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This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a
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Introduction

In many practical situations such as condensation, evaporation
and chemical reactions the heat transfer process is always
accompanied by the mass transfer process. Perhaps, it is due to
the fact that the study of combined heat and mass transfer is
helpful in better understanding of a number of technical transfer
processes. Besides, free convection flows with conjugate effects of
heat and mass transfer past a vertical plate have been studied
extensively in the literature due to its engineering and industrial
applications in food processing and polymer production, fiber and
granular insulation and geothermal systems [1-3]. Some recent
attempts in this area of research are given in [4-9]. On the other
hand, considerable interest has been developed in the study of
interaction between magnetic field and the flow of electrically
conducting fluids in a porous medium due to its applications in
modern technology [10]. Toki et al. [11] have studied the
unsteady free convection flows of incompressible viscous fluid near
a porous infinite plate with arbitrary time dependent heating plate.
The effects of chemical reaction in two dimensional steady free
convection flow of an electrically conducting viscous fluid through
a porous medium bounded by vertical surface with slip flow region
has been studied by Senapatil et al. [12]. Khan et al. [13]
analyzed the effects of radiation and thermal diffusion on MHD
free convection flow of an incompressible viscous fluid near an
oscillating plate embedded in a porous medium.

The influence of magnetic field on the other hand is observed in
several natural and human-made flows. Magnetic fields are
commonly applied in industry to pump, heat, levitate and stir
liquid metals. There is the terrestrial magnetic field which is
maintained by fluid flow in the earth’s core, the solar magnetic
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field which originates sunspots and solar flares, and the galactic
magnetic field which is thought to control the configuration of
stars from interstellar clouds [14]. Recently, considerable attention
has been focused on applications of MHD and heat transfer such
as metallurgical processing, MHD generators and geothermal
energy extraction. The phenomenon concerning heat and mass
transfer with MHD flow is important due to its numerous
applications in science and technology. The particular applications
are found in buoyancy induced flows in the atmosphere, in bodies
of water and quasi-solid bodies such as earth. Therefore, heat and
mass transfer with MHD flow has been a subject of concern of
several researchers including Hayat et al. [15], Jha and Apere [16]
and Fetecau et al. [17].

Furthermore, it is found from the literature that several
investigations on free convection flows are available with different
thermal conditions at the bounding plate which are continuous
and well-defined at the wall. However, most of the practical
problems appear with non-uniform or arbitrary conditions at the
wall. To study such problems, it is useful to investigate them under
step change in wall temperature. The physical implication of this
idea can be found in the fabrication of thin-film photovoltaic
devices where ramped wall temperatures may be employed to
achieve a specific finish of the system [18]. According to [19],
periodic temperature step changes are also important in building
heat transfer applications such as in air conditioning, where the
conventional assumption of periodic outdoor conditions may lead
to considerable errors in the case of a significant temporary
deviation of the temperature from periodicity. Keeping this in
view, several authors have studied free convection flow past a
vertical plate with step discontinuities in the surface temperature.
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However, here we are only highlighting some recent and
important contributions [20-25].

On the other hand, the motion of the fluid past an infinite plate
is of great interest for academic research due to its various
practical applications. Of course such motion can be induced as a
results of several effects including motions due to boundaries and
applications of the wall shear stress. Exact solutions of the
problems with shear stress on the bounding plate are quite
complicated and therefore, very few studies are available in the
literature. Such studies are even scarce with combined effects of
heat and mass transfer. Navier [26] had proposed a slip boundary
condition where the slip velocity depends linearly on the shear
stress. Generally, the slip velocity strongly depends on the shear
stress and mostly governing equations for slip are developed under
this assumption. The slip that appears at the wall has led to the
study of an interesting class of problems in which the shear stress is
given on the solid boundary. Having such motivation in mind,
Fetecau et al. [28] investigated free convection flow near a vertical
plate that applies arbitrary shear stress to the fluid when the
thermal radiation and porosity effects are taken into consideration.
However, so far no study has been reported in the literature which
focuses on the conjugate free convection flow with ramped wall
temperature under the arbitrary shear stress condition. Even such
studies are not available for viscous fluids.

