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Abstract

Simple and complex carbohydrates (glycans) have long been known to play major metabolic,

structural and physical roles in biological systems. Targeted microbial binding to host glycans has

also been studied for decades. But such biological roles can only explain some of the remarkable

complexity and organismal diversity of glycans in nature. Reviewing the subject about two dec-

ades ago, one could find very few clear-cut instances of glycan-recognition-specific biological

roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast

there is now a profusion of examples, such that this updated review cannot be comprehensive.

Instead, a historical overview is presented, broad principles outlined and a few examples cited,

representing diverse types of roles, mediated by various glycan classes, in different evolutionary

lineages. What remains unchanged is the fact that while all theories regarding biological roles of

glycans are supported by compelling evidence, exceptions to each can be found. In retrospect,

this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature,

and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms

that use these molecules for many key biological roles, even while sometimes coopting them for

minor functions. In this respect, glycans are no different from other major macromolecular build-

ing blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It

is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of

biological sciences.
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Introduction

In 1993, this journal published a review concluding that while lim-
ited evidence for all of the theories on the biological roles of glycans
was available, exceptions to each could also be found (1). Some gen-
eral principles were suggested. First, the reported biological conse-
quences of experimental modification of glycosylation seemed highly
variable, making it difficult to predict a priori the functions that a
given glycan structure might be mediating, or its relative importance
to the organism. Second, limited data suggested that the same glycan
might mediate different functions at different locations within an
organism, or at different times in its ontogeny. Third, the more spe-
cific intrinsic biological roles of glycans known at the time appeared
to be mediated by unusual glycan sequences, unusual presentations
of common sequences or further modifications of glycans. But it was

also noted that such sequences were more likely to be targets for
specific recognition by toxins and pathogenic microorganisms. It
was therefore posited that ongoing host–pathogen interactions
might contribute to the evolution of some aspects of intra- and inter-
species glycan variation. Finally, some suggestions were made as to
how one might elucidate more intrinsic biological functions for gly-
cans. In particular, it was suggested that more studies of natural and
induced mutations resulting in altered glycosylation within intact
organisms would be required.

In the decade that followed, the author tracked several other
more focused discussions of glycan functions, some examples of
which are cited here (2–104). For a while it was indeed possible for
an individual to track and read such reviews on biological roles of
glycans, but this became increasingly difficult over time. By a decade
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later it became impossible to do so, and one had to be content with
tracking a sampling of reviews in areas of ongoing personal interest
(105–159). Meanwhile, some of the concepts in the original review
were updated in a book chapter (160). Evolutionary and phylogen-
etic perspectives on the matter have also since been extensively
addressed (161–176). More recently, it has been emphasized that
glycans are as universal in nature as nucleic acids, proteins, lipids
and metabolites (177), and as essential to the existence of all known
living organisms (178). But as depicted in Figure 1, glycans are also
the most structurally diverse and rapidly evolving major class of
molecules. Taken together with much greater technical difficulties in
their analysis, one can understand why the knowledge base regard-
ing these major building blocks of life has lagged so far behind.

Despite these challenges, it is evident that information regarding
the biological roles of glycans has vastly expanded in the last two
decades. The present review first surveys the history of how our
understanding of biological roles of glycans originally evolved, and
then attempts to update the overview as of mid-2016. As a measure
of how much progress has been made, any attempt at being compre-
hensive is now impractical, and the knowledge base of a single indi-
vidual cannot do justice to this vast and complex field. Thus, one is
only able to illustrate general principles with a few selected exam-
ples, and with a strong emphasis on the expertise of the author. For
the same reason, the bibliography of citations cannot be comprehen-
sive. Also, most of the broad implications of glycosylation for
biotherapeutics are not addressed (179).

It is assumed that the reader is generally familiar with the major
types and classes of glycans found in nature, and the conventional
terminologies for describing them (180). Of course, it is important
to also recognize that the full range of types and distributions of gly-
cans in nature are still largely unexplored, and surprises continue to
emerge. To cite just a few examples, the following glycans were
mostly unknown when the previous version of this review was being
written: functional sialylation in the fly nervous system (181);
O-fucose and O-glucose glycans on Notch (182–184), and O-fucose
on thrombospondin repeats (185); mucin type O-glycosylation in
protists (initiated with α-GlcNAc instead of α-GalNAc) (186); O-
linked N-acetylglucosamine on cell surface/extracellular proteins
(187–188); the C-mannose linkage to proteins (189–190); the com-
plexities of O-mannose-linked glycans in tissues such as muscle
(191–194), including the novel glycosaminoglycan attached
on α-dystroglycan (195–200) generated by a dual function xylosyl/-
glucuronosyltransferase (201–204) and attached via novel

ribitol-phosphate bridge (205–208); a plant cell wall proteoglycan
wherein a core arabinogalactan protein is glycosylated with cell wall
matrix xylan and pectin glycans (209); identification of β-galacturo-
nic acid in a xyloglucan involved in plant root hair tip growth
(210); the expanding diversity of milk oligosaccharides (211), recog-
nition of immunomodulatory glycans in the gut microbiome (212–-
213); N-linked glycans in prokaryotes (214–216) and, discovery of
the large family of prokaryotic nonulosonic acids (217–219), the
likely ancestors of sialic acids (220). The last two examples highlight
the realization that many glycosylation types once thought to be
unique to eukaryotes in fact have their origins in earlier evolved
pathways in bacteria and archea (176, 221–222). In this regard, it is
notable that many major taxa of life forms such as archea, fungi,
protists and algae still remain poorly explored with regard to glycan
structure and functions (many such taxa are not much addressed in
this review).

