. Dupilumab, an anti-IL-4Ra antibody that 
blocks both IL-4 and IL-13 signaling, can trigger eosinophilia without the presentation of 
clinical signs of organ involvement owing to eosinophil infiltration [140]. The mechanisms 
underlying dupilumab-induced eosinophilia remain unknown, but it has been hypothesized 
that dupilumab blocks the migration of eosinophils into tissue without blocking eosinophil 
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Fig. 2. Schematic of tissue and blood eosinophilia in acute eosinophilic pneumonia (AEP). 
(A) At the onset of AEP, there is a rapid recruitment of blood eosinophils into the lung, resulting in a normal-
range blood eosinophil count. (B) After treatment with systemic steroids, the eosinophilic lung inflammation is 
resolved, mainly through the induction of eosinophil apoptosis in the lungs. The decreased recruitment of blood 
eosinophils into the lung might result in the retention of eosinophils in circulation, leading to a transient blood 
eosinophilia.



production in the bone marrow [141]. Hypereosinophilia is defined by a peripheral blood 
absolute eosinophil count of greater than 1,500 cells/µL that may not be associated with 
tissue damage [142]. In addition to patients with hypereosinophilic syndrome, who typically 
require treatment to prevent disease progression, there are patients with unexplained 
persistent asymptomatic hypereosinophilia. Additionally, clinical manifestation related to 
eosinophilic inflammation is uncommon in patients with familial eosinophilia [143]. Thus, 
the circulating eosinophil count does not always reflect tissue eosinophilia and vice versa.

“EOSINOPHILIC” TISSUE IN THE ABSENCE OF 
EOSINOPHILS
Tissue hypereosinophilia can be defined as tissue with a percentage of eosinophils that exceeds 
20% of all nucleated cells in the bone marrow or tissue infiltration that is deemed extensive 
by a pathologist [11, 144]. However, historical studies with immunostaining for eosinophil 
granule proteins have revealed the extracellular deposition of granule proteins coincident with 
pathological conditions, even in the absence of a significant eosinophil infiltrate. Frigas ans 
Gleich [145] described the lung tissue specimens from autopsy cases who died of asthma as 
follows: “some eosinophils were intact, others were partially degranulated and surrounded by 
their extruded granules, and others were totally disrupted and unrecognizable by hematoxylin 
and eosin stain.” In atopic patients challenged with an intradermal injection of allergen, MBP 
and EDN were extensively deposited throughout the dermis in the late-phase reaction [146]. 
Tissue deposition of granule protein in the absence of eosinophil accumulation has also been 
reported by Gleich et al. in cases of Hodgkin's disease [147], parasite infection [148, 149], 
chronic urticaria [150], atopic dermatitis [151], and endomyocardial disease [152]. Several 
studies have indicated that granule protein deposition, rather than intact eosinophils, is 
associated with tissue remodeling [153, 154]. Given the toxicity of eosinophil granule proteins, 
histologic evidence of extracellular granule protein deposition in the tissue might be a more 
appropriate marker for inflammation than tissue eosinophilia.

Our group has studied hundreds of tissues from patients with allergic or eosinophilic 
diseases [26, 29, 83, 84, 155-160]. In our tissue immunostaining experience, like Gleich et 
al., we have observed that the extracellular deposition of MBP is not disease-specific, but it is 
closely associated with tissue damage and the presence of eosinophil cytolysis. Fig. 3 shows 
a typical example: surgically obtained nasal polyps from a case of chronic rhinosinusitis with 
nasal polyps (eosinophilic chronic rhinosinusitis). Hematoxylin and eosin staining revealed 
that the accumulated eosinophils were cytolytic, showing extracellular cell-free granules 
and chromatolysis and/or a loss of nuclear envelope. Immunostaining indicated a massive 
deposition of extracellular MBP that is consistent with the presence of cytolytic eosinophils. 
These cytolytic eosinophils were ultrastructurally identical to EETosis induced by various 
stimuli in vitro [26, 83].

Apoptosis facilitates the ingestion of intact eosinophils without a disgorgement of their 
toxic contents, and this process is necessary for the normal resolution of inflammation 
[138]. Impaired phagocytic clearance (efferocytosis) of lytic eosinophils is a critical feature of 
persistent inflammation. Notably, efferocytosis by phagocytic cells might not be applicable 
for ETotic cells, because of their rapid cell death process (0.5–3 hours) and lack of find-me 
signal exposure before cell lysis [25, 26]. Therefore, eosinophil cell fate within tissues might 
have completely different consequences (Fig. 4).
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CONCLUSIONS

The presence of eosinophils is an important feature of type-2 inflammation, but clinical 
observations have indicated that eosinophil-mediated inflammation is not always coincident 
with an increase in eosinophil counts. As shown in the case of AEP, there are various 
examples of mismatch between the circulating eosinophil count and clinical manifestation. 
As stated above, considerable evidence has indicated that the marked deposition of 
eosinophil granule proteins in tissue is associated with tissue damage and remodeling. The 
most important feature of eosinophils as end-stage effector cells is their activation to release 
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Fig. 3. Cytolytic eosinophils in a nasal polyp obtained from a case of chronic rhinosinusitis with nasal polyps (eosinophilic chronic rhinosinusitis). 
(A) Hematoxylin and eosin (H&E) staining of a nasal polyp, showing a loss of epithelium and inflammatory cell infiltration in submucosal tissue. The boxed area 
in the left panel is shown magnified in the right panel. Accumulated cells showed cytolysis and a loss of nuclear shape (chromatolysis). Eosinophilic extracellular 
granules were also noted. (B) A serial section of the tissue shown in panel A was immunostained for major basic protein (MBP) (red) and counterstained for 
DNA (blue). Image was obtained with a Carl Zeiss LSM780 confocal microscope (×20). The massive deposition of extracellular MBP visible is consistent with the 
presence of cytolytic eosinophils.
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Fig. 4. Eosinophil cell fates and their consequences. 
Eosinophils apoptosis can be caused by many factors, including aging, a loss of survival factors, corticosteroids, 
and anti-interleukin (IL)-5/anti-IL-5 receptor antibodies. Apoptotic eosinophils, typically with nuclear and 
cytoplasmic condensation, are phagocytosed without the induction of inflammation. Alternately, eosinophils can 
undergo ETosis upon activation, such as by an immunoglobulin-coated surface, pathogens, or platelet-activating 
factor with IL-5. Rapid cytolysis without the expression of a “find-me” signal results in the tissue deposition of the 
cell's total intracellular contents and prolonged inflammation.



toxic cellular contents. In this context, eosinophils can be innocent bystanders without the 
secretion of their bioactive mediators.

EETosis is now considered to be a major mechanism of cytolytic degranulation. This 
process is not only a total cell degranulation but also a release of cytoplasmic and nuclear 
contents, including DNA and histones that act as alarmins. Although the maintenance of 
tissue eosinophils is tightly related to the ability of the cell and the microenvironment to 
maintain an appropriate balance between survival and active cell death pathways, it is not yet 
fully understood. Further study will lead to a better understanding of eosinophil-mediated 
inflammation and its treatment.
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