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Numerous large scale genomics studies have
demonstrated that cancer is a molecularly heterogeneous
disease, characterized by acquired changes in the structure
and DNA sequence of tumor genomes. More recently, the
role of the equally complex tumor microenvironment in
driving the aggressiveness of this disease is increasingly
being realized. Tumor cells are surrounded by activated
stroma, creating a dynamic environment that promotes
cancer development, metastasis and chemoresistance. The
Rho family of small GTPases plays an essential role in the
regulation of cell shape, cytokinesis, cell adhesion, and cell
motility. Importantly, these processes need to be considered
in the context of a complex 3-dimensional (3D) environment,
with reciprocal feedback and cross-talk taking place between
the tumor cells and host environment. Here we discuss the
role of molecular networks involving Rho GTPases in cancer,
and the therapeutic implications of inhibiting Rho signaling in
both cancer cells and the emerging concept of targeting the
surrounding stroma.

Introduction

Over the last 2 decades, a deeper understanding of the genetic
and molecular basis of cancer has led to new classes of therapies
to selectively target the molecular mechanisms that affect survival
and proliferation of cancer cells. Large-scale genomics efforts are
providing new opportunities to improve current approaches to
cancer therapy.1-3 However, contribution of the equally complex
and dynamic tumor microenvironment to therapeutic resistance
is increasingly being realized. For example, stromal cells have pre-
viously been shown to directly confer chemoresistance to a variety
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of agents, particularly influencing the response to targeted thera-
pies.4 In several solid cancer types,5,6 including those of the pros-
tate, pancreas and ovary, a high proportion of the total tumor
mass consists of activated (myo)fibroblasts, lymphatic and vascu-
lar endothelial cells, immune cells and extracellular matrix
(ECM), all of which make up the tumor stromal environment.
This dynamic tumor microenvironment promotes cancer initia-
tion, progression, metastasis and chemoresistance, creating a sub-
stantial barrier to reducing the morbidity and mortality that is
attributable to aggressive malignancies. At the same time, it has
created new avenues for the development and testing of novel
therapeutic strategies, by targeting cellular mechanisms contrib-
uted by the tumor microenvironment.

Rho GTPases comprise a branch of the Ras super family,
encompassing 22 genes in humans, of which RhoA, Rac1 and
Cdc42 are the best characterized. They play essential roles in a
number of biological processes, especially in the regulation of cell
morphology, cytokinesis, cell adhesion, and cell migration. Alter-
nation between their GDP-bound (inactive) and GTP-bound
(active) forms is a tightly regulated process. GTPase activating
proteins (GAPs) stimulate GTP hydrolysis and inactivation,
while the guanine nucleotide exchange factors (GEFs) facilitate
GDP dissociation and activate downstream pathways through
effector proteins.7

Activation of Rho GTPases results in binding to downstream
effector proteins, for example the Rho-associated protein kinase
ROCK, and interaction with various well characterized pathways,
including the PI3K, FAK, Src, LIMK, MEK/Erk protein net-
works,8-12 leading to actin cytoskeleton remodeling and increased
cell motility. These key processes are also critical during cell cycle
progression and mitosis, including the process of cell rounding at
mitosis onset, during chromosomal alignment and the contrac-
tion of the actomyosin ring that separates daughter cells at cytoki-
nesis, all of which are tightly regulated by the Rho family of
GTPases in a cell type specific manner.13-15

The effect of Rho/ROCK activation on myosin-light chain
(MLC) phosphorylation in smooth muscle and its involvement
in the maintenance of aspects of stromal feedback such as vascu-
lar tone,16-18 as well as on ECM deposition, has generated con-
siderable interest in the use of Rho pathway inhibition to treat
cardiovascular disease,17 but also for the treatment of stroke,19

inflammatory conditions,20 Alzheimer’s disease21,22 and
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neuropathic pain.23-25 Specifically, several studies have shown
improved recovery from spinal cord injury in rat models of the
disease following treatment with the ROCK inhibitors fasudil
and Y-27632.23,24,26 Regulation of mechanical and contractile
properties of the pressure-sensitive smooth muscle cells is recog-
nized to play a significant role in blood pressure homeostasis and
regulation of vascular tone.18 Interestingly, due to its vasodilatory
effect, fasudil is clinically used for the treatment of cerebral vaso-
spasm.27 Y-27632 is a pre-clinical molecular tool, with newer
selective RhoA/ROCK inhibitors also in development, including
H-1152 and aminofurazan compounds.28,29 The potential for
the application of downstream Rho signaling inhibitors from the
pathologies outlined above to target the ECM, vascular altera-
tions as well as tumor-specific changes in a variety of cancer types
and therefore, re-purposing as cancer therapy, will be discussed
in this review.