Therefore, the aim of the present investigation is to provide
exact solutions for MHD conjugate flow of a Newtonian fluid past
an infinite plate that applies arbitrary shear stress to the fluid.
More exactly, we consider the vertical plate situated in the (x,z)
plane of a Cartesian coordinate system Oxyz, the domain of the
flow is the porous half-space >0 and the arbitrary shear stress

(t
on the vertical plate is given by &, where () is an arbitrary
U

function and p is the viscosity. Closed form solutions of the initial
and boundary value problems that govern the flow are obtained by
means of the integral transform method. Some special cases are
extracted from the general solutions together with some limiting
solutions in the literature. The results for velocity, temperature and
concentration profiles are plotted graphically and discussed for the
embedded flow parameters.

Mathematical Formulation

Let us consider the unsteady free convection flow of an
incompressible viscous fluid over an infinite vertical plate
embedded in a porous medium. The physical configuration of
the problem is shown in Fig. 1. The x-axis is taken along the plate
and the y-axis is taken normal to it. Initially, both the plate and
fluid are at stationary conditions with the constant temperature
T, and concentration C,,. After time 1=07", the plate applies a
time dependent shear stress f(#) to the fluid along the Xx-axis.
Meanwhile, the temperature of the plate is raised or lowered to

t .
To+(Tw—Ty) . when ?<ty, and thereafter, for t>1ty, is
0

maintained at constant temperature 7, and concentration is
raised to C,,. The radiation terms is also considered in the energy
equation. However, the radiative heat flux is considered negligible
in x —direction compare to y —direction. We assume that the flow
is laminar and the fluid is grey absorbing-emitting radiation but no
scattering medium. In addition to that we asume that the fluid is
electrically conducting. Therefore, we use the following Maxwell
equations

B
divB=0, CurlE= — 66—[ , CurlB=y,J. (1)
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Figure 1. Physical configuration of the problem.
doi:10.1371/journal.pone.0090280.g001

In the above equations, B, E and u, are the magnetic field,
clectric field intensity and the magnetic permeability of the fluid,
respectively. By using Ohm’s law, the current density J is given as

J=0(E+V xB), )

where ¢ is the electrical conductivity of the fluid. Further we make
the following assumptions:

® The quantities p, i, and ¢ are all constants throughout the
flow field.

® The magnetic field B is perpendicular to the velocity field V.

® The induced magnetic field b is negligible compared with the
imposed magnetic field By.

® The magnetic Reynolds number is small.

® The electric field is zero.

In view of above assumptions, the electromagnetic body force
takes the linearized form [15]

2
Ly B= [V xBy) x By = — ZBY. (3)
p p p

Using Boussinesq’s approximation and neglecting the viscous
dissipation, the equations governing the flow are given by [2,32]

ou &u y B2
= =V35 T—-T, —Cy)— —u——Lu
FT Vé;yz"'gﬁT( )+gBc(C—Cy) xY P u @)

», >0,

y,t>0, (6)

March 2014 | Volume 9 | Issue 3 | 90280



where u, T, C, v, p, g, Br, fc. K, 0, By, Cp, k, q,, and D are the
velocity of the fluid in x—direction, its temperature and
concentration, the kinematic viscosity, the constant density, the
gravitational acceleration, the heat transfer coefficient, the mass
transfer coeflicient, the permeability of the porous medium, the
electric conductivity of the fluid, the applied magnetic field, the
heat capacity at constant pressure, the thermal conductivity, the
radiative heat flux and mass diffusivity.
The corresponding initial and boundary conditions are

u(y,0)=0, T(»,0) =Ty, C(y,0)=Cy; Vy=>0,

ou(0,¢)
dy

_10 C(0,1)=C,; 1>0,
u

t
T0,0)=Tx+(Tw—T) P O<t<ty, T(0,6)=T,; t=ty,
0

u(00,t)=0, T(00,t)=T,,C(c0,t)=Cyp; t>0. (7)

The radiation heat flux under Rosseland approximation for
optically thick fluid [8,9,29,30,31] is given by

dg* OT*
qr=— %W’ (8)

where ¢* and kg are the Stefan-Boltzmann constant and the mean
spectral absorption coefficient respectively. It is supposed that the
temperature difference within the flow are sufficiently small, then
Eq. (8) can be linearized by expanding T* into Taylor series about
T, and neglecting higher order terms, we find that

T*~4T3 T-3T%. 9)

Substituting Eq. (9) into Eq. (8) and then putting the obtained
result in Eq. (5), we get

oT ’T
where Pr, v and Nr are defined by
uC, U 16073
Pr=——F,v==,N,= . 11
Ty 3kkz ()

