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Colorectal cancer (CRC) is a growing public health concern due to its high mortality rate.
Currently, there is a lack of valid diagnostic biomarkers and few therapeutic strategies are
available for CRC treatment, especially for advanced CRC whose underlying pathogenic
mechanisms remain poorly understood. In the present study, we investigated the serum
samples from 20 patients with stage III or IV advanced CRC using data-independent
acquisition (DIA)-based proteomics and ultra-performance liquid chromatography coupled
to time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) metabolomics
techniques. Overall, 551 proteins and 719 metabolites were identified. Hierarchical
clustering analysis revealed that the serum proteomes of advanced CRC are more
diversified than the metabolomes. Ten biochemical pathways associated with cancer
cell metabolism were enriched in the detected proteins and metabolites, including
glycolysis/gluconeogenesis, biosynthesis of amino acids, glutathione metabolism, and
arachidonic acid metabolism, etc. A protein-protein interaction network in advanced CRC
serum was constructed with 80 proteins and 21 related metabolites. Correlation analysis
revealed conserved roles of lipids and lipid-like molecules in a regulatory network of
advanced CRC. Three metabolites (hydroquinone, leucenol and sphingomyelin) and two
proteins (coagulation factor XIII A chain and plasma kallikrein) were selected to be potential
biomarkers for advanced CRC, which are positively and significantly correlated with CEA
and/or CA 19–9. Altogether, the results expanded our understanding of the
physiopathology of advanced CRC and discovered novel potential biomarkers for
further validation and application to improve the diagnosis and monitoring of
advanced CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of
cancer-related death worldwide (Bray et al., 2018; Cantor et al., 2020). It is estimated that by the year
of 2030, CRCmay account for one in every ten cancer cases and deaths, and increase the global health
burden by 60% (Bray et al., 2018). The high mortality rate of CRC is mainly due to its late diagnosis
when CRC is already in advanced stages and metastasis has already occurred. Only 9% of CRC
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patients are practically diagnosed at stage I, and most (91%) are
diagnosed at stage II, III or IV (Hammond et al., 2016). Well
documented risk factors of CRC include cigarette smoking,
physical inactivity, obesity, and high consumption of alcohol
or red meat (Hissong and Pittman, 2020). Family history and
certain medical conditions including inflammatory bowel disease
are also associated with CRC (Xue et al., 2017).

The pathogenic mechanisms of CRC are complex and
heterogeneous, and molecular changes in the tumor determine
both the histologic type of premalignant lesion and the time to
malignant transformation (Hissong and Pittman, 2020).
Secondary to inactivation of the adenomatous polyposis coli
(APC) tumor suppressor gene, chromosomal instability is a
commonly characterized molecular event in CRC, which
subsequently results in hyper-activation of the WNT signaling
pathway (Fearon and Vogelstein, 1990). Another molecular
event, the microsatellite instability, occurs in 15% of CRC
(Hissong and Pittman, 2020). CRC also involves abnormalities
in MLH-1, PMS-2, MSH-2, MSH-6, or POL-E gene which are all
necessary for repairing DNA mismatches. In the past few years,
genomic and transcriptomic landscapes of CRC have been
investigated and many genomic alterations and extensive
molecular heterogeneity of the disease have been identified
(Cancer Genome Atlas Netwo, 2012; Vasaikar et al., 2019).
For example, a genome-scale analysis of 276 CRC patients was
conducted to characterize somatic alterations in CRC (Vasaikar
et al., 2019). The results showed that 24 genes including APC,
TP53, ARID1A, and SOX9 are significantly mutated, suggesting a
number of new potential therapeutic strategies to CRC.