Rho GTPase Signaling in Cancer

To promote transformation, cancer development, invasion and
metastasis, tumor cells frequently hijack the multilayered and
dynamic regulation of Rho GTPase activity that is required for
coordinated cell migration under physiological conditions.30

Increased levels of RhoA, RhoB, RhoC, Rac1, Cdc42 and ROCK,
have been found in late-stage tumors and metastases31-35 with
prognostic relevance in breast cancer.32 Interestingly, the Rho-
GAPDlc1 was found to regulate the metastatic colonization of cir-
culating breast cancer cells in bone, but not lungs of the MDA-
MB-231 orthotopic in vivo model of breast cancer.36 In the same
study, this organ-specific metastatic phenotype was further attrib-
uted to the Dlc1-Rho regulation of the response of cancer cells to
TGF-b stimulation from the bone stroma and the subsequent
remodeling of the osteolytic microenvironment for metastatic col-
onization. Moreover, Dlc1 suppressed the formation of bone but
not lung metastasis by inhibiting TGF-b-induced bone degrada-
tion via PTHLH,36 a critical regulator of osteoclastogenesis.37

Hence, targeting the Rho-ROCK signaling axis in this molecular
setting could provide a more effective approach for the treatment
of breast-to-bone-metastasis than by directly inhibiting TGF-b
and importantly, specific tumor suppressor functions of this
protein.38

Increased expression of Rho/ROCK proteins has also been
detected in pancreatic cancer,39 testicular germ cell tumors,40

squamous cell carcinomas41 and several other cancer types.42-44

Constitutive overexpression of RhoA in tumor cells leads to
increased translocation of this protein to the cell membrane,
where it is activated and causes increased tumor invasion.45 Simi-
larly, RhoC facilitates tumor cell invasion and promotes metasta-
sis in breast and pancreatic cancer.34,35 Overexpression of Cdc42
in a tetracycline-inducible MMTV-driven mouse model was
found to disrupt mammary gland branching morphogenesis by
changes in Rho GTPase and MAPK signaling, leading to
increased contractility and migration in association with further
stromal alterations, including elevated ECM deposition.46

A delicate balance between Rac and Rho signaling governs the
diversity of tumor cell invasion mechanisms (reviewed in47). For
example, in Matrigel invasion assays RhoA/ROCK activity pro-
motes the amoeboid motility of rounded cells, while Rac regu-
lates migration of elongated cells that depend on the proteolysis
and remodeling of the stromal ECM.48 Cancer cells can readily
switch between these 2 modes and importantly, with combined
inhibition of proteolysis and Rho/ROCK signaling, the switch
was effectively impaired and cancer cell invasion was inhibited.48

Similarly, only dual inhibition of the Rac1 and RhoA signaling
axes significantly decreased invasive potential of fibrosarcoma
cells in 3D matrices49 or in vivo tumor growth of selected ortho-
topic xenografts of pancreatic cancer.50 However, this observa-
tion appears to be context- and or tumor type-dependent. For
example, a marked decrease of active Rac1 and Cdc42 correlated
with the high invasive potential of tumor cell lines isolated from
metastatic sites of colorectal adenocarcinoma.51 Moreover, the
combined activation of Rac1/Cdc42 signaling and inhibition of
ROCK in this model, with PDGF and Y-27632 treatment, sig-
nificantly decreased the invasive potential of colorectal cancer
cells and this effect was accompanied by the re-establishment of
E-cadherin-dependent adherens junctions.51