Historical background

The first half of the 20th century saw great strides in elucidation of the
structure and biochemistry of simple and complex glycans found in
nature, garnering many Nobel Prizes (180). Beyond their well-known
roles in energy generation and metabolism, glycans obviously had
many structural and biophysical roles in many systems, including
nutritional storage. Given the dense coating of complex and diverse
glycans on essentially all cell surfaces (sometimes called the “glycoca-
lyx” in animal cells) as well as on most extracellular molecules, it was
also not surprising to find many examples of infectious agents or sym-
biotic organisms that recognized such glycans with a high degree of
specificity, mediating interactions with their hosts (223). Additionally
many pathogens were found to express highly specific glycans on their
own surfaces, which seemed to modulate their antigenicity and/or their
susceptibility to bacteriophages. Meanwhile, pathogens were also
found to elaborate highly specific exo- and endoglycosidases that
could degrade host glycans. In fact, many of the structural details of
eukaryotic glycans were initially deduced by using such microbial gly-
cosidases as tools (224–226).

The discovery of corresponding lysosomal glycosidases intrinsic
to eukaryotic systems (227) then led to a better understanding of so-
called “storage disorders”, wherein the deficiency of a single lyso-
somal glycosidase resulted in accumulation of the corresponding
nondegraded product in lysosomes (228). Meanwhile, great strides
were made in elucidating the structures of glycans in some taxa

Fig. 1. Universal characteristics of all living cells. As indicated in the figure and discussed in the text, glycosylation is among the key features of all living cells.

However, in contrast to the genetic code, the degree of chemical complexity and evolutionary diversification of glycans amongst various taxa is the greatest. The

likely reasons for this difference are discussed in the text, and can help explain the still rather limited knowledge base regarding this class of molecules. But we now

know that dense and complex glycosylation is universal to all living cells and even most viruses. Evidently, more than 3 billion years of evolution has failed to gener-

ate a free-living cell devoid of glycosylation. Thus, one can conclude that glycosylation is as essential to life as a genetic code. Figure modified from ref. 178 and used

with permission from Varki A. 2011a. Cold Spring Harb Perspect Biol. 3, doi:pii: 10.1101/cshperspect. a005462. Copyright: Cold Spring Harbor Laboratory Press.
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(particularly vertebrates), as well in understanding their biosynthetic
pathways. The development of vertebrate cell lines with defined
defects in most glycosylation pathways provided powerful and con-
clusive evidence for many complex glycan biosynthetic pathways,
and tools for their in-depth study (229–240), especially N-linked
glycans on glycoproteins. Ironically, in vitro viability of these
remarkable cell lines despite their gross defects in glycosylation
raised questions in the minds of some scientists, as to whether com-
plex glycans have specific and critically important functions intrinsic
to intact vertebrate organisms.

Despite all these great strides in understanding the structure, bio-
synthesis and metabolism of glycans in several taxa, remarkably little
was still known about their specific functions, beyond their metabolic,
structural, biophysical and pathogen-facilitating roles. But early clues
did exist for more specific intrinsic biological roles. Some of the
“blood groups” that limited blood transfusion between individual
humans could be explained by intraspecies variations in glycosylation
(241). The effects of glycosidase pretreatment on the subsequent intra-
vascular trafficking of blood cells in vivo raised the possibility that gly-
cans might serve as targeting signals (242). The role of mammalian
ɑ-lactalbumin in the generation of lactose in milk had also been eluci-
dated (243), but the functional relevance of the resulting profusion of
species-specific milk oligosaccharides elaborated from a lactose core
oligosaccharide (244) remained elusive. A consistent finding of altered
glycosylation in malignant cells suggested specific roles in cancer pro-
gression (245–247). The selective reaggregation of dispersed sponge
cells was shown to be due to carbohydrate–carbohydrate interactions
between large acidic glycans (248).

Meanwhile, a major clue to a specific role of glycans in verte-
brate systems emerged with the discovery of the asialoglycoprotein
receptor, which recognized and bound to exposed β-linked galactose
residues on desialylated glycoproteins, to rapidly clear them away in
the liver (249–250). But the intrinsic biological function of this
highly specific hepatocyte endocytic receptor remained obscure at
the time. Regardless, the concept that a terminal sugar on a glycan
could act as an intraorganismal targeting signal was established, and
evidence then emerged for a mannose receptor on macrophages
(251–252) and possibly one for mannose 6-phosphate on other cell
types (253–254). The isolation and characterization of many plant
and animal glycan-binding proteins by methods such as affinity
chromatography occurred in parallel (255–263). During this period,
the well-known pharmacological anticoagulant effect of the natural
glycosaminoglycan heparin was shown to be due to a highly specific
interaction of antithrombin with a particular 3-O-sulfated sequence
(264–266) within the heparin chain. These and other such findings
provided indirect evidence that complex glycans might carry out
specific functions of intrinsic value to the complex multicellular
organisms that synthesized them. However, as of the end of the
1970s there remained no direct proof that glycans played such key
biological roles. Even as late as 1988, the introduction to a major
symposium on the topic stated that “...while the functions of DNA
and proteins are generally known...it is much less clear what carbo-
hydrates do...” (267).

