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Tolerogenic dendritic cell (tDC)-based clinical trials for the treatment of autoimmune 
diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC 
to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple 
sclerosis (MS), and Crohn’s disease. This review will address tDC employed in current 
clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. 
To date, the publicly reported human trials using tDC indicate that regulatory lympho-
cytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells) are, for the 
most part, increased in frequency in the circulation. Other than this observation, there 
are significant differences in the major phenotypes of the tDC. These differences may 
affect the outcome in efficacy of recently launched and impending phase II trials. Recent 
efforts to establish a catalog listing where tDC converge and diverge in phenotype and 
functional outcome are an important first step toward understanding core mechanisms 
of action and critical “musts” for tDC to be therapeutically successful. In our view, the 
most critical parameter to efficacy is in  vivo stability of the tolerogenic activity over 
phenotype. As such, methods that generate tDC that can induce and stably maintain 
immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence 
of powerful pro-inflammatory signals are those that will fare better in primary endpoints 
in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity- 
targeted tissue, allograft survival). We propose that pre-treatment phenotypes of tDC in 
the absence of functional stability are of secondary value especially as such phenotypes 
can dramatically change following administration, especially under dynamic changes 
in the inflammatory state of the patient. Furthermore, understanding the outcomes 
of different methods of cell delivery and sites of delivery on functional outcomes, as 
well as quality control variability in the functional outcomes resulting from the various 
approaches of generating tDC for clinical use, will inform more standardized ex vivo gen-
eration methods. An understanding of these similarities and differences, with a reference 
point the large number of naturally occurring tDC populations with different immune 
profiles described in the literature, could explain some of the expected and unanticipated 
outcomes of emerging tDC clinical trials.

Keywords: tolerogenic dendritic cells, autoimmune disease, autoimmunity, clinical therapeutics, type 1 diabetes, 
Crohn’s disease, rheumatoid arthritis, multiple sclerosis
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iNTRODUCTiON

Autoimmune diseases are characterized by the loss of tolerance 
to self-antigens resulting in the immune system targeting a wide 
range of tissues leading to impaired function, tissue eradica-
tion, and clinical morbidity and mortality. Many of the current 
therapeutics manage symptoms of a general inflammatory state, 
even if they target specific molecules on inflammatory cells and/
or their secreted products (e.g., immunokines). Autoimmunity 
requires ongoing, often lifelong treatment. While systemic 
immunosuppressives are still the mainstay of treating most auto-
immune conditions, biologic-based immunotherapies selectively 
targeting specific molecules and pathways have become part of 
the treatment approach, although their side effects often cause 
more problems than they intend to solve. Cell therapy has been 
a sought after alternative, or adjunctive approach for at least two 
decades, since the discovery of tolerogenic dendritic cells (tDC) 
and with the more recent characterization of T-regulatory cells 
(Tregs) (1–9). In this review, we will summarize the current tDC-
based clinical trials, as well as those that are planned for the treat-
ment of autoimmune diseases. We will point out the common 
features and the common mechanisms that they share in their 
functional outcomes and also highlight some key questions that 
remain to be answered to ensure that these cells remain stably 
tolerogenic in vivo.

Dendritic cells are considered to be the body’s “professional” 
antigen-presenting cells (10–15) and they regulate adaptive 
immunity and maintain immune homeostasis in the periphery 
(16). When DC express low levels of surface proteins, collectively 
referred to as co-stimulation molecules (e.g., CD86, CD40, 
OX-40), produce little to no IL-12p70, and exhibit low nuclear 
factor kappa-light-chain-enhancer of activated B-cells (NF-κB) 
transactivational activity, they are referred to as “immature” 
(17–20). DC reside inside peripheral tissues throughout the 
body in this state under normal conditions and they acquire 
either draining tissue antigens or migrate through the tissues 
and stromal structures, acquiring antigens through phagoendo-
cytic mechanisms (e.g., trogocytosis) (21–24). They remain as 
immature cells until the time they encounter a pro-inflammatory 
environment. When antigens are acquired in an environment 
of inflammation, such as an infection, DC undergo a series of 
maturation steps that increase the expression and cell surface 
level of major histocompatibility complex (MHC) class II mol-
ecules for antigen presentation concurrent with the upregulation 
of co-stimulation molecules, and production of IL-12p70 that 
together act in concert to stimulate the division and functional 