In addition to their role as master regulators of cellular pro-
cesses that contribute to cell motility, including protrusion for-
mation, adhesion remodeling, and contractility, Rho GTPases
have also been implicated in the regulation of the G1 cell cycle
checkpoint activation,52 malignant transformation,53-55 tumor
angiogenesis,56 chemoresistance57,58 and inflammation.59,60 Epi-
thelial-mesenchymal transition (EMT), which is characterized by
the transformation of tumor cells from an epithelial to a mesen-
chymal phenotype correlates with the acquisition of invasive and
metastatic properties in cancer. Through interaction with key
components of the aberrantly activated Wnt/b -catenin signaling
pathway, Rho GTPases have also been shown to coordinate acti-
vation of specific receptor tyrosine kinases and promote EMT in
several cancer types.61-63 Key aspects of how this family of pro-
teins regulate cancer development and progression have recently
been reviewed.64

Rho GTPase Mutations in Cancer: Implications
for Therapeutic Targeting

Historically, large scale sequencing efforts have revealed that
mutations in the Rho GTPase family are rare, where generally
aberrant activation of this pathway occurs through overexpression
of Rho GTPases or by changes in the levels of regulators of Rho
activity, including increased activation of GEFs65-68 and inactiva-
tion or loss of GAPs69,70 or GDIs.71-73 However, increasing evi-
dence indicates that certain cancers harbor significant genomic
aberrations in this complex signaling network. For example, an
early sequencing study of B-cell diffuse large-cell lymphomas
(DLCL) has demonstrated that a significant proportion (46%) of
tumors carried mutations in the RHOH/TTF gene, which enco-
des a small GTP-binding protein of the RAS superfamily.74 The
identified sequence variants included largely single base
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substitutions and were scattered throughout the first 1.6 kb of
the RHOH/TTF gene, within non-coding sequences, thus sug-
gesting a potential effect on the regulation of RHOH/TTF gene
expression in subtypes of DLCL.74 Recurrent chromosomal alter-
ations of the RHOH/TTF gene at band 4p13 have also been
detected in non-Hodgkins lymphoma and multiple myeloma.75

Most recently, 2 independent exome and transcriptome
sequencing studies have revealed a frequent somatic mutation in
the RHOA gene (p.Gly17Val) which occurs in 53–68% of
angioimmunoblastic T cell lymphomas (AITL).76,77 Yoo et al.77

further showed that this mutation was specific to T cell lym-
phoma and was absent from B cell lymphoma. Importantly, these
seminal works were the first to demonstrate that the RHOA p.
Gly17Val substitution in the GTP-binding domain leads to dra-
matically reduced GTP and GTPgS binding, impaired RhoA
function, contributing to AITL-specific pathogenesis.76,77 Since
AITL is a common subtype of T cell lymphoma and a disease
with very poor prognosis and 5-year overall survival of only
33%,78 future studies on the detailed molecular characterization
of the RHOA p.Gly17Val mutation may hold important implica-
tions for the development of novel, clinically useful diagnostic
biomarkers and therapeutic targets.

In contrast with haematological malignancies, the contribu-
tion of genomic aberrations in Rho GTPase family members to
carcinogenesis and disease progression in solid cancers is less
understood. Interestingly, a recent comprehensive molecular
characterization of 295 primary gastric adenocarcinomas as part
of The Cancer Genome Atlas (TCGA) project revealed muta-
tions in RHOA gene in 5.5% of gastric tumors.79 RHOA muta-
tions were enriched in a specific subtype of gastric cancer,
preferentially occurring in cases classified as genomically stable
and appeared to cluster in 2 adjacent amino-terminal regions of
RhoA that are predicted to be at the interface of RhoA with
ROCK1 and other effectors, thus potentially modulating down-
stream signaling.79

Another recent study on the mutational landscape in mela-
noma has identified a recurrent activating mutation in the Rho
GTPase RAC1 in 9.2% of sun-exposed melanomas.80 This
somatic missense mutation leads to a change from proline 29 to
serine in the highly conserved switch I domain of Rac1, causing
increased activation of downstream signaling, melanocyte prolif-
eration and migration.80,81 In parallel, Hodis et al.82 have identi-
fied the RAC1 (P29S) mutation as the most frequent hot spot
mutation after those in BRAF and NRAS in an independent mel-
anoma patient cohort. In addition, mutations in homologous res-
idues in RAC2 (P29L) and RHOT1 (P30L) were also detected,
albeit at very low frequency (0.8%), suggesting the importance of
the P29 residue as a possible codon targeted by hot spot muta-
tions in Rho family GTPases.82 A well-characterized RAS family-
activating mutation (G12D) in the CDC42 gene was also identi-
fied in a melanoma patient.82 Moreover, Matos et al.83 have
shown that Rac1b, a hyperactive splice variant of the RAC1 gene,
and B-Raf(V600E) mutation functionally cooperate to sustain
colorectal tumor cell viability, suggesting an alternative survival
pathway to oncogenic K-Ras in these tumors. A personalized
treatment strategy using pharmacological inhibition of Rac1