Recent advances in proteomics and metabolomics techniques
have extended our understanding of pathways that control cell
proliferation, differentiation, and death (Chen et al., 2019).
Identification of changed proteins or metabolites in the
development of CRC is important to the discovery of new
potential biomarkers for early diagnosis (Ritchie et al., 2010).
Identified proteins, metabolites and their corresponding
pathways are attractive therapeutic targets for cancer
treatment. Proteomics is a high-throughput large-scale
approach that allows for simultaneous detection of thousands
of proteins in many sample types such as cell, tissue, or body
fluids. In 2016, Ward et al. employed surface-enhanced laser
desorbtion/ionisation technique to characterize the serum
proteomes of 62 CRC patients and 31 healthy individuals, and
the study identified complement C3a des-arg, α1-antitrypsin and
transferrin to have diagnostic potentials (Ward et al., 2006).
Vasaikar et al. conducted a proteogenomic study on
prospectively collected CRC tumor tissues and adjacent
normal tissues (Vasaikar et al., 2019). An association between
increased glycolysis in microsatellite instability-high (MSI-H)
tumors and decreased CD8 T cell infiltration was identified,
suggesting the glycolysis pathway could be a potential target to
reverse the resistance of MSI-H tumors to immune check-point
blockade treatment. Similar to proteomics, metabolomics is a
large-scale high-throughput omics technology that enables
comprehensive and semi-quantitative detection of a large
number of metabolites in biological samples. Metabolomic
studies in various cancers such as CRC, gastric cancer, liver

cancer, and pancreatic cancer have demonstrated its great
potentials in improving tumor diagnosis and therapy (Zheng
et al., 2017; Fan et al., 2018; Zheng et al., 2018). For instance, Kim
et al. performed urine-NMR metabolomics study on 92 patients
with colorectal neoplasia and 156 healthy individuals to screen for
advanced adenoma and stage 0 CRC (Kim et al., 2019), and the
receiver operating characteristics curve analysis results revealed
that 3-aminoisobutyrate, taurine, and alanine were good
indicators of CRC.

For general CRC treatment, different strategies including
surgery, radiation therapy, chemotherapy, targeted drug
therapy, and immunotherapy have been adopted (Khiavi et al.,
2019). For advanced-stage CRC, chemotherapy is commonly
recommended, and targeted therapies including anti-epidermal
growth factor receptor (anti-EGFR) agents are frequently used in
combination with chemotherapy (Rawla et al., 2019; Wang et al.,
2019). The treatment effects of invasive CRC will depend on
tumor location, stage, and underlying molecular changes
including genetic and metabolic alterations. Comprehensive
molecular characterization studies of advanced CRC,
particularly combined proteomic and metabolomic study, have
been rare. In the current study, we conducted nontargeted DIA-
MS proteomics and UPLC/Q-TOF-MS/MS metabolomics
analyses on 20 serum samples from advanced CRC patients.
The aim is to identify key regulatory elements (proteins and/or
metabolites) and pathways in advanced CRC, which may serve to
be potential biomarkers for early diagnosis and novel therapeutic
targets of advanced CRC.

MATERIALS AND METHODS

Study Participants
The study was approved by the Ethics Committee of Jiangxi
Cancer Hospital and performed in accordance with the
Declaration of Helsinki. Written informed consents were
obtained from all participants. In total, 20 patients (N1—N20)
diagnosed with advanced CRC at stage III or IV were recruited.
The average age of the 20 patients was 51, ranging from 29 to 76.

TABLE 1 | Characteristics of 20 CRC patients.

Characteristics CRC patients

No. of subjects 20
Race Han
Age (median) 51 years
Gender (%men) 60% (12/20)
UICC Stage
III 15% (3/20)
IV 85% (17/20)

CA19-9 (ng/ml)
Average 2000.60
≤37 50% (10/20)
>37 50% (10/20)

CEA (ng/ml)
Average 503.41
≤5 55% (11/20)
>5 45% (9/20)
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None of the participants had been diagnosed with other major
chronicle diseases or cancers, and none had received any drug
treatment in the previous 3 months before sampling. The
demographic and clinical characteristics of the 20 patients
were listed in Table 1.