polarization of T-cells (25–28). Mature DC do this consequent 
to their accumulation inside the lymph nodes or lymphoid struc-
tures that drain the site from which they acquired the antigens. 
There, inside the lymphoid organs, they present those antigens 
to the T-cell receptor on naïve T-cells. A series of secondary 
interactions with co-stimulatory molecules fully activate T-cells 
(29, 30). Antigens presented in this fashion are typically foreign, 
but in autoimmune diseases self-antigens are presented to 
potentially autoreactive T-cells leading to targeted destruction of  
tissues (31).

Dendritic cells that acquire antigens but do not receive sig-
nals to undergo maturation maintain their immature state and 
can also present antigens to naïve T-cells in secondary lymphoid 
organs. In the absence of co-stimulation, these DC usually 
induce a state of anergy in target T-cells leading to peripheral 
tolerance. Immature DC further facilitate peripheral immune 
tolerance by maintaining populations of naturally occurring 
thymic Tregs and/or induce naïve T-cells to differentiate into 
peripheral Tregs as they also shift differentiated T-helper (Th) 
cell phenotypic and functional activity balance toward cell 
populations representing the Th2 side (1, 32–37). This outcome  
is usually a consequence of IL-10 gene activation and immu-
nokine production by the DC instead of IL-12p70, which aug-
ments the Th2 subpopulation and, in a paracrine feedback manner, 
inhibits DC maturation (38). While autologous Tregs therapy 
is an alternative approach to treating autoimmune disease,  
it is limited by questionable stability of the administered cells 
in  vivo (39–41), polyclonality (42–44), and concerns about 
sys temic dissemination of the cells since they are administered 
intravenously. From a manufacturing perspective, the volume 
of blood currently needed to generate an injectable cell product 
(approximately 400 ml per patient) can be prohibitive. Instead, 
the advantages of tDC lie in their multiple mechanisms to treat 
disease that involve anergy of autoreactive T-cells, activation of 
different regulatory lymphocyte populations, dynamic antigen 
acquisition in  vivo and presentation to autoreactive T-cells 
to induce hyporesponsiveness, and migration into lymphoid 
regions draining the disease target. Over the past 20  years, 
much research has been invested toward the characterization of  
these immature DC and into methods that can generate them 
in  vitro from hematopoietic progenitors and maintain them  
stably in an immature state capable of possibly restoring toler-
ance in vivo in autoimmune diseases (2, 9, 17, 45–52).

TYPe 1 DiABeTeS (T1D) MeLLiTUS

Type 1 diabetes is a disease that leads to the progressive loss of 
pancreatic beta cells and insulin production. Insulin replace-
ment is the only and current gold standard of therapy, but even 
rigorous control of blood glucose levels fails to prevent the 
development of diabetic complications (53). These complications 
include neuropathy, nephropathy, vision loss, and cardiovascular 
disease which are associated with high morbidity and mortal-
ity (54). Devices for the delivery of insulin may mimic how 
insulin is secreted and could potentially reduce diabetes-related 
complications (55, 56), but they do not address the underlying 
autoimmune pathology, nor is insulin release fully coupled to 

Abbreviations: APC, antigen-presenting cells; Bregs, B-regulatory cells; DAS28, 
disease activity scores 28; DC, dendritic cells; Dex, dexamethasone; GM-CSF, 
granulocyte macrophage colony-stimulating factor; HLA-DR, human leukocyte 
antigen-antigen D related; IFNγ, interferon gamma; IκBα, nuclear factor kappa-
light-chain-enhancer of activated B-cells inhibitor, alpha; IL, interleukin; MHC, 
major histocompatibility complex; MITAP, minimum information about tolero-
genic antigen-presenting cells; MPA, monophyosphoryl lipid A; NF-κB, nuclear 
factor kappa-light-chain-enhancer of activated B-cells; RA, rheumatoid arthritis; 
RALDH, retinaldehyde dehydrogenase; T1D, type 1 diabetes; TCR, T-cell recep-
tor; tDC, tolerogenic dendritic cells; Th, T-helper cells (1,2, or 17); TNFα, tumor 
necrosis factor alpha; Tregs, T-regulatory cells.
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second-to-second fluctuating glucose levels. Autoimmunity 
suppression is also a hurdle for the implementation of islet 
transplants that, while reducing or delaying the clinical outcome 
of complications, would come under the same rejection by 
leukocytes even with the application of drugs to prevent tissue 
rejection (57–60).