signaling in tumor subtypes carrying these aberrations could be
beneficial and remains to be examined. Importantly, as integra-
tion of molecular data, including DNA copy-number alteration,
mRNA and protein, metabolomic and clinical information,
becomes routine research practice, delineating the extent of the
deregulation of Rho GTPases in cancer will pave the way for the
more accurate and rapid implementation of the inhibitors of Rho
signaling as personalized cancer therapeutics.

Dynamics of Rho GTPase Signaling
in Living Systems

The application of F€orster resonance energy transfer (FRET)
imaging for the study of molecular dynamics in living cells has
dramatically improved our current understanding of the spatio-
temporal regulation of Rho activation.13,84-87 Comprehensive
studies have demonstrated that different extracellular cues induce
distinct patterns of RhoA/Rac1 signaling during membrane pro-
trusion in migrating Mouse Embryo Fibroblast (MEF) cultures
in vitro.84-86 Although the mechanisms regulating single-cell
migration and Rho activation in vitro are relatively well under-
stood, it is necessary to understand the intricacy of Rho signaling
in live tissue. Consequently, key studies using FRET have been
performed in various multicellular organisms, increasing in com-
plexity from the transparent Drosophila88,89 and Zebrafish mod-
els90,91 to technically challenging in vivo mouse imaging.87,92,93

For example, the GEF Vav was identified as a key regulator of
Rac1 activity during guided cell morphogenetic movements in
the developing Drosophila embryo.88 Further, in vivo FRET has
also revealed the requirement for Rac1 and RhoA activity in the
regulation of chemokine-guided germ cell motility within Zebra-
fish embryos, where Rac1 was essential for the formation of
actin-rich structures, with RhoA promoting retrograde actin
flow.90 Although these studies have collectively revealed new
detail regarding the synchronized and coordinated role of Rho
GTPases in fundamental developmental and disease processes,
Rho signaling should also be examined in a mammalian 3-
dimensional (3D) tissue environment. For example, in cancer, it
is well established that continuous and reciprocal cross-talk takes
place between the tumor cells and the host environment.

Using FRET imaging in a live animal model of invasive pan-
creatic ductal adenocarcinoma (PDAC, Pdx1-Cre, LSL-
KRasG12D/C, LSL-Trp53R172H/C; KPC model) we have previously
identified distinct sub-cellular patterns of RhoA activity during
tumor invasion.87 Moreover, therapeutic intervention with dasa-
tinib, an anti-invasive agent that inhibits c-Src tyrosine kinase,
specifically inactivated RhoA activity at the poles of the invading
cells, providing a new level of detail regarding the regulation of
RhoA during cell-ECM interactions in cancer.94,95 It is also plau-
sible that the spatiotemporal regulation of other Rho GTPases
will similarly be tightly controlled.87 For example, the relative
balance of Rac1, Cdc42 and RhoA activities was found to directly
affect the invasiveness of glioblastoma cells at perivascular and
intraparenchymal regions of the brain in a C6 allograft glioblas-
toma model.92
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Using the K14-ROCK:ER genetically engineered mouse
(GEM), it was also recently shown that conditional activation of
Rho/ROCK in the mouse skin led to increased ECM deposition,
stromal tissue stiffness and promoted tumor growth and progres-
sion in vivo.41 Moreover, combination of an agent that breaks
down ECM, a key component of the desmoplastic stroma in
PDAC, with the standard chemotherapeutic, gemcitabine, led to
remodeling of the tumor microenvironment and objective
responses in tumor-bearing KPC mice, resulting in a near dou-
bling of overall survival and decreased metastatic burden in this
aggressive disease model.96-98 Hence, combining Rho inhibition
with agents that improve tissue permeability through stromal
ECM degradation97,98 may increase the therapeutic benefit of
Rho GTPase targeting in cancer. The relative contribution of the
tumor cells and/or their microenvironment to these multilayered
processes is yet to be elucidated. We envisage that these complex
networks will be best examined using novel genetically engi-
neered FRET biosensor mouse models93,99-101 which will enable
direct imaging of the dynamic regulation of Rho activity in native
live tissues. To this end, we have recently developed a Rac-FRET
GEM model that ubiquitously expresses the Raichu-Rac FRET
biosensor at low level under the control of the ROSA26 pro-
moter.93 This mouse model has enabled detailed quantification
of the spatiotemporal activity of Rac in living primary mamma-
lian cells and tissues. Using this system, we have observed exqui-
site regulation of Rac activity in primary neutrophils, described
best by transient and locally restricted bursts of Rac activity,
which coincided with lamellipodial protrusions during neutro-
phil chemotaxis, highlighted in Figure 1A and B. Crossing the
Rac-FRET mouse to various disease models has also proven its
potential utility for assessing the effects of oncogenic mutations
involved in carcinogenesis and tumor progression on Rac activity
in a time- and tissue-specific manner, lending this model to the
examination of drug targeting.100 Recently, we have also shown
that Rac1 facilitates colorectal tumorigenesis following the loss of
the Adenomatous Polyposis Coli (APC) gene.102

