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Abstract

Angiogenesis and vasculogenesis are complex processes by which new blood vessels are 
formed and expanded. They play a pivotal role not only in physiological development 
and growth and tissue and organ repair, but also in a range of pathological conditions, 
from tumour formation to chronic inflammation and atherosclerosis. Understanding the 
multistep cell-differentiation programmes and identifying the key molecular players of 
physiological angiogenesis/vasculogenesis are critical to tackle pathological mechanisms. 
While many questions are yet to be answered, increasingly sophisticated in vitro, in vivo 
and ex vivo models of angiogenesis/vasculogenesis, together with cutting-edge imaging 
techniques, allowed for recent major advances in the field. This review aims to summarise 
the three-dimensional models available to study vascular network formation and to discuss 
advantages and limitations of the current systems.

Introduction

The major role of the vascular system is to supply sufficient 
levels of oxygen and nutrients to the bodily organs. 
Naturally, any disruption to this system manifests itself 
as a host of diseases including, but not limited to, stroke, 
peripheral artery disease and other ischaemic cardiovascular 
diseases. Furthermore, the unregulated expansion of 
the vasculature during tumour angiogenesis can have 
detrimental consequences resulting in cancer metastasis. 
However, repair of the vasculature can hold immense 
therapeutic potential in tissue engineering approaches. 
Therefore, a greater understanding of the underlying 
endothelial biology that governs vessel formation and 
remodelling is required; this is a complex process driven 
by a combination of cells in tandem with an array of 
factors and signalling cascades. Moreover, other than blood 

vessels, another type of vasculature exists, which form the 
lymphatic network. Lymphatic vessels are unidirectional, 
blind-ended capillaries, which arise from the venous 
vasculature, and they are also formed by endothelial 
cells. The lymphatic system has the fundamental role 
of draining interstitial fluids from the tissues, and it is 
also involved in the immune surveillance of the body 
(1, 2). A great variety of assays has been developed to 
study blood and lymphatic vessel formation, each with 
advantages and limitations. These bioassays allowed to 
study the biology of angiogenesis and vasculogenesis, to 
test drugs that can modulate angiogenesis in normal and 
pathological conditions, and to discover mechanisms of 
lymphangiogenesis (3). This review aims to focus on 3D 
models of blood vessel formation.
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Angiogenesis and vasculogenesis

Vasculogenesis refers to the de novo formation of the 
primitive vascular plexus and the heart during embryonic 
development, via the differentiation of endothelial cell 
precursors (hemangioblasts) into endothelial cells (4). 
Angiogenesis refers to the formation of new vessels from 
pre-existing ones, thus remodelling of the primitive 
vascular plexus during and after development (5). It occurs 
by two distinct mechanisms, namely endothelial sprouting 
and intussusceptive microvascular growth. Endothelial 
sprouting is based on EC migration into the connective 
tissues, via degradation of the basement lamina, and 
formation of a new functional capillary (1, 6, 7), while 
intussusceptive microvascular growth is the expansion of 
the existing capillary network, by diving the vessel lumen 
through the insertion of transcapillary tissue pillars (8, 9).

Clinical unmet need

Angiogenesis refers to the formation of an adequate, 
interconnected network of vascular tubes that are a 
prerequisite to controlled blood flow and is, therefore, a 
key process in organ growth and development. Indeed, 
the increased generation of small vessel networks can 
lead to the regeneration of the tissue environment 
in ischaemic cardiovascular diseases after injury or 
atherosclerosis. As the first reports showed decades ago, 
angiogenesis is also indispensable for tumour growth and 
transition towards a malignant state capable of metastasis 
(10). Moreover, recent findings demonstrated that new 
vessel formation can occur also postnatally, in malignant 
or ischaemic tissues and in wound healing, and not only 
during embryonic development, reverting a common 
assumption accepted for decades (11). Therefore, the 
inhibition of angiogenesis and vasculogenesis is a 
promising therapeutic target for cancer, whilst their 
enhancement holds great potential in wound healing 
and tissue engineering (12). Recently, anti-angiogenic 
therapy targeting angiogenic growth factors has been 
found to have antitumor effect, and some molecules have 
since been granted approval for clinical use. Targeting 
of vascular endothelial growth factor (VEGF) and VEGF 
receptors (using bevacizumab and aflibercept) (13, 14, 15), 
inhibition of EGF receptor and RAS-ERK pathway (using 
Tarceva and Cetuximab) (16) and PDGF receptor tyrosine 
kinases (using sunitinib) (17, 18) are among the most 
promising therapeutic strategies. Moreover, anti-VEGF and 
PDGF therapies have been reported to effectively decrease 