Tolerogenic dendritic cells are a potential therapy for the 
treatment of new onset T1D to prevent the further destruction 
of pancreatic beta cells. Loss of beta cell mass can reach 80% 
by time of diagnosis (61), making the therapeutic window 
small, but feasible. The first tDC clinical trial for the treat-
ment of autoimmune disease was for T1D (clinicaltrials.gov 
identifier: NCT00445913) (62). Monocytes were isolated by 
leukapheresis and grown ex vivo in the presence of granulocyte 
macrophage colony-stimulating factor (GM-CSF) and inter-
leukin-4 (IL-4) for 6  days. Cells for the treatment arm of the 
study were cultured with a mixture of antisense oligonucleotides 
targeting the primary transcripts of the CD40, CD80, and CD86 
co-stimulatory molecules at a concentration of 3.3  µM each 
oligonucleotide. Cells proven to exhibit reduced expression of 
these co-stimulation proteins (by flow cytometry) and passing 
the viability and sterility screen were given to patients in four 
treatments of 1.0 × 107 cells, where each round of administra-
tion was 2 weeks apart. Each round of treatment was divided 
into four intradermal injection sites proximal to the expected 
anatomical location of the pancreas in an effort to enhance  
DC migration to the pancreatic and peri-pancreatic lymph 
nodes, based on known and suspected lymphatic drainage 
fields. All tDC were from thawed cryopreserved cell stocks. Ten 
patients were recruited for the phase I study; 3 patients in the 
control arm and 7 in the tDC treatment arm. Safety for patients 
was assessed in-trial (12 months).

The tDC were well tolerated without any adverse events  
noted. Two novel findings resulted from the study. First, the tDC-
treated arm displayed a transient elevation of B220+ CD11c− 
B cells that, during the study, appeared to contain a subpopulation 
of B-regulatory cells (Bregs). The presence of Bregs and the effect 
of the tDC on their generation was demonstrated in a follow-up 
study (63). The second finding was that, in 4/7 patients who were 
insulin C-peptide negative at baseline, there was a conversion 
to C-peptide positivity to sub-physiological concentrations in 
3/7, but to physiological levels in one patient, during the tDC 
administration cycle. C-peptide is the cleavage product of pro-
insulin as it matures into insulin during its biosynthesis and 
secretory phases inside the pancreatic beta cells and is used as 
a surrogate marker for functional beta cells (64). However, this 
trial’s intent was to assess safety of the tDC and in spite of these 
findings, there was no attempt to determine if insulin dosage 
could be adjusted. Patients recruited in this study were diabetic 
and insulin-requiring for a minimum of 5 years and, therefore, 
should not have been expected to harbor significant residual beta 
cell mass. The emergence of detectable C-peptide during the tDC 
treatment cycle suggests restoration of insulin production from 
remaining islets or possible new islet formation. There were no 
significant differences in other measurements between control 
and tDC treatment arms (e.g., in cytokine serum concentrations 
or cell population number other than Bregs), even though a 

subtle, albeit statistically insignificant increase in Tregs number 
were detected in tDC-treated patients.

RHeUMATOiD ARTHRiTiS (RA)

Rheumatoid arthritis is an inflammatory disease that targets 
the cartilage of the joint articulations, with the highest rate of 
occurrence in small joints of the hands and feet (65). Chronic 
inflammation further results in loss of bone mass, tendon inflam-
mation, and rupture associated with airway and cardiovascular 
complications (66). Current treatment strategies require con-
tinuous treatment with anti-inflammatory drugs and biologics. 
These, however, fail to maintain remission over the life of the 
disease. With an RA global incidence rate as high as 1% of adults 
(67), there is a large patient population that could benefit from  
tDC therapeutics.