By crossing the Rac-FRET mouse strain to the Vil-Cre-ERT2

APCfl/fl model of colorectal cancer, we subsequently characterized
the spatiotemporal Rac activity in the intestinal stem and progen-
itor cells of the established Vil-Cre-ERT2 APCfl/fl Rac-FRET
mice.93 In vivo FRET imaging revealed, for the first time,
increased Rac activity at the base of the intestinal crypts following
APC loss, demonstrating a critical role for Rac activation during
disease initiation (illustrated in Fig. 1C and D). We have also
generated a KPC PDAC Rac-FRET model and the breast cancer
PyMT Rac-FRET mouse to analyze the dynamics of tumor-spe-
cific Rac signaling following administration of a targeted thera-
peutic agent, specifically the Rac inhibitor NSC23766.93

Possible future applications could involve crossing the Rac-
FRET strain with Lgr5-Cre mice103 to examine Rac activity in
the stem cells of the small intestine, providing fundamental
insight in normal tissue homeostasis/development. Finally, the
intricate control of the in vivo distribution, function, as well as
potential redundancy of the numerous upstream and down-
stream regulators of Rho GTPase activity could be examined by
crossing the biosensor mice onto GEF/GAP knockout strains 104

or knockout mice of key downstream effectors, for example the
Rho kinases.105,106 Collectively, current evidence emphasizes the
general utility of novel GEM biosensor models as a tool for mon-
itoring the complex mechanisms of Rho GTPase signaling under
physiological conditions and this along with the current genera-
tion of other small G protein biosensor mice 101 should signifi-
cantly improve our understanding of Rho GTPase signaling in
the context of environmental cues from the surrounding tissue.

Rho GTPase Inhibitors in Cancer

Several inhibitors that target either Rho GTPase directly, or
its regulators, have shown measurable anti-tumor activity in
several in vitro and in vivo models of cancer.12,107 A virtual drug-
screen using the 3D structure of the Rho GTPase Rac1, was
successfully used to screen for compounds that may directly
modulate the Rho GTPase-GEF interaction, by binding to an
area of the Rac1 protein important for interactions with specific
GEFs.107 NSC23766 was identified as a selective inhibitor of the
Rac1-GEF interaction, which, when administered in vitro,
reduced transformation of mouse NIH-3T3 fibroblast cells by
active Rac1 or Rac-GEFs and significantly decreased prolifera-
tion, survival and invasiveness of a prostate cancer cell line PC-3,
previously shown to have elevated levels of active Rac1.107 Simi-
larly, inhibition of Rac activity by EHT 1864 108 significantly
decreased estrogen-induced breast cancer cell proliferation and
the Rac1-mediated induction of transcriptional activity of
estrogen receptor a.109 It is plausible to hypothesize that
NSC23766 or similar novel inhibitors may prove effective when
used in combination with other therapies to treat tumor subtypes
with increased Rac1 activity, for example those tumors harboring
the RAC1 (P29S) mutation or following APC loss described
previously.80,81,102

A recent study has also shown that a small molecule inhibitor
of the Rho GTPase Cdc42, AZA197, effectively inhibited the
proliferative potential and invasiveness of colorectal tumor cells
and xenografts with high levels of Cdc42.110 Interestingly, effi-
cacy of this agent was cell line dependent, indicating that a per-
sonalized companion biomarker may be necessary to identify
tumor types most likely to respond to this type of therapy.