Proteomic Analysis
The proteomic analysis of the serum samples was conducted
using the combination of DIA and a data dependent acquisition
(DDA)-based ion library as previously reported (Chen et al.,
2019). Each sample of 2 μL serum was first diluted with a lysis
buffer containing 100 mM Tris-HCL (pH 8.5, Sigma, MO,
United States), 8 M Urea (Sigma, MO, United States), 1 mM
EDTA, and 1 mM PMSF, and then centrifuged at 15000 g for
15 min at 4°C. The extracted proteins in the supernatant was
quantified using a BCA protein assay kit (Bi Yuntian, Shanghai,
China), digested in trypsin (Promega, Madison, WI) after
reduction and alkylation using the FASP (filter aided sample
preparation) method (Wisniewski et al., 2009). The concentration
of digested peptides was determined bymeasuring the absorbance
at 280 nm using a NanoDrop 2000 instrument (ThermoFisher
Scientific, United States). Each 3 μg of trypsin-digested peptides
was mixed with iRT peptides (Biognosys, Schlieren, Switzerland)
and analyzed in the DDA mode on an Orbitrap Fusion Lumos
mass spectrometer (ThermoFisher Scientific, United States)
equipped with an EASY-nLC 1000 system (ThermoFisher
Scientific, United States) (Chen et al., 2019). The peptides
were separated on a 150 μm I.D.× 15 cm C18 trap column
(C18, 1.9 μm, 120 Å, Dr Maisch GmbH) with a mobile
solution flow rate of 600 nL/min. The gradient elution
program was as the following: 7–20% solvent B for 80 min,
20–32% solvent B for 25 min, 32–90% solvent B for 13 min.
Data was acquired with full scans (m/z 350–1500) at a mass
resolution of 60,000 at m/z 200. The top 20 precursor ions were
selected for fragmentation in the HCD (high energy collision
dissociation) cell at normalized collision energy of 32%, and
fragment ions were scanned at a resolution of 30,000 at m/z
200. The automatic gain control (AGC) was set to 4e5 for full MS
with maximum ion injection time of 50 ms, and 5e4 for MS/MS
with maximum ion injection time of 54 ms. The dynamic
exclusion was 30 s.

The DIA analysis was performed the same as for DDA. The
full scan in DIA analysis was at a resolution of 60,000 over m/z
350—1500, DIA scan resolution was 30,000, collision energy was
32%, AGC target was 5e5, and maximum injection time was
74 ms. There were 45 variable DIA windows set from 350 to
1500 m/z. Protein identification and quantification were
performed using Spectronaut pulsar X 12.0 (Biognosys) with
default setting. For protein identification, DDA raw files were
searched against the human Uniprot fasta database, and three to
six fragments with the highest quality were selected for each
peptide to generate a spectral library. Peptide FDR (false
discovery rate), PSM FDR, and protein FDR were all set to
1%. The iRT Calibration R square was set to 0.8. For protein
quantification using the DIA data, RT regression type was set as
Local (Non- Linear) Regression. All results were filtered by a
Q-value cutoff of 0.01 (corresponds to a FDR of 1%). p-value

estimator was performed by Kermel Density Estimator. Area was
used for protein quantification. Every peptide was validated with
at least three fragment-ions.