angiogenesis in patients affected by age-related macular 
degeneration and diabetic retinopathy (14, 19). However, 
despite the overall preclinical success of targeting VEGF or 
other angiogenic factors, it is unclear why some patients 
and several tissue types show resistance or only a limited 
or heterogeneous response to anti-VEGF compounds (20). 
The angiogenesis trials in many cases have therefore not 
reached the significant efficacy anticipated in promising 
preclinical studies. It suggests that we should refine 
molecular targets and further understand the underlying 
complexities of angiogenesis in addition to the 
mechanisms of action of the agents. To improve patient 
outcomes and achieve more transformative and effective 
therapies, we should incorporate new, novel vascular 
models and validate related predictive biomarkers (e.g. cell 
cycle, proliferation, energy metabolism and survival) to 
optimise these therapies specific to different tissues. With 
this aim in mind, consensus guidelines on angiogenesis 
bioassays were published in 2018 (21). This is the most 
exhaustive attempt to provide an in-depth assessment 
of the approaches used to study angiogenesis and their 
associated limitations.

In vivo angiogenesis models

To date, vasculogenesis and angiogenesis have largely 
been studied in mammalian models. The hindlimb 
ischaemia model, often performed in mice, allows for the 
reduction in blood flow to the hindlimb to be determined 
following ligation of the femoral artery. The subsequent 
enhancement following treatment is often assessed by 
laser-Doppler perfusion imaging. Although a powerful 
technique, the endogenous capability of smaller mammals 
to restore blood flow via post-ischaemic angiogenesis 
makes an assessment of therapeutic efficacy challenging 
(22). Zebrafish present themselves as an alternative model 
to investigate in vivo vascular development, in part, due 
to their relatively low costs resulting in hundreds of 
fertilised eggs per weeks, capable of fast development. The 
transparency of the zebrafish embryo allows for real-time 
visualisation of angiogenesis. Moreover, the zebrafish 
genome has been sequenced showing a high level of 
conservation with human coding protein sequences (23). 
Additionally, this allows for the easy generation of various 
transgenic lines for the expression of reporter proteins and 
intravital visualisation with fewer ethical considerations. 
While zebrafish are broadly applicable to gain a 
comprehensive understanding of angiogenic processes 
in vivo, however, this model has also some limitations. 
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Fish embryos and larvae are small but constantly grow 
which poses challenges in longitudinal live imaging. In 
fact, adult fish lose transparency, dynamics and spatial 
characteristics of angiogenesis can be therefore technically 
difficult at this later stage of development. We believe 
complementary mammalian systems may be necessary 
for translation of results, given that zebrafish has aquatic, 
distinct respiratory and cardiovascular architecture. 
Also, for gene editing approaches, high gene functional 
conservation between zebrafish and mammals is not 
complete (24). More recently, lineage tracing approaches 
have become possible also for mouse models. Mosaic 
mouse lines with Brainbow (25) or inducible fluorescent 
genetic mosaic (ifgMosaic) technologies (26) show 
stochastic expression of multicolour fluorescent proteins 
specifically in endothelial cells. These models permit fate 
mapping and 3D visualisation of the clonal dynamics 
within the vascularised tissue during homeostasis or 
regeneration as well as in response to angiogenic agents at 
high cellular and temporal resolution.