Rheumavax RA Study
The first-in-human trial for the treatment of RA generated tDC 
by NF-κB inhibition (clinicaltrials.gov identifier: NCT00396812) 
(68). The transcription factor NF-κB controls gene expression of 
genes involved in many pro-inflammatory pathways, making it a 
target of choice for anti-inflammatory drugs (69). Inhibition of 
NF-κB prevents DC maturation, reduces the expression of CD40 
and human leukocyte antigen–antigen D related (HLA-DR, a 
class II MHC molecule), and confers tolerogenic properties to 
DC including induction of T-cell anergy (70, 71). Isolated mono-
cytes were grown in the presence of IL-4, GM-CSF, and 2–2.5 µM 
of the NF-κB inhibitor Bay 11-7082 for 48 h. DC were further 
prepared in a 3-h exposure to citrullinated peptides of aggrecan, 
vimentin, collagen type II, and a and b fibrinogen which are puta-
tive RA autoantigens (72) as anti-citrullinated protein antibodies 
are found in 50–80% of patients over the lifetime of the disease 
(65). Preloading tDC with disease-specific autoantigens increases 
the likelihood of their presentation to T-cells inside the inflamed 
joint-draining lymph nodes, thus disrupting the cycle of autore-
active T-cell activation. The resulting generated tDC displayed a 
5% reduction in the mean fluorescence intensity (flow cytometric 
measurement) of CD40 and a 17% reduction in HLA-DR when 
assessed by flow cytometry (68). Patients were given a single 
intradermal injection of 1.0 × 106 or 5.0 × 106 tDC.

The treatment was generally well tolerated and deemed safe. 
General trends indicated a 25% decrease in pro-inflammatory 
T-cells (CD4+ CD25+ CD127+) and 25% increase in anti-
inflammatory Treg (CD4+ CD25+ high CD127−) within 
1  month of treatment. Circulating levels of the inflammation 
marker C-reactive protein (CRP) were significantly decreased 
in patients receiving the high cellular dose. Similarly, cytokine 
expression profiles for IL-15, CXCL1, CXCL11, IL-29, and 
peptide YY were reduced in patients receiving the high dose 
Rheumavax treatment. Disease activity scores 28 (DAS28), 
a common metric used for the evaluation RA severity, were 
decreased in a portion of the patients.

Newcastle University RA Study
The second RA tDC trial was conducted at the University of 
Newcastle and used dexamethasone (Dex) and vitamin D3 for 
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tDC generation (clinicaltrials.gov identifier: NCT01352858) 
(73). Dex is a synthetic glucocorticoid that has a range of 
powerful anti-inflammatory effects in the clinical setting (74). 
Dex inhibits the NF-κB pathway through a number of mecha-
nisms. The most prominent includes increased nuclear factor 
kappa-light-chain-enhancer of activated B-cells inhibitor, alpha 
(IκBα) expression which binds and retains the RelA subunit 
of NF-κB inside the cytoplasm preventing transcriptional 
activities inside the nucleus (75, 76). tDC grown in the pres-
ence of Dex exhibit decreased expression of co-stimulation 
proteins CD40 and CD86 and the DC maturation marker 
CD83, along with decreased class II MHC expression and IL- 
12p70 production (71, 77–79). These tDC produced high 
concentrations of the immunosuppressive IL-10 immunokine 
(80). Similar alterations in DC surface and cytokine expres-
sion profiles can also result with vitamin D3 treatment in vitro 
(81–83). Interestingly, vitamin D3 deficiency is associated with 
RA and poorer clinical outcomes (84, 85). Generation of tDC 
with both Dex and vitamin D3 has an additive effect on IL-10 
production levels (26, 86).