By introducing the following dimensionless variables
to T—-T, c-C y
f = ) T* = = B C* = = s, t= s
" u\/: Tw - Tw Cw -C Y Vi

F= )= (), (12)

8
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into Egs. (4), (6) and (10) and dropping out the star notations, we
get

u  u
Z=_" T — Kyu— Mi 1
o 8y2+Gr +GmC—Kyu u, (13)
Pr or_or (14)
off A7 T L 20
a9
oc_12c )
ot Scoyr’
here Pryy = — s the effective Pranddl number [20]; Eq. (10
where Pﬂ_l—l—ers e effective Prandtl number [29]; Eq. (10)
Gr:gﬁT(Tw;T'ﬁ)V, Gm:gﬁC(Cw;COC)V,
UO UO
B2t A un) A
M=-—"22Sc=—,K,=—, thy=—
, DC Ds -p K: 0 Ugy

are the Grashof number, modified Grashof number, magnetic
parameter, Schmidt number, the inverse permeability parameter
for the porous medium and the characteristic time respectively.

The corresponding dimensionless initial and boundary condi-
tions are

u(y,0)=0, T(»,0)=0 C(»,0)=0; Vy=0,

Ju .

5|y:0=f(t), T0,0)=t,0<t<1, T(0,1)=1; t>1,  (16)
C(0,5)=1, C(c0,t)=0, T(00,t)=0, u(c0,t)=0; t>0.

Solution of the Problem

In order to solve Egs. (13)—(15) under conditions (16), we use the
Laplace transform technique and get the following differential
equations

Pu(yg) . - .
u(y,q) = —= 4+ GrT(y,q)+ GmC(y,
qu(y.q) 32 (r.9) (r.9) a7

—Kyu(y,q)—Mu(y.q),

- 1 @T(.g)

T(y.q)= Pros 7 o (18)
. 1 #C(r.q)
Cly.q)= Scq 02 (19)

with boundary conditions

March 2014 | Volume 9 | Issue 3 | 90280



Cle0.) =0, C(00) = 1. T(0.0)=0.
a0.0)=0. L),y =Fla). O =5 20)

Solving Eq. (18) in view of Eq. (20), we get

Py /(]Pre/].) (21)

—q
T(rg)=—e VI — < ¢

q

which upon inverse Laplace transform gives

. T(y.t)=f.t)—f(t—1)H(1—1), (22)
f.t)= (_Prgg-yz + t) erf c( v ;’\r};/ y)
(23)
Pr off — Pr@y-y2
o)
and

0T (y,1)
ay

o= 2V PTor (Vi—Vi=TH(-1),  (24)
N
is the corresponding heat transfer rate also known as Nusselt
number. Here erf(.) and erf ¢(.) denote the error function and
complementary error function of Gauss [28].
Solution of Eq. (19) using boundary conditions from Eq. (20)
yields

c<y,q>=$e*y@, (25)

which upon inverse Laplace transform gives

. C(y,t)=erfc <y2\/j?) (26)
), =YX, @)

is the corresponding mass transfer rate also known as Sherwood
number.
The solution of Eq. (17) under boundary conditions (20) results

_ 01\/5 —y/q+H|
uy.q)= ———"——~ ———¢€
0-4) *(q—a2)v/q+ H,

avge ™t  yJarm

o awee T,
P (g—a)V/q+H

P9 it @i (og)

Va+H *(g—a2)
—q
42“36 e V1P
P (q—a2)
a4\/6 efy«/quH] o ae eV qSc

s

* q(q—as)\/q+Hi q(qg—as)
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which upon inverse Laplace transform results

u(p,t) =uc(y.t) +um(y.t), (29)

where

ds

2
e et ( az(t—s))iz t—s Hys—5
oD 2o
N J P(2vi—T—s)e 157
@ o NG

S as|Hi—1)

2
sy HysEo
a J"_le”z(’ 1) =y Serf (\/a(1—1—s

) _
s NG ds| H(1—1)

1 as(t—s) £ — .
+a4J (e erf (\/as(t—s))
0

ds

V@ Y

as Prgs)? v\/Proy
+ =+ erf ¢
a < 2 ¢ 2/t

2
/Prog/t ~¥ Doy Pr.s
_asyy/Pro Vit B orf | L
a ﬁ a; 2\/}

2
¥
2\/1—3) e g

aaeazﬂry, /Pré.,[faz y Prej
— f ¢
2Vt

a}gazt—y /Prmvaz y Pre/]-
— erf ¢
2Vt

as Preﬂyz) v/ Proy
——=((r=1D+ erf ¢ H(t—1
% (( ) P Yert o DY) ey

+a1y ,—PI‘E/ /— —y Pr

tl)Ht
. (c=1)