Sources of endothelial cells

During vascular morphogenesis, endothelial cells migrate, 
differentiate, proliferate and aggregate to form 3D tubular 
structures, which become new vessels. With all systems, the 
source of endothelial cells is of fundamental importance 
to the study results. Primary endothelial cells can form 
vascular networks in vitro and are a common cell source for 
modelling angiogenesis and study cardiovascular function 
and diseases, as they can be easily derived and expanded 
from human circulating blood (endothelial colony-
forming cells) (27) or solid tissues, such as cord blood 
(human umbilical vein endothelial cells, HUVEC) (28), 
aortic (human aortic endothelial cells, HAEC) (29) and lung 
tissues (human lung endothelial cells, hLEC) (30). However, 
scarce availability of tissues, low cell expansion rate and the 
loss of differentiated phenotype in culture limit their usage 
(31). Moreover, primary endothelial cells show considerable 
heterogeneity depending on donor-to-donor variations 
and tissues of origin, which reflect differences between 
endothelial populations derived from arteries or veins 
(20, 32), small or large vessels (33) and normal or tumour 
vessels. Such heterogenicity must be considered when 
choosing the cell source for in vitro and in vivo analyses. 
Pluripotent stem cells (PSCs), including embryonic (ESC) 
and induced pluripotent (iPSC), are a promising alternative 
for overcoming these limitations, as for their ability to 
self-renew indefinitely in culture and differentiate into 

different cell fates. In many protocols, first mesoderm 
specification is induced by the addition of Activin A, and 
then a vascular specification media is used, supplemented 
with various combinations of metabolites and growth 
factors (such as VEGF, FGF-2 and BMP4) which promote the 
differentiation of hPSC into pluripotent stem cell-derived 
endothelial cells (hPSC-EC) (34, 35, 36). These cells express 
endothelial markers, grow as a homogenous cell monolayer 
with cobblestone morphology, show clonal proliferative 
potential and can form vessel-like networks in vitro and in 
vivo when supported by a hydrogel matrix. Furthermore, 
arterial phenotype specification was promoted in hPSC-EC 
cultures exposed to shear stress, as demonstrated by the 
upregulation of arterial markers Ephrin B2 and Notch1 (37). 
However, whilst it is now possible to obtain large numbers 
of hPSC-EC, optimisation of the culture condition is still 
needed to assess phenotype stability and maintenance of 
functional properties of hPSC-EC after several passages in 
culture (30). Finally, mesenchymal stem cells (MSCs) have 
shown vascular regeneration properties in vitro and in 
vivo, either by direct differentiation into smooth muscle 
cells (SMC) and endothelial cells or by the secretion of 
paracrine factors (38, 39).

Cell culture media

Given that endothelial cells are highly versatile and are 
regulated by a multitude of factors, an appropriate selection 
of growth factors and supplements for angiogenesis assays 
is critical. To support this effort, various culture media 
are available, which essentially differ in the composition 
of supplements. The best characterised angiogenic 
components used include VEGF, FGF2 (fibroblast growth 
factor 2), EGF and IGF1 (insulin-like growth factor 1). 
Alternatively, some media are supplemented with defined 
concentrations of recombinant growth factors, whereas 
other media contain bovine-derived endothelial cell 
growth supplements that are rich in undefined growth-
promoting molecules. Media can be also supplemented 
with hydrocortisone or may contain l-glutamine, heparin 
and ascorbic acid. However, optimised and standardised 
media composition for each assay are still warranted (39).