Metabolomics Analysis
Metabolites in the serum samples were extracted with 120 μL of
50%methanol buffer (Chen et al., 2019). For global metabolomics
analysis, an ultra-performance liquid chromatography (UPLC)
system (SCIEX, Cheshire, United Kingdom) coupled to a high-
resolution tandem mass spectrometer (Triple TOF 5600 plus;
SCIEX) were used. An ACQUITY UPLC T3 column (100 mm ×
2.1 mm, 1.8 µm, Waters, United Kingdom) was employed for
reversed phase separation. The two mobile phase solutions were
solvent A (water, 0.1% formic acid) and solvent B (Acetonitrile,
0.1% formic acid), the mobile phase solution flow rate was 0.4 ml/
min. The gradient elution program was as the following:
0–0.5 min, 5% B; 0.5–7 min, 5–100% B; 7–8 min, 100% B;
8–8.1 min, 100–5% B; 8.1–10 min, 5% B. The injection volume
for each sample was 4 µL. The Q-TOF was performed in both
positive and negative ion modes (Chen et al., 2019). The ionspray
voltage floating in positive and negative ionmode were set at 5000
and −4500 V, respectively. The XCMS software was used for MS
data pretreatments including peak picking, peak grouping,
retention time correction, second peak grouping, and
annotation of isotopes and adducts. Online databases
including Human Metabolome Database (HMDB) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) were employed for
metabolite annotations. An in-house fragment spectrum library
of metabolites was used for compound identification by MS2

matching. Five pooled quality control (QC) samples were
prepared by combining 10 μL of each extraction and injected
with the true samples for quality control purpose.

Data Analysis
All of the raw mass spectrometry data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the iProX partner repository and
the dataset identifier is PXD025041. Both the proteomic and
metabolomic data were normalized by defining the median of
each protein/metabolite value equal to 1.00, while missing values
(if any) were filled with the observed minimum value (Chen et al.,
2019). Hierarchical clustering with average linkage using Pearson
correlation as a distance metric was conducted using the Mev
(MultiExperiment Viewer, 4.8) software. The categories of
identified proteins were determined using the online
PANTHER (protein annotation through evolutionary
relationship) classification system (www.pantherdb.org). A
multi-omics data analysis tool, OmicsBean (http://www.
omicsbean.com), was used for bioinformatics analyses
including Gene Ontology (GO) analysis, KEGG pathway, and
protein-protein interaction network analysis. Before correlation
analysis, proteins and metabolites with the same values in more
than ten samples were filtered out due to their obviously high
correlations. Pearson’s product-moment correlation analysis was
conducted using R statistical software. The corresponding
p-values were calculated using the cor.test function. The
calculated p-values were accordingly adjusted to control the
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false discovery rate (FDR) (Rao et al., 2014). The graphical
presentations of correlations were composed with Cytoscape
version 3.4.0.

RESULTS

The Proteomics Characterization of
Advanced Colorectal Cancer Serums
A total of 551 proteins were identified in the DIA proteomics
analysis, and the majority of them are defense/immunity proteins,
protein modifying enzymes, protein-binding activity modulators,
and metabolite interconversion enzymes (Supplementary Table
S1 and Figure 1A). Other types of identified proteins include
extracellular matrix proteins, signaling molecules, intercellular
signal molecules, transmembrane signal receptors, transfer/
carrier proteins, and cell adhesion molecules. Except for 25
proteins which had low abundances in all samples, the rest
526 proteins displayed remarkable changes across the 20 tested
samples as illustrated in the heat-map of hierarchical clustering
analysis (Figure 1B). On one hand, the enrichment of certain
proteins seemed to be sample-specific. For example, 34 proteins
at the bottom of the heat-map including collectin-10,
lithostathine-1-alpha, and osteopontin were abundant only in
sample N5. On the other hand, several proteins were specifically
enriched in one or more samples. For instance, the levels of
Immunoglobulin kappa variable 1–39 and C-C motif chemokine
18 were higher in samples N15 and N16 than in other samples.

The identified 551 proteinswere further annotated according toGO
database (Supplementary Figures S1, S2, S3). Most of the annotation

terms contain cellular process, response to stimulus, and biological
regulation. The main terms for cellular process include cellular
anatomical entity, intracellular, and protein-containing complex.
The major molecular function terms were binding, catalytic activity,
and molecular function regulartor. To better understand the biological
functions and/or interactions of the identified 551 proteins, we also
carried out pathway annotation analysis in KEGG and mapped 251
proteins to 189 pathways. The top fifteen proteins are in complement
and coagulation cascades, PI3K-Akt signaling pathway, and pathways
in cancer (Supplementary Table S2).