Pry ag »VSe
——erfe t—1)+ —erf
ze (2\/_> (t—1) aser C(Z\/f
X ay(t—1)+y, /Pr(,/faz Pr.,
+ 8¢ erfe(? reﬁ+ a(t—1) |H(t—1)

)

2
2a;

v

2a;

2a2 2Wi—1
, ay(t—1)— ‘/Pr(,/faz P
+a3L erf y\/Tf / t—l
2a2
ast—y4/asSc
_ ¢ erf ¢ y\/_‘ —+/ast
205 2\/_
aéea5t+)u /asSc y\/_‘
— 2 erf ¢ NG ++ast
and
2
()= J[f(t_s)ew% a1
Up(t) = — —= | —FF—,
SV ] P

correspond to the convective and mechanical parts of velocity.
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It is noted from Egs. (22) and (30) that 7'(y,?) is valid for all
positive values of Prey while the u.(y,7) is not valid for Pryy=1.
Therefore, to get u.(y,f) when the effective Prandtl number is not
equal to one, we make Proy=1 into Eq. (14), use a similar
procedure as discussed above, and obtain

1) eV L A
q2\/q+H qzx/q—i—H
__F(q) ‘/q+H|+al4 - 611467[16,},\/;, (32)
\/f]+H1 7
+%3_Y\/‘I+Hl _ 9 e
q(q—as)v/q+H q(q—as)

By taking inverse Laplace transform we find that

2

CHys—2~

2a14J' Vi—se M3
0

) =— d:
()= — = o
2
2ay [N Vi—T—se TS
ﬂj viz —se = o H(t—1)
T Jo Vs

— —ds
0 \as VTa, Nz

s I,

2
a6eaSt y 05 Sc < \/_
— \/. 5

(e Rl 2

as o (¥VSe) 1 Jrf(f—S)eH“Y)‘;i
Vo Vs

2
J"(e"s(’s)erf( as(t—ys)) 2\/Z—S>6’H1S£s‘
+ay

+au

}H(r—l)

ds

where

_Gm\/§
YT Se—1

H] _ Gm _Gr\/fTr _ H1
Se—1"" 7 Se—1"" T Pr—1"" T Pr—1" (34)
Gr K, K, M

= = p =
Pr—l’alO_Pre/f—l’a” Sc—l’alz
M

7
=— =—,H=K,+M.
aps Sc—l’am H,’ 1 Tt

G}’\ / Pref] u H] Gr
y= —

a; = , a3 = ,d
YT Pry—17 Pryy—1"7 T Pryy—1

as =

ag =

Pl‘ef/f —1 ’
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Plate with Constant Temperature

Equations (22) and (29) give analytical expressions for the
temperature and velocity near a vertical plate with ramped
temperature. In order to highlight the effect of the ramped
temperature distribution of the boundary on the flow, it is important
to compare such a flow with the one near a plate with constant
temperature. It can be shown that the temperature, rate of heat
transfer and velocity for the flow near an isothermal plate are

T(y,r)—erfc<y23r;“ff>, (35)
T(O,l) Y Pref]
dy  ar (36)

2
a J[ e =5 4serf( ay(1—5))

u(y,t)= \/n_az o NG

2
a4 Jtea5(t s)—Hys— 4Aerf( a5(lfs))

ds

+ ds
Vs Jo Vs
—;—;Zeuzt”\/merf ( 2\/_6/ +\/a2>
P Pr,
2a_;2602,7y “ Préﬂ erf ¢ <y27\/2f] —V a2t>
(37)

_ aiée”S’*y\/”SS"erfc v Sc
2a5 2\/2

Pryy yV/Sc
azef ( i )—l—a—serf <2\/_>

_ de ea5t+y\/a55cerfc< v

)

205 \/’
—H 2

As previously, Eq. (37) is not valid for Pr.; = 1. Therefore we

calculate separately solution for velocity by taking Pr.s=1 into
Eq. (14) and finally get

H e
_au J’67 lkﬂds

u(y,t)=au erfc(z\/_) 77, Y

a J-teaS(r s)—Hys— 4Aerf( a5(t—s))

+ ds
Vs Jo Vs
2
X ot _ _Hls_%
L g 2YSe) _ L [(fli=s)e TTE L (38)
as 2/t V7 Jo Vs
6 vnr [y
T;Se”S’JFJ as$ erfc(yzﬁ +\/a5t>
_ (16 057 )1/055‘(’6 f e y\/_ \/—'
2as 23/t
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Limiting Cases

In this section we discuss few limiting cases of our general
solutions.