Phenotypic specification of hESC-EC

Phenotype specification in hPSC-EC cultures is assessed 
by the expression of common endothelial markers, 
clonal proliferative potential, monolayer growth and 
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cobblestone-like morphology, together with functional 
analyses, such as tube formation assay and acetylated low-
density lipoprotein (AcLDL) uptake. After purification, 
cells express CD31, VE-Cadherin, von Willebrand Factor, 
Neuropilin-1, CD34, VEGFR and laminin alpha 4, as 
demonstrated by FACS or immunofluorescence analysis 
(35, 36, 40). Moreover, hPSC-EC showed a similar 
transcriptional signature and metabolomic profile to 
primary endothelial cultures (HUVEC, HAEC, and human 
saphenous vein EC), when gene expression profiles and 
metabolites were compared by RNA-sequencing and 
liquid chromatography mass spectrometry respectively 
(35, 41). However, variations in the expression profiles 
are expected, depending on the protocol used for the 
differentiation and time point of the analysis. Importantly, 
primary EC profiles did not perfectly mimic their native 
counterpart in vivo, raising an important issue about 
the best control that should be used as comparison for 
hPSC-EC cultures. Finally, differences in the expression 
of extracellular matrix components between mature 
endothelial cells such as HUVEC and hPSC-EC were 
observed, like differential expression of laminins, perlecan, 
matrix metallopeptidases MMP1, MMP2 and MMP14, and 
collagen IV a1 and a2 subunits (36).

In vitro 3D models

In alternative to in vivo models, in vitro systems can be 
used to study vasculogenesis and angiogenesis in a 
controlled, reproducible and cost-effective way. These are 
easier than animal models and can be used to identify 
cell types, molecular factors and single steps of vascular 
morphogenesis. For many decades, 2D-cell culture 
has been the traditional method of growing cells and 
studying their interactions. However, investigators have 
come to understand that the 3D microenvironment 
determines how cells perceive and interpret biochemical 
signals, which in turn translates into tissue and organ 
specificity (42). Recent advances in generating high-
fidelity, in vivo-like cellular settings can provide us with 
consistent performance with reduced cell culture artefacts 
and permit continuous and quantitative imaging. We 
suggest that scaffold-based cell constructs, as well as 
organoids, spheroids, hydrogels, and bioprinting (3D) 
cultures, can facilitate this by providing physiologically 
relevant models compared to a monolayer (2D) vascular 
cell culture. Cell behaviour is strongly influenced by 
cell-cell interactions and microenvironmental cues, i.e. 
signalling can change when the same cell type is cultured 

in 3D instead of 2D. 3D cell cultures can be therefore well 
used in the optimisation of tissue-engineered cell therapy 
manufacturing, including adequate vascularisation. To 
study the effect of biomaterials and growth factors that 
direct the process of angiogenesis, numerous models 
have been established (43, 44) (Table 1). 3D cell systems 
have been proved to be advantageous compared to 2D 
as they allow superior reproduction of the physiological 
environment of cells in vivo, by maintaining cell-to-cell 
and cell-to-matrix interactions that control development, 
differentiation and signalling (45). 3D cell culture 
methods can be divided into two classes: scaffold-based 
and scaffold-free models.

Scaffold-based models

Hydrogels recapitulate the molecular environments of 
ECM in vivo, giving cells a 3D support matrix that they can 
interact with and are capable of remodelling. Hydrogels are 
often used in vitro to create models of angiogenesis, and 
they have shown potential for the study of both vascular 
morphogenesis and the preclinical testing of drugs (46). 
Different types of synthetic hydrogels have been shown 
to support angiogenesis, both of natural (alginate, 
hyaluronic acid, fibrin and gelatin) and non-natural origin 
(polyethylene glycol and poly (lactic-co-glycolic acid)). 
Collagen I and Matrigel are commonly used natural ECM-
based hydrogels, although their animal origin, batch-to-
batch variation and unknown composition limit their 
application. The advantage of hydrogels is their ability to 
encapsulate and release bioactive agents. Immobilisation 
of regulatory factors, such as RGD peptides and VEGF, in 
hydrogels, promote vascular differentiation of encapsulated 
cells (47). More recently, combining hydrogels, bioactive 
agents and a co-culture system have provided a model 
of tumour angiogenesis to further understand the role of 
endothelial cells in the tumour microenvironment (48). 
Hydrogel can be also incorporated into microfluidic systems 
(49). However, the composition and the density of fibres in 
the hydrogels have severe effects on the assembly of the 
microvasculature (50). For example, while increasing the 
fibre density usually improves the integrity of the hydrogels, 
however, augmenting collagen density by one order of 
magnitude decreased EC sprouting distance by 50% (50, 
51). At the same time, the concentration cannot be too low, 
as low-density hydrogels do not provide enough support 
for EC migration (52). Moreover, matrix biodegradability 
was shown to profoundly alter EC migration speed and 
efficiency, with less-biodegradable hydrogels encouraging 
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EC sprouting compared to more-degradable ones (53, 54). 
Finally, stiffness of the substrate can also influence EC 
proliferation, signalling and differentiation (55), Therefore, 
ECM protein composition and concentration must be 
carefully optimised to ensure that hydrogels promote 
vascularisation while maintaining their structural integrity.