The Metabolomics Characterization of the
Advanced Colorectal Cancer Serum
Samples
The same 20 serum samples analyzed by proteomics study were
also subjected to non-targeted UHPLC-Q-TOF-MS/MS
metabolomics analysis. A total of 9,193 positive-mode and
7,571 negative-mode ion features were detected. Based on MS/
MS spectrum matching, 567 metabolites were determined in
positive-mode and 431 in negative-mode data (Supplementary
Tables S3, S4). Eventually, 719 non-redundant metabolites were
identified in the CRC serums, and they can be classified into 15
categories according to the HMDB database (Figure 2A). Among
these 719 metabolites, about 51% are lipids and lipid-like
molecules. The hierarchical clustering analysis result of the
metabolomics data indicated that CRC serum metabolites have
less changes in their abundances than proteins in the 20 tested
samples. In our previous study using six pooled samples from
healthy blood donators for integrative proteomics and
metabolomics analyses, similar results that serum metabolites

FIGURE 1 | (A) Functional classification of the identified 551 proteins in serum samples (N1–N20) using the PANTHER classification system (www.pantherdb.org).
(B) Hierarchical clustering analysis of the identified 551 proteins in serum samples (N1–N20).
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exhibit less change than proteins were also observed
(Supplementary Figure S4) (Chen et al., 2020; Deng et al.,
2020). The 719 metabolites were mapped to 135 KEGG
pathways, and the top three pathways with most metabolites
are metabolic pathways, glycerophospholipid metabolism, and
biosynthesis of amino acids (Supplementary Tables S5, S6).

Protein-Protein Interaction Network
Analysis
The 189 mapped pathways in the proteomics analysis and the
135 mapped pathways in the metabolomics analysis have 69
pathways in common, including 238 proteins and 187
metabolites in the 69 pathways (Supplementary Table S7).

FIGURE 2 | (A) Category information of the 719 metabolites identified in serum samples (N1–N20) according to the database from HMDB. (B) Hierarchical
clustering analysis of the identified 719 metabolites in serum samples (N1–N20).

FIGURE 3 | Protein-protein interaction network analysis based on nine key pathways associated with cancer cell metabolism, which involved glycolysis/
gluconeogenesis, carbon metabolism, protein digestion and absorption, biosynthesis of amino acids, glutathione metabolism, vitamin digestion and absorption, central
carbon metabolism in cancer, arachidonic acid metabolism, and tyrosine metabolism, as well as 80 proteins and 21 metabolites.
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Ten of the 69 pathways are associated with cancer metabolisms
including pathways in cancer, glycolysis/gluconeogenesis,
carbon metabolism, protein digestion and absorption,
biosynthesis of amino acids, glutathione metabolism, vitamin
digestion and absorption, central carbon metabolism in
cancer, arachidonic acid metabolism, and tyrosine
metabolism. Protein-protein interaction network analysis was
conducted based on the ten pathways to provide further
insight into the developmental and physiological processes
underlying advanced CRC. All of the ten pathways except
protein digestion and absorption were covered in the
network with 80 proteins and 21 metabolites (Figure 3). The
80 proteins were mapped to corresponding pathways via KEGG
analysis, and the metabolites were connected to proteins via GO
database annotations. Two pathways, biosynthesis of amino
acids and carbon metabolism, dominate the network and
include a large number of proteins such as PKM, GAPDH,
ALDOA, and ALDOB that plays important roles in cellular
proliferation. Other pathways such as glutathione metabolism,
tyrosine metabolism, and glycolysis/gluconeogenesis in the
network generate key products that promote cell survival and
growth. Arachidonic acid metabolism pathway in the network
consists of nine detected proteins, and this pathway play
important roles in the development of various cancers (Borin
et al., 2017).