In this trial, monocytes were isolated by density centrifuga-
tion followed by microbead selection of CD14 expressing cells. 
Monocytes were grown in culture for 7  days in the presence 
of 50  ng/ml IL-4 and 50  ng/ml GM-CSF; with the addition 
of 1 µM Dex on day 3 and day 6, 0.1 nM vitamin D3 on day 
6, and 1.0  µg/ml monophyosphoryl lipid a (MPA) on day 6. 
Cells were then cocultured with synovial fluid collected from 
inflamed joints of study patients allowing for unique autoan-
tigen loading specific to each patient. The patient-specific tDC 
were characterized with reduced CD40, CD83 surface levels and 
decreased IL-12p70 production while maintaining high concen-
trations of secreted IL-10 (73, 77). After tDC passed sterility 
testing, patients received a single injection of saline, 1.0 × 106, 
3.0  ×  106, or 1.0  ×  107 cells into the affected knee joint. The 
treatment was deemed safe with no worsening knee flares and 
a reduction in symptoms of patients treated with the high dose. 
Peripheral blood immune T-cell populations (CD4+ IL-10+, 
CD4+ FoxP3+, CD4+ IFNγ+, CD4+ IL-17+) and cytokines 
production levels [IL-10, interferon gamma (IFNγ), IL-17, IL-6, 
tumor necrosis factor alpha (TNFα)] were unaltered.

CROHN’S DiSeASe

Crohn’s disease is an autoimmune disease of the gastroin-
testinal (GI) tract that can affect tissues from the mouth to 
the anus (87). Common symptoms include abdominal pain, 
bloody diarrhea, inflammation, weight loss, and bowel block-
age (87, 88). Current treatments are designed to manage 
the symptoms, but disease flare-ups are common. There are 
no specific therapies against the underlying autoimmunity.  
A single phase I clinical trial has been reported as completed, 
testing the safety of tDC (European Clinical Trials Database 
number 2007-003469-42) (89).

The immunologic space of the intestine is exposed to a high 
number of foreign antigens provided by intestinal flora. The 
breakdown of immune control is mediated by inappropriate 
activation of Th1 and Th17  cells and the loss of retinaldehyde 

dehydrogenase (RALDH)-positive DC. This DC subpopulation 
may be the reason vitamin A was incorporated into the tDC 
generation process for this trial. Vitamin A deficiency is preva-
lent in patients with Crohn’s disease and correlates with disease 
severity (90). Conventional CD103+ CD11b+ intestinal DC 
convert vitamin A to retinoic acid through expression of RALDH 
which is atypical of DC found in draining lymph nodes (91). 
DC-generated retinoic acid maintains tolerance to GI tract cells 
and tissues through enhanced CD4+ T  cell recruitment to the 
intestine and differentiation into FoxP3+ T-cells and Th17 from 
existing CD4+ T-cell populations (1, 26, 92, 93). Furthermore, 
generation of retinoic acid-producing DC naturally inside the 
disease-affected tissues as a consequence of administration of 
retinoic acid-producing tDC could establish an ongoing “feed 
forward” type of tDC generation and stabilization cycle in the 
patient’s intestinal epithelial cells. This clinical trial relies on 
proximal tDC delivery, but mentions that future methods may 
switch to direct delivery of tDC into intestinal lesions (89).

For the generation of tDC in this trial, monocytes were 
obtained by leukapheresis. Cells were cultured in 500  UI/ml 
IL-4 and 800 UI/ml of GM-CSF for 7 days; 1 µM of Dex and 
1 nM vitamin A starting on day 3; and the cytokines IL-1β, IL-6, 
TNFα, and prostaglandin E2 for the final day (89, 94). The cell 
products exhibited elevated CD80 and CD86, and low CD83 
expression. MERTK, a glucocorticoid-induced receptor that is 
prevalent in tDC was also expressed at high levels. Production 
of IL-10 was detected in the cells with no detectable IL-12p70 
or IL-23 in the cell culture media. Allogenic mixed lymphocyte 
reactions performed in the presence of tDC resulted in low 
T-cell proliferation and IFNγ production. tDC were admin-
istered to Crohn’s patients by intraperitoneal injection in six 
different treatment arms based on the number of administered 
cells (2.0 × 106, 5.0 × 106, 1.0 × 107) and number of injections 
(one dose or three doses spread out every 2 weeks). These tDC 
were well tolerated. One-third of the patients completing the 
study showed a clinical improvement based on a Crohn’s disease 
activity index. Th1 and Th17 cell populations were unchanged in 
numbers in circulation, but there was a significant increase in 
circulating Tregs (CD4+ CD25+ Foxp3+) 12 weeks after injec-
tion when compared to baseline. Isolated T-cells stimulated 
with CD3 antibody secreted less IFNγ suggesting that the tDC 
had established some form of immune hyporesponsiveness in 
the patients.