Scaffold-free models

However, the advent of spheroids systems has provided 
a new method to study angiogenesis in vitro. Here, the 
addition of synthetic-derived scaffold to mimic the 
ECM is not required, and instead, cells are grown as self-
assembling aggregates. In these 3D systems, the cells grow, 
differentiate and deposit their own ECM, in a way that 
closely recapitulates the in vivo physiological conditions. 
Spheroids can be used to study the physiological spatial 
growth of vessel structures, the cell-cell interactions, and as 
a platform for drug development and discovery (30). Hybrid 
spheroids, generated by co-culturing two or three types of 
cell, are useful models to study the interaction between 
endothelial and tumour/stroma cells in different in vitro 
models of cancer (56, 57) or between endothelial and mural 
cells in angiogenesis/vasculogenesis. Analysis of endothelial 
cell/MSC spheroids showed that MSC participated in the 
formation and stabilisation of luminal tubular structures, 
similarly to pericyte-like cells (58, 59). Many methods can 
be used to generate the spheroids including hanging drops, 
low adhesion plates and self-organising 3D vessel-like 
structures (vascular organoids) (60). Notwithstanding the 
versatility and cost-effectiveness of scaffold-free models, 
the cell density and dimensions of the spheroids must be 
carefully monitored, as oxygen and nutrients diffusion to 
the core might be affected. Consequently, time in culture 
may be as well limited (14). Finally, as 3D culture systems 
become more popular and continue to evolve, more 
sophisticated imaging techniques need to be developed to 
image and analyse thick samples (61).

Microfluidic devices for in vitro 3D assays

A major challenge remains to find a 3D system capable of 
mimicking the physiological and pathological conditions 
of the in vivo systems. We know that in vivo the vascular 
endothelium is continuously exposed to shear stress 
and hypoxia, and EC physiology varies in response to 
different flow patterns and rates compared to static 
culture conditions (62). Moreover, for 3D culture systems, 

it is essential to improve medium diffusion, oxygen 
and nutrients supply to ensure cell survival in the core 
of the microtissues. Application of flow to angiogenic 
culture models is the most distinctive advantage of using 
microfluidics, other than reducing costs and complexity of 
the experiments and minimizing the volume of reagents 
(63, 64). Furthermore, in vitro microfluidic systems allowed 
to study in a controlled manner the effects of normal and 
disturbed flow on endothelial cells and the interactions 
between endothelial cells, supporting cells (pericytes and 
SMC) and platelet (65, 66, 67, 68).

However, the designing of microfluidic devices 
requires specific competencies which are usually beyond 
the expertise of the final operators, and some limitations 
remain in the application of microfluidic systems (69, 70).

Conclusions

Recent progress in 3D models of vascularisation has 
allowed for invaluable advancements in our knowledge 
of angiogenesis/vasculogenesis. In this review, for each 
model we reported advantages and limitations. Different 
tests should be used together to obtain the maximum of 
information. In vitro tests, although informative, are yet 
unable to divulge the more complex interactions between 
endothelial cells and other cellular constituents of the 
microvessel wall or the response to flow or shear stress 
which plays an important role in vascular mechanobiology 
and should be complemented with in vivo models.
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