Correlation Analysis Between the Detected
Proteins and Metabolites
To further explore the regulatory network in advanced CRC,
network-based analysis (Rao et al., 2014) was conducted to
analyze the correlations among the identified proteins and
metabolites (Supplementary Table S8), as well as their
correlations with two tumor markers, CEA and CA 19–9.
Pearson pair-wise correlation of 1116 elements including 395
proteins, 719 metabolites and the two tumor markers were
calculated, and the results were presented in a heat-map
displaying a total of 622,170 correlations with scores ranging
from −0.8978 to 0.9991 (Figure 4). There were 23,201
significant correlations with r2 ≥ 0.49 and FDR ≤0.05.
Among them, 22,891 were positive correlations and the rest
310 were negative ones. There were much more significant
correlations between metabolites than those between proteins
or with tumor markers. Lipids and lipid-like metabolites
dominated the significant correlations, accounting for nearly
63% of all significant correlations. These significant correlations
were not observed in a previous study on the healthy control
serums (Supplementary Figure S5) (Chen et al., 2020; Deng
et al., 2020). Two important metabolites, citric acid and
glutamine, are positively and significantly correlated
(Supplementary Table S9), and other correlations with citric
acid and glutamine were shown in Figure 5. There were 120

FIGURE 4 | The heat-map generated from correlation analysis. X and Y-axes were categorized into proteins/metabolites/CA19-9/CEA. In the black and white area
rectangles represent p-values resulting from Pearson correlation coefficient, while in the colored area rectangles represent r values respective to Pearson correlation
coefficient computation.
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positive and significant correlations with glutamine and 63
positive and significant correlations with citric acid. In total,
there were 182 positive and significant correlations between
citric acid/glutamine and 126 molecules, and most of the 126
molecules were lipids and lipid-like metabolites. Other

molecules which had positive and significant correlations
with citric acid or glutamine include 24 organic acids and
their derivatives, 14 benzenoids, 17 organoheterocyclic
compounds, and three proteins. There were 18 positive and
significant correlations between ten elements (five metabolites

FIGURE 5 | Regulatory network associated with citric acid or glutamine based on significant correlations (r2 ≥ 0.49 and FDR ≤0.05). Metabolites and proteins were
respectively represented as circular and rectangle, and their relations as edges. Metabolites categorized into different pathways were displayed in different node colors.
The positive correlations were shown in red. Computations of the correlations were performed under the R environment. Cytoscapewas employed to generate the
graphical output of the networks.

TABLE 2 | The list of significant correlations associated with CEA or CA 19–9.

Protein/metabolite 1 Protein/metabolite 2 Correlation coefficient p value

CEA Hydroquinone 0.74 1.99E-04
CEA CA19-9 0.96 1.46E-11
CEA Immunoglobulin heavy variable 1–69D 0.74 2.18E-04
CA19-9 Immunoglobulin lambda variable 4–60 0.78 4.22E-05
CEA Immunoglobulin lambda variable 4–60 0.82 1.00E-05
CEA Immunoglobulin kappa variable 2–40 0.71 4.84E-04
CA19-9 16beta-16-Hydroxy-3-oxo-1,12-oleanadien-28-oic acid 0.71 4.82E-04
CEA 16beta-16-Hydroxy-3-oxo-1,12-oleanadien-28-oic acid 0.73 2.50E-04
CA19-9 SM 28:3; SM(d14:2/14:1) 0.76 9.02E-05
CEA SM 28:3; SM(d14:2/14:1) 0.79 3.42E-05
CA19-9 Coagulation factor XIII A chain 0.75 1.37E-04
CEA Coagulation factor XIII A chain 0.82 1.16E-05
CA19-9 Leucenol 0.72 3.40E-04
CEA Leucenol 0.76 9.88E-05
CEA Plasma kallikrein (fragment) 0.70 5.39E-04
CA19-9 Plasma kallikrein (fragment) 0.74 1.73E-04
CA19-9 1-(1′,3′-Benzodioxol-5′-yl)-2-butanamine 0.81 1.34E-05
CEA 1-(1′,3′-Benzodioxol-5′-yl)-2-butanamine 0.87 8.56E-07
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and five proteins, Table 2) and the two cancer marks (CEA and
CA 19–9). The correlation between CEA and CA 19–9 was also
very strong. In the previous study using six pooled healthy blood
samples, there was no significant correlation between CEA and
CA 19–9, and there was no significant correlation between the
above mentioned ten elements and the two cancer markers
(Supplementary Figure S5) (Chen et al., 2020; Deng et al.,
2020).