A second clinical trial has been initiated for Crohn’s disease 
using tDC (clinicaltrials.gov identifier: NCT02622763); how-
ever, at this time very few details are known about the methods 
of tDC generation.

MULTiPLe SCLeROSiS (MS)

Multiple sclerosis is an autoimmune disease that results in the 
demyelination of neurons in the central nervous system as well 
as in the peripheral nervous system. Demyelination is mediated 
by autoreactive T-cells activated by self-antigen presentation by 
DC. A number of drugs and biologics are being used to inhibit 
various immune pathways (95), and tDC are currently being 
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TABLe 1 | A comparison of current tolerogenic dendritic cells (tDC) and their clinical application for completed and ongoing clinical trials.

Disease/trial Diabetes (62)  
Pittsburgh

Rheumatoid arthritis 
(RA) Rheumavax (68)

RA Newcastle 
University (73)

Crohn’s disease (89) Multiple  
sclerosis (MS)

MS

Clinical Trial ID NCT00445913 NCT00396812 NCT01352858 2007-003469-42 NCT02283671 NCT02618902

Cell generation
NF-κB inhibitor – BAY 11-7082 Dexamethasone (Dex) Dex Dex –
Vitamins – – Vitamin D3 Vitamin A – Vitamin D3
Stimulation – – Monophyosphoryl lipid A Cytokines Unpublished Unpublished
Antigens – Citrullinated peptides Synovial fluid – Myelin peptides Myelin peptides
Other With or without Antisense 

CD40, CD80, CD86

Cell characterization Unpublished Unpublished
Sterile/viable Passed Passed Passed Passed
CD40 X ↓ = X
CD80 X ↓ X ↑
CD83 X X ↓ ↓
CD86 X = ↑ ↑
IL-10 X X ↑ ↑
IL-12 ↓ X ↓ ↓

Therapeutics
Cell number 1.0 × 107 1.0 or 5.0 × 106 1.0, 3.0, or  

10.0 × 106

2.0, 5.0, or  
10.0 × 106

Unpublished 5.0, 10.0, or 
15.0 × 106

Injection number 4 injections 1 injection 1 injection 1 injection Unpublished 5 injections
Injection site Intradermal Intradermal Knee joint Intraperitoneal Intravenous Intradermal
Dose number 4, 2 weeks apart 1 1 1 or 3, 2 weeks apart 3, 2 weeks apart Unpublished

Research outcomes
Tolerated Tolerated Tolerated Tolerated Tolerated Unpublished Unpublished
T-regulatory cell ↑ ↑ = ↑
Plasma cytokines ↑IL-4, IL-10 ↓IL-15, IL-29 = X

Disease outcomes Elevated C-peptide ↓ CRP Tolerated Improved Crohn’s  
disease activity index