In reality, a few specific examples had been defined earlier in the
1980s. The discovery and characterization of the rare human genetic
disorder called I-cell disease (268) had led to the prediction that
lysosomal enzymes shared a common recognition marker that
mediated organelle-specific uptake into cells (269). The blockade of
this uptake by mannose 6-phosphate (but not glucose 6-phosphate)
(253) then led to the correct prediction that the glycans on these
enzymes must selectively express a novel phosphomannosyl marker

(254, 270) that was recognized by specific receptors, which might
mediate both intra- and intercellular trafficking of these enzymes to
their correct destination in lysosomes.

Elucidation of the biological significance of this presumed lyso-
somal enzyme trafficking pathway required the determination of the
structures of the novel glycans involved (271–273), and discovery of
the enzymatic basis of the generation of this “phosphomannosyl rec-
ognition marker” (274–281). All of this work culminated in the dis-
covery of the biochemical defect in I-cell disease and related human
genetic disorders, which turned out to be a failure of the initial phos-
phorylation mechanism (276–278). Thus, for the first time one
could state that specific recognition of a unique glycan mediated an
equally specific and critical biological role, which was of intrinsic
value to the organism that had synthesized the glycan.

A few years later, studies showed that small fungal cell wall gly-
can fragments could send highly specific signals to plants. Signal
transmission depended on the precise stereochemistry of the glycans
(282–284). This concept of “oligosaccharins” was extended to other
glycan fragments that could manipulate morphogenetic pathways of
tobacco explants (285) providing preliminary evidence that glycans
by themselves might act as signaling molecules internal to a species.
Meanwhile, studies in animals indicated that sialidase treatment
could abrogate the interaction of lymphocytes with high endothelial
venules in lymph nodes (286) leading to the correct prediction that
sialylated glycan signals were involved in the trafficking of lympho-
cytes out of the circulation. Along with other convergent lines of evi-
dence, this eventually resulted in the definition of a family of cell
adhesion molecules (287–288) that were critical for leukocyte roll-
ing on endothelium, prior to their exit from the circulation. These
molecules were called “selectins” (289), and they recognized a com-
mon motif, consisting of sialylated fucosylated glycans (7, 13, 24,
91, 103, 128, 140, 290–309); a topic that has continued to blossom,
with implications for many fields.

While all this progress was occurring, it was generally assumed
that glycosylation was only found on cell surface and secreted mole-
cules, and that the nucleus and cytoplasm were devoid of this class
of post-translational modification. The discovery of O-linked
GlcNAc (310–314) thus went unrecognized even by most other gly-
coscientists for years, until it was finally realized that this nucleocy-
toplasmic modification is the most common form of glycosylation in
eukaryotic cells (314–316), and that it mediates numerous modula-
tory functions on many proteins, including a complex interplay with
protein phosphorylation (317–320).

The increasing number of animal lectins that being discovered
and characterized was then classified based on sequence homologies
into C-type and S-type lectins (321), and the latter were eventually
redesignated as galectins (322–323). Discovery of the sialic acid-
binding properties of sialoadhesin (324) and of CD22 (325), fol-
lowed by the cloning of sialoadhesin (326), led to the definition of a
new family of cell-type-specific vertebrate lectins initially called “sia-
loadhesins” (15, 327), but eventually designated as a subfamily of
I-type lectins (328) and renamed as the Siglecs (329). The previously
discovered phosphomannosyl receptors were now redesignated as
“P-type” Lectins (85) and some previously known plant lectins
became founding members of the “R-type” (Ricin-like) and
“L-type” (Legume lectin-like) families (330). The power of phyloge-
nomic sequence comparisons has since revealed many additional
families of lectins such as the X-type lectins (intelectins) (331–333),
Ficolins (334–335), etc. The earlier-mentioned somatic cell mutants
in pathways of N- and O-glycosylation played key roles in this pro-
gress. Along with the discovery of new human genetic disorders in
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glycosylation (see next section), these and many other clues to intrin-
sic biological roles of glycans in the 1990s finally opened up this
vast and uncharted territory of biology. Combined with the acceler-
ating power of genomics and glycomics, we have now reached a
point where numerous biological roles of glycans have been eluci-
dated, to varying degrees of precision. For reasons of brevity, only a
few examples are considered in this review.

Learning from natural or induced genetic

alterations of glycosylation in multicellular

organisms

Many different approaches have been used to elucidate the bio-
logical roles of glycans. Among these, one of the most instructive
has been the study of genetic alterations of glycosylation in model
organisms, and in human diseases. Indeed as mentioned earlier, it
was the discovery of the genetic defect in I-cell disease that conclu-
sively proved the biological significance and importance of the man-
nose 6-phosphate targeting pathway in vivo. At about the same time
a defect in 3′-phosphoadenosine 5′-phosphosulfate (PAPS) forma-
tion was found in brachymorphic mice with multiple sulfation
defects. While PAPS has many roles, the disproportionately short

stature of the mice was apparently due to undersulfation of chon-
droitin sulfate in epiphyseal growth-plate cartilages (336). Another
decade went by (see Figure 2) before the second human biosynthetic
defect specific to glycosylation was discovered, a deficiency of a gly-
cosaminoglycan core galactosyltransferase in a progeria-like syn-
drome (337). Meanwhile, the concept of “Carbohydrate Deficient
Glycoprotein syndromes” (CDGs) had been suggested, based on the
finding that children with previously unexplained multisystem disor-
ders showed under-glycosylation of serum transferrin (338–341)––a
test originally devised to detect alcoholism via the general hypo-
sialylation it causes in liver-derived serum glycoproteins (342)! The
work of many investigators then led to the elucidation of the under-
lying enzymatic and genetic defects in these children (343–350),
eventually resulting in the repurposing of the acronym CDG to
denote “Congenital Disorders of Glycosylation” (66, 351–356).
After a slow start in the early 1990s an international effort of many
investigators has now resulted in a veritable explosion in discoveries
of human genetic disorders of glycosylation (Figure 2) (61, 67, 191,
352, 357–382). These disorders continue to provide a goldmine of
clues to biological roles of glycans, and this understanding has
begun to benefit some patients via simple monosaccharide replace-
ment therapies (374, 383–388). Notably, in a recent study of