DISCUSSION

CRC is one of the most common and lethal cancers
worldwide, but has poor diagnosis and few effective
treatment options, especially for patients with advanced
CRC. These limitations highlight the importance of gaining
new understanding of the pathogenesis of advanced CRC. We
employed an integrated proteomics and metabolomics
strategy to investigate the serum samples from 20 CRC
patients, including 17 diagnosed with stage IV CRC and
three with stage III advanced CRC. The ages of the 20
patients ranged from 29 to 76. The 20 patients had
various types of advanced CRC including sigmoid colon
cancer, right colon cancer, rectal cancer, ascending colon
cancer, and adenocarcinoma of the junction of rectum
and sigmoid. The study was a multi-omics one consisting
of both proteomics and metabolomics investigations on each
serum sample, and this enabled us to explore both proteome
and metabolome changes in the serums of advanced CRC
patients and the interactions between the proteome and
metabolome.

Experimental human body fluid samples include blood,
breast milk, tears, urine and malignant pleural efusions, etc.,
among which blood is the most commonly adopted one for
discovering new biomarker to predict treatment effects and
prognosis of diseases including cancers (Deng et al., 2020).
Blood can be noninvasively collected in large quantity
through a simple procedure, and changes in blood proteome
and metabolome can reflect physical or pathological
disturbances to an otherwise balanced and homeostatic
system (Zhou et al., 2019). In the present study, DIA-MS and
UPLC/Q-TOF-MS/MS technologies were used to investigate
proteomes and metabolomes of advanced CRC serum
samples. The proteomics study detected a total of 551
proteins, most of which are defense/immunity proteins,
protein modifying enzymes, and protein-binding activity
modulators. Other types of detected proteins include
metabolite interconversion enzymes, extracellular matrix
proteins, and signaling molecules. A total of 719 named
metabolites were determined in the metabolomics study, and
649 of them can be classified into 14 categories such as lipids and
lipid-like molecules, organic acids and derivatives, and
organoheterocyclic compounds, etc. These 649 metabolites
cover most of the central metabolism pathways such as
carbohydrate super pathway, amino acid super pathway, lipid
super pathway, and nucleotide super pathway. Compared to
previous reports, the current study revealed changes of more

serum proteins and metabolites related to advanced CRC, which
is helpful in uncovering more molecular changes and selecting
novel biomarkers.

The KEGG pathway analysis revealed that the detected
proteins and metabolites share 69 common pathways, and
ten of them were associated with cancer cell metabolisms
including glycolysis/gluconeogenesis, biosynthesis of amino
acids, glutathione metabolism, and arachidonic acid
metabolism. We used OmicsBean online software to
construct a protein-protein interaction network in advanced
CRC serum. This network covers nine cancer-associated
pathways, 80 proteins and 21 metabolites. Metabolic
reprogramming, as a hallmark of cancer, has become a hot
topic in cancer research over the past decade (Koppenol et al.,
2011). The well documented Warburg effect is characterized by
an increase in glucose uptake and lactate production. There are
13 detected proteins in glycolysis/gluconeogenesis pathway
(Figure 3), and most play important roles in the
development of cancers including CRC (Gimm et al., 2001;
Patel et al., 2008; Tsai et al., 2010; Duell et al., 2012; Ahmad et al.,
2013; Cui et al., 2014; Leithner et al., 2015; Yun et al., 2015;
Dayton et al., 2016; He et al., 2016; Dai et al., 2018). For example,
phosphoglycerate kinase 1 (PGK1) is reported to be a promoter
of metastasis in CRC, and high expression of ALDOA is
associated with poor CRC prognosis.