Unpublished Unpublished

B-regulatory  
cells population

↓ DAS28 Reduced IFNγ after  
ex vivo CD3 stimulation

Cell generation displays the reagents used in tDC preparation (not including shared IL-4 and GM-CSF components) and cell characterization displays surface markers and cytokine 
secretion profiles of pre-injected cells. Table entries marked as “X” are values that were not assessed within a given trial. Arrows indicate a change for a given value, but were not 
present in all patients within a study, exist at specific time points that may not be maintained for the duration of the study, or failed to reach significance in some studies. MS studies 
are still underway and unpublished. The information provided derives from clinicaltrial.gov entries for these registered clinical trials and is current as of August 29, 2017.
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used in two phase I clinical trials. To date, the results of these 
trials have not been yet published. The first trial (clinicaltrials.
gov identifier: NCT02283671) utilizes tDC generated in the 
presence of IL-4, GM-CSF, and Dex. These cells are pre-loaded 
with myelin self-peptides and are administered intravenously in 
three injections each 2 weeks apart. The second trial (clinicaltri-
als.gov identifier: NCT02618902) considers tDC generated in 
the presence of vitamin D3 and similarly preloads cells with 
myelin self-peptides. Patients will receive 5.0 ×  106, 1.0 ×  107, 
or 1.5 × 107 cells spread over five intradermal injection sites in 
the subclavicular region. This will be the highest administered 
dose of tDC described in current tDC clinical trials, which was 
probably informed by the safety reports of previous tDC trials. 
Similar to retinoic acid, vitamin D levels are lower in patients 
with MS than healthy individuals. Relapse of MS symptoms are 
also associated with lower vitamin D levels when compared to MS 
patients that are currently in intermission (96, 97). Generation 
of tDC from healthy and MS patients in the presence of vitamin 
D3 results in reduced tDC IL-12 and IL-23 cytokine secretion, 

inhibited maturation, and increased CD83/decreased CD80 cell 
surface expression (95).

DiSCUSSiON

Tolerogenic dendritic cells have, or are currently being tested in 
phase I clinical trials for T1D, RA, MS, and Crohn’s disease, with 
additional considerations aiming at lupus (98) and facilitating 
allogeneic tissue and organ transplantation (9, 99–101). tDC 
generation relies on the use of IL-4 and GM-CSF to differentiate 
monocyte progenitors, and these cytokines remain the central 
feature shared among all the tDC generation methods. The dif-
ferences, however, lie in the additional factors added in the cell 
cultures from the time of monocyte seeding to the last changes 
in media prior to tDC harvest (e.g., putative autoantigens, vita-
min D3, immunosuppressives like Dex and NF-κB inhibitors, 
antisense oligonucleotides targeting co-stimulation) (Table 1). 
To what extent these conditions change cellular effectiveness 
and mechanism of action of tDC to confer their potentially 
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beneficial effects is unclear at present. Nevertheless, most tDC 
share one mechanistic feature: increased regulatory lymphocytes  
(e.g., Foxp3+ Tregs and Bregs) in the peripheral blood of patients 
during administration (62, 68, 89).

Another difference among the tDC used in clinical trials lies 
in the dose level administered and site of cell delivery in the body. 
This last point is relevant in the mechanism of tDC since affected 
tissues and focal points of inflammation differ among autoim-
mune diseases. The majority of tDC clinical trials to date deliver 
tDC proximal to the site of inflammation, with the desired goal 
of tDC migration into the local draining lymph node. Draining 
lymph nodes adjacent to the site of inflammation have a great 
preponderance of activated self-reactive T-cell populations to 
target for anergy (102). The clinical studies described so far have 
used between 1 and 5 injection sites per cell treatment cycle, 
targeting one or more pertinent lymph nodes such as the cervi-
cal lymph nodes in the MS study (clinicaltrials.gov identifier: 
NCT02618902). An alternative approach is to directly introduce 
tDC into the site of inflammation. Direct administration of tDC 
to lesion sites in Crohn’s disease was not attempted but suggested 
for future study. This would address a different mode of action, 
where the vitamin A-generated tDC could potentially restore a 
lost intestinal subpopulation of tDC specific to Crohn’s disease. 
Targeting “niche” tDC populations may require the need for the 
generation of tDC with more restricted immunosuppressive phe-
notypes. While the Newcastle University RA study introduced 
tDC directly at the site of inflammation, the intended goal was 
still for the migration of tDC to local draining lymph nodes. 
Even though the technique is more invasive than intradermal 
administration, the introduction of tDC producing IL-10 may 
have the added benefit of local immunosuppression at the point 
of inflammation. This consideration is balanced by the possibility 
that local inflammatory conditions may alter the introduced tDC 
phenotype to a more pro-inflammatory state.