Fig. 2. Accelerating progress in the discovery of human glycosylation disorders. The graph shows the cumulative number of human disorders with a major

genetic defect in various glycosylation pathways and the year of their identification (2016 data for first 6 months). In early years, initial discovery was based on

compelling biochemical evidence, and in later years by conclusive genetic proof. In most instances, the year indicates the occurrence of definitive proof of

gene-specific mutations and correlations to biochemical results. Figure kindly provided by H. Freeze and Bobby Ng, updated from ref. 375 and reproduced with

permission from Freeze HH, Chong JX, Bamshad MJ, Ng BG. 2014. Am J Hum Genet. 94:161–175. Copyright Elsevier. Reproduced with permission.
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consecutively enrolled patients with unexplained intellectual devel-
opmental disorder and metabolic phenotypes, whole exome sequen-
cing showed that >10% were attributable to genetic defects in
glycosylation pathways (389), mostly hypomorphic states of genes
in which complete loss would have been lethal.

Beyond the clinically obvious CDGs, there is also increasing gen-
etic evidence for the role of glycosylation-related genes in more sub-
tle and common diseases in the population, as observed in genome
wide association studies a few examples of which are mentioned
here: NDST3 (390) and ST8SIA2 (391–393) in schizophrenia and
bipolar disorder; FUT2 nonsecretor status and blood group B asso-
ciated with elevated serum lipase activity and risk for chronic pan-
creatitis (394); and type 2 diabetes susceptibility associated with
ST6GAL1 (395).

Meanwhile, targeted genetic alterations of glycan biosynthetic
pathways in mice (396–401) also revealed a spectrum of abnormal-
ities, again pointing to complex and varied functions of glycans in
multicellular organisms. Since then, the list of mice with genetically
altered glycosylation has expanded greatly, and resulting phenotypes
have been highly instructive (98, 159). It is ironic that most of the
glycosylation pathways that had earlier been dismissed because gen-
etic defects caused “limited phenotypes” in the reductionist environ-
ment of the tissue culture dish later turned out to have clear and
serious consequences in the intact organism, even in the form of
hypomorphic alleles in humans. On the other hand, the phenotypic
outcome of gene knockouts has been rather unpredictable. For
example, while the MGAT1/GnT-I null state (which prevents the
processing of N-glycans) caused embryonic lethality in mice (397–
398), it generated no grossly obvious phenotype in the Arabidopsis
plant (402–403), and limited phenotypes in Drosophila (404).
Conversely while mice lacking ST3GAL5 seem to have only moder-
ate phenotypes (405–406), humans with similar defects suffer from
severe multisystem disease (407–408). Of course, any report of a
“viable and fertile mouse with no major phenotype” must be taken
with a large grain of salt. For example, the consequences of altering
complex ganglioside biosynthesis (409–411) or of knocking out one
of the key ganglioside receptors called MAG (412–413) was mostly
evident later in the life, or when the mouse was subjected to specific
challenges (414–415). In contrast, complete elimination of ganglio-
side biosynthesis gave an early embryonic lethal phenotype (416).
Further complexity has arisen from the realization that there are mul-
tiple isozymes of some glycosyltransferases (417–418), and that post-
transcriptional regulation by micro-RNAs is occurring (419–420).

Summaries of all human and model organism phenotypes resulting
from genetic alterations in glycosylation will not be attempted here,
and are reviewed elsewhere (98, 159, 375, 378). In general, complete
elimination of major classes or subclasses of glycans tends to result in
embryonic lethality, while defects in outer terminal structures often
give viable organisms with defects in specific functions and/or specific
cell types, although these impacts are often species specific. As an
example, null alleles preventing the synthesis of the core glycosamino-
glycan backbone of heparan sulfate causes embryonic lethality (421–
422), but the prevention of proper sulfation of this backbone can give
living mice with specific defects (422–427). When embryonic lethality
makes it difficult to define specific biological roles, tissue-specific tar-
geted genetic alterations became important (428–430). Experiments of
nature such as somatic mutations in X-linked genes (431) and hypo-
morphic alleles of essential genes (388–389, 432) have also helped our
understanding of functions.

Note that the discussion above largely focused on examples from
animals. While space does not allow a detailed discussion, loss of

glycosylation in plants, fungi or prokaryotes can also lead to cell
death. For example, a meristem-localized inducible expression of
an UDP-glycosyltransferase gene is essential for growth and develop-
ment in pea and alfalfa (433). Ethambutol (a traditional drug
treatment for tuberculosis) is now known to target the arabinofura-
nosyltransferases EmbA and EmbB (434). Knockouts of these genes
in mycobacteria are lethal, as is the case with some other glycosyl-
transferases (435). And in the fungus Aspergillus fumigatus, inhib-
ition of cell wall β glucan synthesis is toxic (436–437).