Another approach would be to target the downstream effec-
tors of Rho signaling. Several in vitro and in vivo studies have
demonstrated that administration of the ROCK inhibitors, fasu-
dil and Y-27632, leads to decreased tumor proliferation, invasive-
ness and metastatic potential for several cancer types.33,111,112

The ROCK inhibitor fasudil has also been used effectively in
combination with bortezomib, the first clinically approved pro-
teasome inhibitor, to effectively treat the RAS oncogene-driven
non-small cell lung cancer GEM model of the disease, through
suppression of GATA2-regulated pathways.113 Similarly, fasudil
treatment in an intracerebral human glioma xenograft model was
shown to suppress both neovascularity and tumor growth in
vivo.114 Whether the effect of these inhibitors is elicited purely
on tumor cells themselves, the reactive stromal cells within the
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Figure 1. For figure legend, see page 128.
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microenvironment, or most likely a combination of both,
remains to be fully elucidated.

The tumor stroma is a complex environment mainly consist-
ing of the basement membrane, fibroblasts, extracellular matrix,
infiltrating immune cells, endothelial cells and associated vascular
pericytes. The role of small GTPases in the stromal compartment
of a developing tumor is less defined and needs further investiga-
tion. Wozniak et al.115 have shown that the surrounding envi-
ronment can directly govern the cellular behavior of breast
epithelial cells in a 3D environment. For example, the authors of
this study have shown that in free-floating 3D collagen matrices,
the breast immortalized MCF10A cells differentiate into tubular
structures. In contrast, if collagen matrix stiffness is increased by
attachment to the bottom of a dish, the same cells do not differ-
entiate, but proliferate and spread extensively.115 In concordance,
women with dense breast tissue, which is associated with a sub-
stantial increase in collagen deposition in the stroma, have a 4- to
6-fold increased risk of developing breast cancer.116 Gene expres-
sion profiling of patient material containing high density mam-
mary fibroblasts showed striking similarities in expression
profiles to established cancer-associated fibroblasts (CAFs), with
several key enriched signaling pathways, including JNK1, Rho
GTPase(s), iNOS, FGF-R, EGF-R, and PDGF-R-mediated sig-
nal transduction, thereby creating a pro-inflammatory, pro-pro-
liferative, cytokine, and chemokine-rich microenvironment.117

Importantly, functional experiments revealed that the mechanism
by which breast epithelial cells sense and respond to the mechani-
cal properties of their surrounding environment involved tight
regulation by RhoA, where stiff matrices promoted RhoA activity
and localization of phosphorylated Y397 FAK into 3D cell adhe-
sions in a ROCK-dependent manner.115 Recent reports con-
firmed higher RhoA activity is found in stiff versus compliant
matrices and demonstrated that in 3D collagen matrices, RhoA
activity is considerably increased in cell-matrix adhesions, com-
pared with cell-cell contacts.118 As such, RhoA activation appears
to be a central part of mechanotransduction and has been linked
to enhanced ECM-focal adhesion signaling via Fak to drive
enhanced tumor progression.41,119 In Figure 2, we demonstrate
the function of ROCK activity in fibroblast-driven collagen I
contraction on a 3D level by second harmonic generation (SHG)
imaging. Alterations in collagen matrix structure can be corre-
lated to elevated collagen density, crosslinking and stiffness visu-
alized by SHG imaging.41,120,121 The presence of the ROCK
inhibitor Y-27632 significantly reduced the contraction of

collagen gels, accompanied by reduced collagen density and
crosslinking (Fig. 2A-D). These changes in biomechanical matrix
properties may contribute to the observed Y-27632-mediated
decrease in cancer cell invasion when assessed in 3D organotypic
matrices that incorporate cancer and stromal cell types.87,122 In
agreement, others have also demonstrated that ROCK activity is
required for collagen crosslinking during wound healing in fibro-
blast-driven contraction assays,123 indicating a positive feedback
loop, in which ROCK signaling promotes matrix stiffening that
subsequently enhances RhoA / ROCK activation to further cross-
link ECM (described in124). Recently, reorganization of the stro-
mal ECM, tightly regulated by distinct Rho GTPases, has been
shown to guide key aspects of branching morphogenesis in devel-
oping mammary glands, where Rac1 modulates signaling
required for branch orientation, whereas the ability of the mam-
mary epithelium to reinforce directional cues during branching
morphogenesis appears to be mediated by RhoA/ROCK-medi-
ated contractions.125 Although tightly controlled during normal
development and organ homeostasis, deregulation of this com-
plex network could play an important role in the initiation and/
or progression of breast cancer.