5.1 Solution in the absence of porous effects for ramped
and constant wall temperature (K,—0)

ds

u(y.t)=a J; (8“‘2("’)erf( an(=)) _

(alz)%

2
2/t—s Mg
Vrap /TS

“L(2vVi—T—s)e ™3
+ ij ( o) ds| H(1—1)
ant )y \/§
(1—1—5)— M; e
t—1 a1p(i—1—=s s— 4&‘ f l—l—
B ag J’ e erf (\/aia( S))ds (1)
(@)l vs
2
N J’ e 30 erf (Va3 (1—s))  2y/i—s eiM“Tsd
a — s
4 0 \as ﬁ(llz VTS
2
12 /Pr.;; Ly —MS—%
+a—3(t+Pre//y)erfc IV e —Ljfi(t s)e ds
apn 2 2\ﬁ ﬁ 0 \/E
a3 y\/Pref\f i Pr as y Pref/
— —erf ¢
ay Vo at 2Vt

agea12l+y, /Prszalz ¥ Pref
— = erf ¢ +Vant
2a3, 2Vt
y,/PI'g[f_ ani
2Vt
as Pl‘gffyz) y Pl‘ef
—— -1+ —= erf ¢ H(t—1
@ (-n+ 7 ) G- )

a3 y /Pre/ i — } Preff

aye12' IV Prefranz

erf ¢
243,

) H(t—1
tan (t=1)
_ e aBSCerfc y&f\/a t
2ans NG 13
Pr, VS
—ﬂerfL z ff H(t—1)+a—6ef Ve
a12 2\/ a3 2\/—
alz(t— 1)+, /prEffalz P
aze : I/ ey
+ erf ¢ ++anp(t—1) |H(t—1
2, i1 n(t=1) |H(—1)
012(1 1)— */l_)eff‘ll /Pr.r
erf ’ gf \/[llz l—l l‘—l
2a12 2Vt —
a6eal3t+y,/al3Sc

o e (2C+M>
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2
a J[ealz(l §)—Ms— 4verf( alz(t—s))

0 Vs
2
a J-t ea13(t 5)— Ms74aerf( a13(t—s))

+
Va3 Jo \/E

_ &6413[7}’\/[1135‘661{6’ yisc
2(113 2\/2

_ Bt P e Y v/ Prey +ant (40)
2(112 2\/7

43 “12t y /”12Prej erf <y\/ \/@)

ds

ds

2012

Pr, v
+ aierf YV ey + S erfe yvSe
ap 2\/_ aps 2/t

a13t+)’m rf ¢ (\/—\;—I—\/tl—l;)

5.2 Solution in the absence of thermal radiation (Nr—0)

In the absence of thermal radiation, the corresponding solutions
for ramped and constant wall temperature are directly obtained
from the general solutions (22), (24), (29) and (35)—(37) by taking
Nr—0 and replacing Pr.; by Pr i.e.

2013

ds

(e erf ( as(t—s))
u(y,t)—a7J0< V/mag Vs

<as>%

2
Y
2\/t—s> e g

1— 12 / ch
nagj

. \/E ds H(t—1)

2
- fW g(1=1=5)—Hys—i
“ J Herf fy/as( ) ds|H(1—1)
(ag)2y/m 70

(e =Yerf (y/as(1—s))
+ay JO ( \/a_s \/_08

2\/§ e T ds
/s (41)

2
2 Do 1 _ 7H1s—y7
+ B (H— Pry )erfc(y Pr) 4 [ f—(t s)e : ds

ag 2 2Vt VT )o Vs
—y2 P

_D y\/_\/f T + a—Zerf c y_\/Fr

ag  \/m ag 21

ageagﬂry, /Prag

yvVPr
f Vasgt
2a§ er C<2\/Z + ag>

ageagtfyu /Prag y\/P_r
— 5 erf ¢ —agt
2ag 24/t
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0.8