A broad classification of the biological roles

of glycans

There are several different ways to classify the biological roles of gly-
cans, based on the glycan types in question, on the glycan-binding pro-
tein involved, etc. A simple and broad classification (160) (see Figure 3
for a conceptual organization and Table I for a complete listing)
divides glycan functions into four somewhat distinct categories. The
first is structural and modulatory roles (including nutrient sequestra-
tion). The second category involves extrinsic (interspecies) recognition.
The third is intrinsic (intraspecies) recognition. Finally, there is
molecular mimicry of host glycans. All of these categories can involve
glycan-binding proteins (see Figure 3). The next part of this review
considers these classes of biological roles and discusses one or more
examples of each. Given the vastness of relevant literature, the exam-
ples and citations are rather limited and biased towards the knowledge
of the author. Examples of multifunctional roles of glycans and
glycan-binding proteins that cross over between these somewhat arbi-
trary categories will be mentioned later.

Fig. 3. General classification of the biological roles of glycans. A simplified

and broad classification is presented, especially emphasizing the roles of

organism-intrinsic and organism-extrinsic glycan-binding proteins in recog-

nizing glycans. There is some overlap between the categories, e.g., some

structural properties involve specific recognition of glycans. Binding shown

on the left of the central “self” cell represents intrinsic recognition, and

extrinsic recognition is represented by binding shown to the right of that

cell. Molecular mimicry of host glycans adds further complexity to potential

roles. Original drawing by R. Cummings, updated from ref. 160 with permis-

sion from the Consortium of Glycobiology Editors.
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Structural and modulatory roles

Given their ubiquitous presence and abundance in all cellular com-
partments, extracellular spaces and body fluids, glycans have many
major biological effects mediated by their own primary structural
properties, and/or by modulating functions of proteins and lipids to
which they are attached. The randomly selected examples provided
in each section do not focus on any particular glycan class per se.

Physical structure

β-Linked homopolymers of glucose or N-acetylglucosamine (cellu-
lose or chitin, respectively) are among the most abundant organic
molecules on the planet, providing strength and rigidity to structures
such as plant and fungal cell walls and arthropod exoskeletons
(438–439). These polymers are also difficult to breakdown by phys-
ical, chemical or enzymatic means. Many other glycan polymers
play major roles in fungal and plant cell wall structure and function
(438–447). For example, the hemicellulose xyloglucan not only
plays a key role in the loosening and tightening of cellulose microfi-
brils, but also enables the plant cell to change its shape during
growth and differentiation, and to retain its final shape after matur-
ation (441). Needless to say, in the absence of these and many other
major glycan polymers, the diversity of macroscopic structural var-
iations in life forms on the planet would be far more limited.

Physical protection and tissue elasticity

There are many instances where thick layers of glycans provide an
important physical protective role. In addition to the polymers men-
tioned above, the dense layer of mucins that coats many epithelial
surfaces such as the inner lining of airways and intestines provides
critical barrier functions, including protection against the invasion
by microorganisms that live within the lumen (139, 418, 448–452).
Disruption of this layer by genetically altering mucin backbones,
O-linked glycosyltransferases (or key chaperones like Cosmc) can
have very serious consequences, including inflammation and car-
cinogenesis associated with microbial invasion (453–456). Likewise
the thick and biochemically robust cell walls of plants make it diffi-
cult for invading fungi and bacteria to reach the membrane of the
plant cells (438, 441, 444, 446–447). In other instances, the thick
layer of glycans also provides tissue strength. Nature is rife with
many more such examples including fungal and bacterial cell walls
and polysaccharide coats, and the glycosaminoglycans of vertebrate
cartilage, which are partly responsible for its elasticity, resiliency
and compressibility (457).

Water solubility of macromolecules

It is interesting that many vertebrate internal body fluids such as
blood plasma are rich in heavily glycosylated proteins. Apart from
specific functional reasons for glycosylation, hydrophilic and acidic
glycans also contribute significantly to the water solubility of these
macromolecules. Indeed the remarkably high concentration of pro-
teins in the blood plasma (~50–70 mg/mL in humans, carrying ~2
mM of bound sialic acids) would probably be impossible without
this glycosylation. The antifreeze glycoproteins of certain fish alter
the structure of bulk water itself, preventing nucleation of ice crys-
tals in body fluids (458–461). Antifreeze functions can also be
mediated by certain polysaccharides with a lipid component (460).

Lubrication

The remarkably efficient lubrication provided by soluble and
membrane-bound mucins on the lining of hollow organs may seem
like a trivial “function”––until one realizes that deficiencies in oral
salivary mucins caused by radiation damage to salivary glands (a
side effect of head-and-neck cancer treatment) (462–463) or by
autoimmune disease (Sjogren’s) (464) can be life-threatening, espe-
cially by limiting the ability to swallow food. Another example is
the critical lubricating role of hyaluronan in body fluids (465–467),

Table I. Biological roles of glycans

Structural and modulatory roles
Physical structure
Physical protection and tissue elasticity
Water solubility of macromolecules
Lubrication
Physical expulsion of pathogens
Diffusion barriers
Glycoprotein folding
Protection from proteases
Modulation of membrane receptor signaling
Membrane organization
Modulation of transmembrane receptor spatial organization and
function

Antiadhesive action
Depot functions
Nutritional storage
Gradient generation
Extracellular matrix organization
Protection from immune recognition
Effects of glycan branching on glycoprotein function
Cell surface glycan:lectin-based lattices
Masking or modification of ligands for glycan-binding proteins
Tuning a range of function
Molecular functional switching
Epigenetic histone modifications

Extrinsic (interspecies) recognition of glycans
Bacterial, fungal and parasite adhesins
Viral agglutinins
Bacterial and plant toxins
Soluble host proteins that recognize pathogens
Pathogen glycosidases
Host decoys
Herd immunity
Pathogen-associated molecular patterns
Immune modulation of host by symbiont/parasite
Antigen recognition, uptake and processing
Bacteriophage recognition of glycan targets