Imaging studies of collectively invading 3D co-cultures of
squamous cell carcinoma cells and stromal fibroblasts have
revealed that during invasion, carcinoma cells are led by stromal
fibroblasts and move within tracks in the ECM created by CAFs
through protease and force-mediated matrix remodeling.122

Moreover, RhoA/ ROCK, LIMK, integrin alpha3 and alpha5
function were required for the leading fibroblasts to generate
tracks in the matrix and enable tumor invasion, whereas the can-
cer cells depended on the activity of Cdc42 (but not RhoA) to
follow the fibroblasts and invade into the organotypic collagen
matrices.122,126 Similarly, pro-inflammatory cytokine signaling
through the JAK/STAT3 pathway and subsequent activation of
RhoA/ ROCK is involved in generating actomyosin contractility
in CAFs and melanoma cells.127 In cholangiocarcinoma, a disease
characterized by abundant desmoplastic stroma, cancer cells can
effectively recruit CAFs through secretion of PDGF-D, which
further stimulates fibroblast migration through PDGFRb, Rho
GTPase (Rac1, RhoA and Cdc42) and JNK activation.128 More-
over, selective inhibition of Rho signaling, in particular Rac1
(NSC23766), but also ROCK (Y-27632) and Cdc42 (CASIN),
dramatically decreased PDGF-induced fibroblast motility in this
experimental model.128 In pancreatic CAFs, high expression of
the actin-associated protein Palladin significantly enhances the

Figure 1 (See previous page). The Rac-FRET mouse is an invaluable tool to assess and quantify Rac1 activity in primary cells (A and B) and in vivo (C and
D). (A) Neutrophil harvested from a Rac-FRET mouse migrating toward the chemoattractant N-formyL-methionyL-leucyL-phenyalanine (fMLP) south of the
cell. Time series of Rac1 activity was obtained by ratiometric FRET live imaging and illustrated as a heat map of high (yellow to red) and low (blue to
green) Rac1 activity. High Rac1 activity was localized to leading edge protrusions (green box) with short-lived bursts at the cell’s periphery and at the
trailing edge. (B) Maximum Rac1 activity along the longitudinal axis of a neutrophil (blue) migrating toward an fLMP gradient oscillated between the
leading (green) and lagging edge (red) illustrated by fitting the experimental data (purple). (C) Intravital FLIM-FRET imaging demonstrated that Cre-medi-
ated loss of APC in intestinal crypts promotes Rac1 activity. Low Rac1 activity in APC wild type mice (left panel) is represented by high fluorescence life-
times (low FRET-efficiency, green), while loss of APC (right panel) results in high FRET-efficiency (low lifetimes, blue) indicating increased Rac1 activity.
Each panel consists of fluorescence images of Rac-FRET expressing crypt cells (blue) and collagen (red, assessed by SHG imaging) on the left and FLIM
images on the right. (D) Quantification of Rac1 activity by FLIM-FRET imaging reveals a significant decrease in the fluorescence lifetime upon deletion of
APC correlating with an increase in Rac1 activity compared to APC wild type cells (mean§ SEM; **P < 0.05). Figure adapted from Johnsson et al. Cell
Reports 93.
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ability of CAFs to remodel the stromal
ECM by regulating Cdc42 activity,
which in turn promotes the assembly of
matrix-degrading invadopodia in CAFs
and enhance tumor cell invasion.129

However, the precise roles of small
GTPases in this complex interaction
(also considering the roles of RhoA and
Cdc42 in fibroblast track generation)
remain unclear and need to be
elucidated.