0.6

u(y,t)
0.4

y

Figure 2. Velocity profiles for different values of Gr when the
plate applies a constant shear stress = —0.25.
doi:10.1371/journal.pone.0090280.g002

ag Pry? W
_;8((t—1)+T)ef (2 _> (t—1)
ay »vPr ag yVPrvi 7‘2Pr
erfc<2m>H(tl) s \/_

ag(t—1)+yy/Prag P
+ 2 erte 2VPT as(t—1) |H(t—1)
2a 2vit—1
age™12(=D—yy/Prapy »VPr
+ 9
2vVit—1

H(1—1)

2
2az

ast+yy/asSc
_ de¢ erf ¢ y\/_—l—\/ —e tf ¢ yVSe
2(15 2\/— 2\/;
B aﬁeast—}u /asSc it e y\/_
2a5 2\/-

Ty =00 =ft=DH(=1), (42)

—— Isothermal

---- Ramped

Gm=05028.1.1
0.6

u(y,t)
0.4

0.2r

e

y

Figure 3. Velocity profiles for different values of G when the
plate applies a constant shear stress f'= —0.25.
doi:10.1371/journal.pone.0090280.g003
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Figure 4. Velocity profiles for different values of Sc when the
plate applies a constant shear stress f'= —0.25.
doi:10.1371/journal.pone.0090280.g004

where

filnt)= (PrTyz +z>erfc<\?:_rﬁy> - \/i);yexp(_ijyz) (43)

and

0T (y,1) 2+/Pr
o b= (\/ Vil Hz—l)) (44)

2

Y
ar Jt eag(l—s)fﬂlrﬁerf( ag([_s))d
s

u(y,t) =

(1) s o 7
Hys—2

as J"’eaS([S) lsiﬁerf( ll5(l—S))

+
Vs Jo \/E

_a_9 agt+y,/ag Pr £ y\/ITI'
2age erf ¢ 2\/} +vagt

ds

2a8 2\/2
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Figure 5. Velocity profiles for different values of M when the
plate applies a constant shear stress = —0.25.
doi:10.1371/journal.pone.0090280.g005

(47)

5.3 Solutions in the absence of free convection

Let us assume that the flow is caused only due to bounding plate
and the corresponding buoyancy forces are zero equivalently it
shows the absence of free convection due to the differences in
temperature and mass gradients i.e. the terms Gr and Gm are zero.
This shows that the convective parts of velocities are zero in both
cases of ramped wall and constant temperature and the flow is
only governed by the mechanical part of velocities given by Egs.

(31) and (37).

5.4 Solutions in the absence of mechanical effects

In this case we assume that the infinite plate is in static position
at every time i.e. the function f(¢) is zero for all values of ¢ and the
mechanical parts for both ramped and constant wall temperature
are equivalently zero. In such a situation, the motion in the fluid is
induced only due to the free convection which causes due to the
buoyancy forces. Therefore, the velocities of the fluid in both cases
of ramped and constant wall temperature are only represented by
their convective parts given by Egs. (30) and (37).

—— Isothermal
---- Ramped

0.8

0 £=0.2,04,0612142

u(y,t)
0.4+

y

Figure 6. Velocity profiles for different values of + when the
plate applies a constant shear stress f'= —0.25.
doi:10.1371/journal.pone.0090280.g006
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5.5 Solution in the absence of magnetic parameter
(M—-0)

As it is clear from Egs. (22) and (26) that the temperature and
concentration distributions are not effected by the magnetic
parameter M, and the velocities with M =0 for both ramped and
constant wall temperature are given by
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Figure 7. Velocity profiles for different values of K, when the
plate applies a constant shear stress = —0.25.
doi:10.1371/journal.pone.0090280.g007
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Special Cases

As we noted that the solutions for velocity obtained in Section 3,
are more general. Therefore, we want to discuss some special cases
of the present solutions together with some limiting solutions in
order to know more about the physical insight of the problem.
Hence, we discuss the following important special cases in the case
of ramped wall temperature whose technical relevance is well-
known in the literature. Similarly we can discuss some special cases
of constant wall temperature solutions.
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6.1 Case-l: f(t)=fH(¢)