Intrinsic (intraspecies) recognition of glycans
Intracellular glycoprotein folding and degradation
Intracellular glycoprotein trafficking
Triggering of endocytosis and phagocytosis
Intercellular signaling
Intercellular adhesion
Cell–matrix interactions
Fertilization and reproduction
Clearance of damaged glycoconjugates and cells
Glycans as clearance receptors
Danger-associated molecular patterns
Self-associated molecular patterns
Antigenic epitopes
Xeno-autoantigens

Molecular mimicry of host glycans
Convergent evolution of host-like glycans
Appropriation of host glycans
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such as the synovial fluid in joint cavities and tear fluid in the eyes,
wherein deficiencies can be supplemented therapeutically (467–471).

Physical expulsion of pathogens

Heavily glycosylated secretions produced in large amounts can serve
as a response to physically expel intruders. For example, expulsion of
N. brasiliensis worms from the rat intestine is associated not only with
quantitative, but also with qualitative changes in the composition of
mucins in goblet cells (472). On the microscopic level, a recent study
shows that a “sentinel” goblet cell localized to the mouse colonic crypt
entrance recognizes bacterial products, activating the Nlrp6 inflamma-
some, eventually inducing mucin secretion from adjacent goblet cells
in the upper crypt, which expels bacterial intruders that have pene-
trated the protective inner mucus layer (473).

Diffusion barriers

Extracellular matrix glycosaminoglycans and/or heavily sialylated
glycoproteins can comprise critical diffusion barriers. For example,
the heavily sialylated protein podocalyxin on glomerular podocyte
foot processes (474–478) and heparan sulfate glycosaminoglycans
within the glomerular basement membrane (479–484) seem to play
important roles in maintaining the integrity of blood plasma filtra-
tion by the kidney. Pathological or experimental damage to such
glycans causes large molecules like albumin to escape into the urine,
and is associated with glomerular diseases (478, 485–491).

Glycoprotein folding

Protein molecules that are synthesized and secreted via the ER-Golgi
pathway can be subjected to ER modifications such as O-fucosyla-
tion (492) and O-mannosylation (493), with important effects on
facilitating proper folding in the ER lumen. A major fraction of such
ER-synthesized proteins are also modified by N-linked glycans at
Asn-X-Ser/Thr sequons (494), and it is reasonable to think that the
large, generally hydrophilic sugar chains contribute to proper fold-
ing of nascent polypeptides emerging into the lumen of the ER.
Indeed, it has long been known that preventing N-linked glycosyla-
tion using the inhibitor tunicamycin can have negative effects on the
initial folding of such proteins (495–496). In keeping with the highly
conserved structure of the initial glycan added to asparagine resi-
dues, we now know that such N-glycans play a much more precise
role in actually directing the folding, via specific recognition of cer-
tain features of N-glycans (see further discussion on quality control
below). Even at the level of initial protein folding the exact context
of the sequon can dictate the outcome. For example, experimentally
placing a phenylalanine residue two or three positions before a gly-
cosylated asparagine in distinct reverse turns facilitates stabilizing
interactions between the aromatic side chain and the first GlcNAc
residue of the glycan, while increasing glycosylation efficiency (497).

In this context, it is worth noting that the vast majority of pub-
lished crystal structures of naturally occurring glycoproteins are
derived from proteins that either had their glycosylation sites
mutated, or had their glycans partially or completely degraded, prior
to crystallization. The practical reason for making such a drastic
change is that glycans are often heterogeneous and have a high range
of motion, making it difficult to obtain an ordered crystal. Even if
crystallization is possible, the glycans are typically disordered within
the resulting image. In instances where glycans are left intact, the gly-
coproteins are often expressed in heterologous cells, resulting in
nonspecies-specific glycosylation. This major technical artifact is
rarely addressed in prominent protein crystallography papers. The

bottom line is that when glycosylation sites are mutated or glycosyla-
tion is modified, there is a significant possibility that the folded form
defined by crystallography may not be the native state. Solving this
technical problem remains a major challenge for the future (498–-
500), one in which new techniques such as cryo-electron microscopy
(501–502) may help. Meanwhile, it is definitely a worthwhile exer-
cise to model the glycans back into the crystal structure to a best
approximation (501, 503). Exceptions to the general lack of glycans
in crystal structures can occur when the glycan is buried and partially
immobilized within the folds of the protein, such as in the case of the
Immunoglobulin-G (IgG) Fc-region (504–506), or tightly packed on
the surface, such as in the HIV virion (507–509).

Protection from proteases

Heavily glycosylated proteins are protected from protease cleavage
by glycans, likely by steric hindrance or negative charge. This effect
is particularly prominent for mucins carrying densely packed O-gly-
cans (451, 510). Indeed, extended segments of some mucins are even
resistant to broad-spectrum proteases like proteinase K (511–512).
This property can actually be taken advantage of, to isolate mucin
segments away from other proteins that could be more easily pro-
teolyzed into smaller fragments, or even from whole tissues
(511–512). In a prokaryotic example, N-glycosylation in
Campylobacter improves fitness, by providing protection against
proteases in the gut (513). Conversely, there is evidence that glyco-
sylation at single sites can regulate specific cleavage events with large
impacts on protein activity (514), e.g., the protection of Tango1 by
O-glycosylation is critical to apical secretion in Drosophila (515).