Autoimmune diseases each have their own unique autoanti-
gens and associated self-reactive T-cell populations. Preloading 
tDC with specific disease antigens enhances their ability to 
directly interact and inactivate self-reactive T-cells that cause 
tissue damage. The Rheumavax RA study loaded tDC with 
citrullinated peptides identified from 70% of RA patients who 
exhibit auto-antibodies to these targets. To further this strategy, 
they selected patients with high risk HLA alleles that have a 
strong association with citrullinated auto-antibody positivity. 
Unfortunately not all patients display uniform self-antigens for 
a given disease. T1D, for example, is associated with a range of 
self-antigens and auto-antibodies that are differentially expressed 
among patients and at different points during the disease. Even 
though there seems to be a general consensus about insulin 
and GAD65-derived peptide-pulsing tDC for T1D, antigen 
spreading that has occurred at the time of clinical disease may 
limit the autoreactive T-cell populations targetable, whereas 
other “late-antigen”-specific T-cells may in fact be driving 
autoimmunity after clinical onset. In an elegant study designed 
by the Newcastle University group, the RA trial overcame this 
potential limitation by collecting synovial fluid from inflamed 
joints of each patient. tDC were pre-exposed to autologous 
synovial fluid for antigen collection, and then given an additional 

chance to acquire patient-specific autoantigens through direct 
administration of tDC to the site of inflammation. If initial 
tDC therapeutics trials are successful, further studies may wish 
to look at the effectiveness of matching patient autoantigens 
despite the potential increase in manufacturing and quality  
control costs.

Currently, only four of the discussed clinical trials have been 
completed with reported outcomes (62, 68, 73, 89). Despite the 
different approaches used to generate the tDC in these trials, 
NF-κB inhibition is the central feature of 3 of these studies, 
with one study also including the use of vitamin D3. Generation 
of tDC with either NF-κB inhibitors or vitamin D3 promotes 
immature DC phenotypes with an additive effect when using 
both agents. The Newcastle University RA (Dex + Vit D3) and 
the Crohn’s disease (Dex) trials both reported decreased CD83 
expression, high CD86 expression, decreased IL-12 secretion, 
and elevated IL-10 secretion in their tDC products suggesting 
a possible tDC shared phenotype. Pre-activation of tDC with 
cytokines or lipid immune mediators is also shared between 
these two protocols. The Rheumavax RA (BAY 11-7082) study 
measured different parameters, but did report a divergent 
decrease in CD80 surface levels. In contrast, the T1D clinical 
trial directly intervened to reduce and maintain stably reduced 
co-stimulatory molecules CD40, CD80, and CD86 without 
the use of an NF-κB inhibitor, but other than demonstrating 
low IL-12 concentrations during stimulation in  vitro, it did 
not further characterize the generated tDC beyond purity and 
sterility. Without full characterization of, at least, the immune 
phenotypes and functional immune activities, it will be difficult 
to compare the mechanisms of action among the different tDC 
to functionally identify their points of intersection (e.g., do 
all tDC promote Tregs, and how? Are key immunoregulatory 
immunokines produced by all tDC, and/or what are the immu-
nokines that tDC elicit in common among the different Th cell 
populations?). The difficulty in comparing the characteristics 
of different clinical tDC does suggest the need for an uniform 
set of metrics for their description. This was the focus of the 
minimum information about tolerogenic antigen-presenting 
cells (103) initiative whose authors included members from a 
number of the completed and ongoing clinical trials.

Much of the current divergence in tDC phenotype and points 
of mechanistic intersection other than increased frequency of 
regulatory immune cells in the peripheral blood during treatment 
might also be due to the ex vivo upstream cell processing prior 
to the addition of GM-CSF/IL-4 (e.g., monocyte progenitors, 
contaminating granulocytes in the monocyte elutriation). An 
important question that needs to be addressed is the relevance of 
the tDC method and site of delivery (intravenous, subcutaneous, 
intradermal) on their effect and mechanism of action (direct or 
indirect) at the lymphoid organs draining the inflamed tissues and/
or the autoimmunity target tissues proper. Finally, it is important 
to determine if freshly generated versus thawed cryopreserved 
tDC are functionally different in vivo. Considering the limitations 
and adverse events encountered using biologic agents and the 
need to move past systemically acting immunosuppressives, the 
well-tolerated safety profile of tDC across a range of dose levels 
and administration sites, along with the evidence of increased 
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