In this first case we take the arbitrary function f(¢)=fH(?),
where f"is a dimensionless constant and H(-) denotes the unit step
function. After time ¢=0, the infinite vertical plate applies a
constant shear stress to the fluid. The convective part of the
velocity remains unchanged while the mechanical part takes the
following form

equivalently

. . 2
S wym Y r i
Uy (y,t) = — ——=e I+ — 1 e 4 dz, (51
for K, #0,M #0. Moreover, if we take M =0, Eq. (50) reduces to
the form

2
S U5 2 JOC — L Kp?
m (V1) = 74 = 42 d. , 52

which is equivalent to [28]; Eq. (28) with the correction of /K.
Furthermore, in the absence of both K, =0 and M =0, Eq. (50)
is identical with [27]; Eq. (23)

U (y,t) = —

s~
]
s
N\
B &
Y
‘>
W
oo

6.2 Case-ll: f(¢)=f sin(w?)

In the second case, we take the arbitrary function of the form
f(#)=f sin(w?) in which the plate applies an oscillating shear stress
to the fluid. Here @ denotes the dimensionless frequency of the
shear stress. As previously, the convective part of velocity remains
the same whereas the mechanical part takes the form

0.6r

=10.15,-0.45.—0.75

Figure 8. Velocity profiles for different values of constant shear
stress f.
doi:10.1371/journal.pone.0090280.9g008
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u(y,t)

y

Figure 9. Velocity profiles for different values of Pr,; when the
plate applies a constant shear stress f'= —0.25.
doi:10.1371/journal.pone.0090280.g009
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It can be further written as a sum of the steady-state and
transient solutions

um(yat)=ums(yst)+umt(yat)s (55)
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By taking M =0, the steady-state component reduces to [28];
Eq. (35)

»?
. ;o _ *ﬂle"Y
f Jsm(a)t ws)e s, (58)

] A

In addition when K,=0, physically it corresponds to the
absence of porous effects and Eq. (58) results in

2
5

"sin(wt—ws)e 3
ums(y,t) — _ LJ (—)

Vo Vs

which can be written in simplified form as

Ups(V,1) = \/L‘c_oexp(—y\/g)cos (wt—y\/g—l— %), (60)

equivalent to [27]; Eq. (33).

ds, (59)
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—— Isothermal
0.8t%) ---- Ramped
% Pr.+ =0.116,0.175,0.35
0.6
T(y,t)
0.4
0.2
0 10

Figure 10. Temperature profile for different values of Pr.;.
doi:10.1371/journal.pone.0090280.g010

6.3 Case-lll: f(t)=ft* (a>0)

In the final case, we take f(#) =f1%, in which the plate applies an
accelerating shear stress to the fluid where the mechanical part
takes the following form

1 o\ 7%7Hls

The corresponding solution for M =0, namely

U (y,t) = — N ds, (62)

is identical with [28]; Eq. (32).
Additionally, if we take K, =0, Eq. (62) yields

2
U (p,1) = — %JOHT:%dS. (63)

0.8r

0.6r
T(y,t)

0.4

Figure 11. Temperature profiles for different values of r.
doi:10.1371/journal.pone.0090280.g011
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o

Figure 12. Concentration profiles for r=12 and different
values of Sc.
doi:10.1371/journal.pone.0090280.g012

Results and Discussion

In order to understand the physical aspects of the problem, the
numerical results for velocity, temperature and concentration are
computed and plotted for various parameters of interest such as
magnetic parameter M, porosity parameter K, effective Prandtl
number Pr.y, Grashof number Gr, modified Grashof number
Gm, dimensionless time ¢, Schmidt number Sc¢ and shear stress f.
The graphs for velocity are shown in Figs. 2-9 where t=1.2
corresponds to isothermal velocity and t=0.9 is for ramped
velocity. Figs. 10 and 11 are plotted to show the temperature
variations for two types of boundary conditions namely ramped
and constant wall temperatures. Furthermore, Figs. 12 and 13 are
displayed to show variations in fluid concentration. Fig. 2 illustrate
the influence of Grashof number Gr on the velocity. It is observed
that velocity increases with increasing Gr. This implies that
thermal buoyancy force tends to accelerate velocity for both
ramped temperature and isothermal plates. In Fig. 3 the velocity
profiles for different values modified Grashof number Gm are
shown. It is found that velocity increases on increasing Gm for
both ramped temperature and isothermal plate. Further, it can be
observed that the velocity and boundary layer thickness decrease
along y with increasing distance from the the leading edge.
Moreover, we observed that the amplitude of velocity in case of
isothermal plate is greater and converges slowly as compare to
ramped velocity. In Fig. 4 the velocity profiles are shown for
different values of Schmidt number Sc. It is observed that the
velocity decreases with increasing Schmidt number. The velocity
profiles for different values of magnetic parameter M are shown in
Fig. 5. The range of magnetic field is taken from 0 to 2. It is found
that the velocity is decreasing with increasing values of M in both
cases of ramped and isothermal plates. Physically, it is true due to
the fact that increasing values of M causes the frictional force to
increase which tends to resist the fluid flow and thus reducing its
velocity. It is further observed that when the magnetic field
imposed on the flow is zero (M =0), the MHD effect vanishes and
the flow is termed as hydrodynamic flow.