Modulation of membrane receptor signaling

Classic studies have shown that glycolipids can alter the signaling
properties of protein receptors present within the same cell mem-
brane (516). For example, subtly different forms of the sialylated
ganglioside GM3 can have differential effects on tyrosine kinase sig-
naling of the EGF receptor (517–522) and elimination of GM3
affects insulin receptor action (405, 523–524). Another classic
example is the co-receptor activity of heparan sulfate in FGF signal-
ing (525–526). Glycosylation can also affect the signaling properties
of the proteins to which it is attached. For example, ɑ1-6 core fuco-
sylation of N-glycans affects transforming growth factor (TGF) sig-
naling (527). Dysregulation of TGF-β1 receptor activation leads to
abnormal lung development. While most core fucose-deficient mice
die 3 d after birth, the survivors develop emphysematous changes of
the lung. The underlying mechanism appears to be dysregulation of
downstream TGF signaling, causing MMP gene activation, which
eventually degrades alveolar membranes to give emphysema. In a
similar vein, both sialylation and fucosylation modulate epidermal
growth factor receptor-mediated intracellular signaling (528–530).

An entirely new field opened up with the discovery that the
Fringe molecule is a glycosyltransferase that modifies the important
signaling protein Notch and thus modulates Notch–Delta interac-
tions (182, 184). Before Fringe can act, Notch must first be glycosy-
lated with an O-fucose, and the protein O-fucosyltransferase 1 is
thus an essential component of Notch signaling pathways
(531–532). It was later discovered that the O-glucose modification
on Notch added by a glucosyltransferase encoded by Rumi is also
essential for Notch signaling and embryonic development
(533–534). Thus there are many roles of glycosylation in Notch sig-
naling (535–536). The structural basis of glycosylation-mediated
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Notch interactions with some of its ligands has been recently
explored (537).

Membrane organization

Glycans can have profound effects on the organization of cell mem-
branes. For example, GPI-anchored proteins are mainly associated
with glycolipid-enriched membrane microdomains (538) and are
organized in submicron domains at the cell surface (539). Cell sur-
face lectins may also participate. Galectin-4 appears to be the major
organizing factor of such “lipid rafts” on gastric epithelial cells
(540). GPI-anchored proteins are selectively targeted to the apical
surface in fully polarized epithelial cells (541). It also stands to rea-
son that the glycans on cell surface glycoproteins can modulate
membrane domain organization by their bulk and charge
(542–543). It now appears that glycans on one class of glycoproteins
can even modulate the organization of other classes of glycans on
other proteins present on the same cell surface, perhaps forming
“clustered saccharide patches” (146, 302, 544). The formation of
galectin-mediated lattices in the glycocalyx is discussed below.

Modulation of transmembrane receptor spatial

organization and function

In addition to the role of heparan sulfate proteoglycans in modulat-
ing transmembrane receptor spatial organization discussed above,
bulky glycoproteins in the cell surface glycocalyx can indirectly pro-
mote cell adhesion and signaling, facilitating integrin clustering by
funneling active integrins into adhesions and altering their state, by
applying tension to these matrix-bound molecules (545). This in turn
promotes focal adhesion assembly and facilitates integrin-dependent
growth factor signaling to support cell growth and survival. Since a
bulky glycocalyx is a feature of malignant cells, it is suggested that
these features could foster the spread of cancer by mechanically
enhancing cell surface receptor function (545). However such
mechanisms are also likely to operate in normal cells, which presum-
ably exist in a continuum of biophysical states of the glycocalyx.

Antiadhesive action

Large acidic polymers such as hyaluronan and polysialic acid can
inhibit cell–cell and cell–matrix interactions by virtue of both bulk
and negative charge. These antiadhesive functions are particularly
prominent during phases of development when cell migration is very
active. The “plasticity” resulting from polysialic acid expression
appears to be important for neuronal migration as well as reorgan-
ization following injury (546–554).

Depot functions

Hydrophilic glycans on cell surfaces and extracellular matrices are
capable of attracting and ordering water molecules (555). Beyond
retaining water and cations (for unknown reasons, positively charged
glycans are uncommon in nature), extracellular matrix glycosamino-
glycans and polysialic acid can act as depots for growth factors and
other bioactive molecules, which can be stored locally and released
when needed, e.g., during injury and wound healing (86, 556–561).

Nutritional storage

Polymeric glycans like glycogen in animal cells and starch in plants
serve obvious roles in the long-term storage of glucose as an energy
source, and marathon runners must build up liver glycogen stores

before the big race. The earlier comment about O-linked GlcNAc
being the first known form of cytosolic glycosylation is not strictly
true, as the glycogenin protein was also known to self-glucosylate
itself on a tyrosine residue with a short 8–12 glucose residue polymer
in order to serve as the primer for glycogen synthesis (562–567). In
contrast, the mechanism of potato starch biosynthesis appeared to
involve de novo synthesis, not an amylogenin primer (568).

Gradient generation

Gradients of growth factors can be generated by binding to extracel-
lular matrix glycosaminoglycans such as heparan sulfate, especially
in embryonic development (86). This organization of growth factors
by glycosaminoglycans may contribute the morphogen gradients
that are critical during development (569–572).

Extracellular matrix organization

Many components of the extracellular matrix in vertebrates are
large glycan polymers such as sulfated glycosaminoglycans and hya-
luronan, that self-organize along with specific proteins into larger
aggregates to generate structures such as basement membranes
(573–574) and cartilage (575–577). Cartilage also acts as a template
for primary and secondary ossification centers, development of the
growth plates and the end of long bones, and the laying down of
bone (578). Organizational roles are also obvious for glycans in the
extracellular matrices of plants (see discussion above), and new roles
are emerging for glycans in the biofilms surrounding bacteria, enab-
ling them to form discrete multicellular communities (579–583).