Furthermore, small GTPases have
been implicated to function at the
tumor-stromal interface during transen-
dothelial migration of cancer cells. For
example, arachidonic acid secreted by
bone marrow adipocytes in vitro was
shown to induce transendothelial
migration of prostate cancer lines via
Rho/ROCK-dependent amoeboid
migration.130 In line with this, a Rho
GTPase RNAi screening study revealed
a novel role of Cdc42 as a key regulator
of prostate cancer cell transendothelial
migration, where Cdc42 was found to
be essential for in vivo cancer cell
spreading and protrusion extension
along blood vessels and colonization in
the lungs.131 Transient Cdc42 suppres-
sion in vivo led to a significant decrease
in the formation of lung metastases fol-
lowing tail vein injection of prostate
cancer PC-3 cells, suggesting that the
role of Cdc42 in endothelial attachment
is crucial for metastasis.131 Moreover,
glioblastoma cells have recently been
shown to directly modulate the contrac-
tile activity of neighboring brain peri-
cytes via Cdc42-dependent mechanisms, supporting vascular
expansion and tumor progression.132 Overexpression of RhoJ, a
Rho GTPase mainly present in endothelial cells, is associated
with increased prevalence of lymphovascular invasion, lymph
node metastases and decreased overall survival in colon cancer.56

Using an inducible endothelial cell-specific RhoJ loss-of-function
GEM, generated by crossing RhojGFP/GFP knock-out mice56 with
the Cdh5(PAC)-CreERT2 model,133 the authors further demon-
strated that RhoJ deletion in this context disrupted tumor vessel
formation and vascular integrity, suppressed tumor angiogenesis,
presenting a feasible target for clinical drug development.56 Col-
lectively, these studies highlight the increasing relevance of the
Rho GTPases within divergent cellular components of the tumor
microenvironment and further underline the significance of dis-
tinguishing drug effects on cancer cells vs. those on the surround-
ing host stroma. A more comprehensive understanding of the
contextual dependence of Rho GTPase signaling in the tumor
cells and the surrounding stroma will be a necessary step toward

successful implementation of therapeutics that target Rho signal-
ing as cancer therapy, providing interesting avenues for the devel-
opment of combination therapies.

Future Perspectives

Numerous conceptual advances in biology have been achieved
by experimental studies using 2-dimensional cell culture systems.
Recent adaptations of molecular imaging techniques to 3-dimen-
sional model systems, increasing in complexity from the 3D-
spheroid cultures, the transparent Drosophila, Xenopus and
Zebrafish, to the complex mammalian xenograft and GEM mod-
els, are bridging the gap in our understanding of biological events
in vitro and in vivo, establishing an important role for Rho
GTPases in disease progression and therapeutic targeting. We
envisage that future applications will involve generation of trans-
genic mice that co-express combinations of Rho GTPase FRET

Figure 2. The ROCK inhibitor Y-27632 decreases collagen contraction and crosslinking driven by fibro-
blasts in 3D organotypic assays. (A) Top panel: Schematic representation and representative pictures
of contracting collagen-fibroblast matrices over a 12-day time course. Lower panel: Area of collagen in
matrices treated with DMSO (control) and with Y-27632 (10 mM) as a function of time, p* D 0.0268.
Scale bar: 10 mm. (B) Collagen coverage (%) quantified by multi-photon SHG imaging as a variable
associated with depth (mm) within the 12-day contracted collagen-fibroblast matrices treated with
control (DMSO) or with Y-27632 (10 mM) P*** < 0.0001. (C) Maximum intensity projection of SHG sig-
nal in representative collagen-fibroblast matrices. D. 3D projection of SHG signal in representative col-
lagen-fibroblast matrices n D 3. Scale bar: 100 mm.
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biosensors to provide a detailed map of physiological signal trans-
duction events in an intact mammalian organism. Stromal cells
and the role that they have on cancer initiation and progression
will have important implications on the examination of Rho
GTPase activity in live tissues as well as therapeutic targeting. A
major application already underway will involve crossing other
disease models with the Rho GTPase FRET biosensor mice to
examine disease etiology and improve drug development and
screening for progressing novel agents into clinical trials. Simi-
larly, crossing the Rac GTPase FRET mouse93 with transgenic
mice expressing stroma-specific Cre recombinase, for example in
fibroblasts134-136 or endothelium,137-139 in the future could

provide detailed insight into the intricacy of stroma-specific Rac
signaling in distinct stromal compartments in real-time.
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