Glutathione metabolism plays both beneficial and pathogenic
roles in a series of malignancies (Bansal and Simon, 2018). In
our study, eight proteins including G6PD, GPX3, and LAP3
which are reported to be involved in colon cancer cell growth
were connected to glutathione metabolism (Pelosof et al., 2017;
Zhang et al., 2017; Yang et al., 2018). Nine proteins in the
constructed network are associated with arachidonic acid
metabolism, suggesting that arachidonic acid pathway may
play important roles in advanced CRC. Many studies have
demonstrated the connection between arachidonic acid
metabolism and carcinogenesis (Hong et al., 2004).
Habermann et al. reported that SNPs inside PTGS1, ALOX5,
ALOX12, and ALOX1 affect fatty acid metabolisms in CRC
(Habermann et al., 2013). In addition, 21 metabolites including
citrate, oxaloacetate, arachidonate and nine standard amino
acids were connected to the nine cancer-associated pathways
via related proteins.

A regulatory network to reveal key regulatory elements in
advanced CRC was also constructed by correlation analysis
(Rao et al., 2014). A large number of significant correlations
were discovered, most of which were positive correlations. The
highly positive associations between every two metabolites
suggested the conserved roles of metabolome in the human
serum, which was in line with the observation in hierarchical
clustering analysis. Lipids and lipid-like molecules dominate
the significant correlations, suggesting their essential roles in
advanced CRC (Beloribi-Djefaflia et al., 2016). In the
metabolomics studies of aqueous humor samples from
patients with high myopia and various mature seeds
including maize kernels, the identified amino acids have
conserved roles, which are totally different from the findings
in the current study (Toubiana et al., 2012; Rao et al., 2014; Ji
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et al., 2017). Most of the significant correlations with citric acid
and glutamine are also correlated to lipids and lipid-like
molecules. There were 18 positive and significant
correlations to CEA or CA 19–9. CEA and CA19-9 are
acknowledged markers for diagnosing early stages of CRC
and predicting treatment effect, but with limitations
(Hissong and Pittman, 2020). In the present study, CEA and
CA 19–9 are strongly correlated, but the levels of CEA and CA
19–9 exceeded the standard reference values in only 55% of the
patients. Five metabolites and five proteins with strong and
positive correlations with CEA or CA 19–9 have been
demonstrated to be potential biomarkers involved in
modulating cancer cell growth (Byeon et al., 2018). For
example, hydroquinone was determined to be able to
increase skin cancer risk, while the biosynthesis of
sphingomyelin was reported to modulate cancer cell death
and growth (Lewis et al., 2018). Kulp et al. found that
mimosine can block cell cycle progression in asynchronous
human breast cancer cells by chelating irons (Kulp and Vulliet,
1996). Activation peptide of the coagulation factor XIII (AP-
F13A1) and plasma kallikrein (fragment) were identified to be
novel biomarkers for the screening of CRC and lung cancer,
respectively (Chee et al., 2008; Peltier et al., 2018). Together
with CEA and CA 19–9, these three metabolites
(hydroquinone, sphingomyelin and mimosine and) and two
proteins (coagulation factor XIII A chain and plasma
kallikrein) are potential biomarkers, to improve the accuracy
of diagnosis and monitoring of CRC. These potential new
biomarkers need to be validated in further studies with more
patients and controls.

CONCLUSION

In summary, the present study reported an integrative
proteomics and metabolomics investigation of advanced CRC
serums. The constructed protein-protein interaction network
and correlation analysis revealed key regulatory elements and
pathways in advanced CRC, and new potential biomarkers for
diagnosis and monitoring of CRC were selected. Since the
number of patients in the present study was limited, future
validation studies need to be conducted to validate the
discoveries reported in this study.
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