Fig. 6 are plotted to see the difference between the ramped and
isothermal plate velocities. The values of <1 correspond to ramp
velocity whereas > 1 is for isothermal plate. It is found that ramp
velocity is less than isothermal plate and converges faster. Further
velocity in both cases increases with increasing time. The effects of
inverse permeability parameter K, on the velocity profiles are
presented in Fig. 7. It is found that velocity decreases with
increasing K, in both cases of ramp and isothermal plate.
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Figure 13. Concentration profiles for Sc=0.2 and different
values of 1.
doi:10.1371/journal.pone.0090280.g013

Physically, it is due to the fact that increasing permeability of the
porous medium increases the resistance and consequently velocity
decreases. This observation is an excellent agreement with the
previous study [28]; Fig. 3. The effects of the shear stress f induced
by the bounding plate on the non-dimensional velocity profiles are
shown in Fig. 8. The velocity of fluid is found to decrease with
increasing /" in both cases of ramped velocity and isothermal plate.
Graphical results to show the influence of the effective Prandtl
number Pry; on velocity profiles are presented in Fig. 9. It is
observed that the velocity is a decreasing function with respect to
Pryyr. These graphical results are in accordance with [28]; Fig. 2.

The temperature variations against y for various values of
effective Prandtl number are highlighted in Fig. 10. The significant
decrease of the temperature is found as a result of an increase of
the effective Prandtl number. The fluid temperature decreases
from maximum at the boundary to a minimum value as far from
the plate in both cases of ramped and constant temperature. In
Fig. 11 we have shown the temperature variations for two types of
boundary conditions ramped and constant plate temperatures. It is
noted that the fluid temperature is greater in the case of isothermal
plate than in the case of ramped temperature at the plate. This
should be expected since in the latter case, the heating of the fluid
takes place more gradually than in the isothermal case [18].
Moreover, with increasing time, the temperature is found to
increase in both cases of ramped and constant wall temperature.
The concentration profiles for different values of Schmidt number
Sc, are shown in Fig. 12. It is clear from this figure that the
concentration profiles and the concentration boundary layer
thickness decrease with increasing values of Sc. Physically, it is
true, since increase of Sc¢ means decrease of molecular diffusivity
which results in a decrease of concentration boundary layer. The
concentration profiles for different values of time ¢ are presented in
Fig. 13. It is observed that concentration profiles increase with
increasing f.

Conclusions

The purpose of this work was to analyze the unsteady MHD
free convection flow of an incompressible viscous fluid over an
infinite plate with ramped wall temperature and applies an
arbitrary shear stress to the fluid. Exact solutions for velocity,
temperature (for both cases of ramped and constant wall
temperature) and concentration are obtained using the Laplace
transform technique and expressed in terms of the complementary
error function. They satisfy all imposed initial and boundary
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conditions. These solutions are plotted in various figures for
different parameters of interest. It is found that velocity of the fluid
u(y,t) can be written as a sum of its mechanical and thermal
components Uy, (y,t), respectively u,(y,t). For the velocity solution
in which the plate applies an oscillating shear stress to the fluid
f(t)=fsin(wt), the mechanical part can be further written as a
sum of the steady-state and transient solutions us(y,t), respec-
tively upy(p,f). The thermal boundary layer thickness in case of
ramped wall temperature is less than isothermal wall temperature.
Magnetic parameter M retards whereas the inverse permeability
parameter K, enhances the fluid motion. The thermal boundary
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layer, as well as the temperature of the fluid, increases in time and
decreases with respect to the effective Prandtl number Pr,;: The
concentration boundary layer thickness decreases with increasing
values of Sc¢ whereas increases with increasing .
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