Protection from immune recognition

The adaptive immune system of vertebrate organisms functions
largely by recognition of foreign peptide sequences, which are dir-
ectly recognized by the B cell surface Ig receptor (584–585), and are
also loaded into the grooves of the major histocompatibility recep-
tors to be presented to specific T-cell receptors (586). If the peptide
carries a very small glycan, this moiety can contribute novel specifi-
city to recognition (587–591). However larger glycans typically dis-
rupt peptide loading and/or T-cell receptor recognition, and often
eliminate it altogether. This explains a common immune escape
strategy of enveloped viruses, whose surface glycoproteins tend to
be very heavily glycosylated (592–593). Sometimes, such protective
glycosylation can become so dense that it generates unique clustered
epitopes recognized by specific antibodies, such as that seen on the
surface of the HIV virion (507–509, 594). In other instances, one
type of glycan can block immune recognition of another, such as the
Cryptococcus neoformans yeast cell wall, which is required for viru-
lence (595–596), apparently by protecting the deeper structures of
the organism from recognition and attack by the host immune
system.

Effects of glycan branching on glycoprotein function

The N-linked glycans on cell surface glycoproteins can have varying
degrees of branching (597), and glycan branching is specifically
upregulated in T-cell activation (598), and in malignant transform-
ation (599–604). Beyond their effects on protein structure per se,
certain branched glycans can affect a variety of biological functions.
Thus, there are reports of regulation of cytokine receptors by modu-
lation of endocytosis rates by the type of glycan structure and
branching (605), and N-glycan number and degree of branching can
cooperate to regulate cell proliferation and differentiation (606) as

10 A Varki



well as thymocyte positive selection (607). The degree of branching
of N-glycans is primarily dependent on the addition of β-linked
GlcNAc residues donated by UDP-GlcNAc. Given that glucosamine
and GlcNAc are major metabolic intermediates in most cells, the
level of UDP-GlcNAc provides a likely connection between cellular
metabolism, cell surface organization and disease (608). In keeping
with this concept, the cell surface residency time of glucose trans-
porter 2 is regulated by branching of its N-glycans, and alters insulin
secretion as well (609). This provides a connection between diabetes,
pancreatic β cell glycosylation and glucose transport (610). A differ-
ent kind of N-glycan branching (so-called bissecting GlcNAc) inhi-
bits growth factor signaling and retards mammary tumor
progression (611) and E-cadherin may be a target molecule for this
glycan modulating effect (612–613).

Cell surface glycan:lectin-based lattices

The glycocalyx on the surface of vertebrate cells is often likened to a
semi-randomly organized tropical rain forest (146), or to a sea-floor
kelp bed (the latter analogy by P. Gagneux adds water and motion
to the image, making it even more realistic). But the glycocalyx is
also suggested to include self-organizing ordered lattices of glycans
and lectins (83, 614–615). An intriguing connection has been estab-
lished between the glycan branching phenomena mentioned above
and the formation of such cell surface lattices involving galectin rec-
ognition of polylactosaminoglycans, which tend to be enriched on
highly branched glycans (117, 606, 608, 616). The concept is that
an ordered lattice forms within the glycocalyx that alters interac-
tions between cell surface molecules, also affecting their rates of
clearance from the cell surface by endocytosis. Thus, evolutionary
selection is suggested to have modulated the number of glycans of
inhibitory versus activating growth factor receptors, such that
branching (controlled by UDP-GlcNAc and GlcNAc transferases)
can differentially affect their relative ratio on the cell surface, by
altering cell surface residence times (606, 608, 616–617).
Complexity arises because capping of polylactosaminoglycans by
sialic acids can modulate galectin recognition by its presence and or
linkage type (618–622).

Masking or modification of ligands for glycan-binding

proteins

In some cases, modifications of monosaccharides and/or specific
monosaccharides themselves can act as biological masks that pre-
vent the recognition of the underlying glycan by specific glycan-
binding proteins (623). Classic examples can be found in the case of
terminal sialic acid wherein O-acetyl modifications can block the
binding of some influenza viruses (22, 623–624), and the removal of
sialic acid itself can unmask binding sites for receptors or antibodies
that recognize subterminal β-galactose residues (22, 623). In another
example, certain enzymes called Sulfs mediate extracellular removal
of binding sites for heparin sulfate ligands (625), which can then sig-
nal through other receptors, e.g., wnt/frizzled or IFN-β/IFNAR
(626–628).

Tuning a range of function

The size, number, branching and degree of sialylation of N-glycans
can generate numerous glycoforms of a single polypeptide such as
erythropoietin (629–640) or GM-CSF (641–644). It turns out that
the nature of the glycosylation, extent of branching and level of sia-
lylation modulate the activity of such cytokines over a range of

function, by affecting its interaction with its cognate receptor, and
also by altering the rate of clearance from the circulation. In passing,
it is worth mentioning that differences in the sulfation and sialyla-
tion of the N-glycans expressed on endogenous versus exogenous
erythropoietin are used by the Anti-Doping Agency to detect illicit
administration, and has led to rescinding of many major sporting
trophies (645–646).

Molecular functional switching

The once obscure (310), but now well-known and widespread, O-
GlcNAc modification of nuclear and cytoplasmic proteins, has been
shown to be a multifunctional molecular switch, which can work
with, or in competition against, Ser/Thr phosphorylation, altering
the functions of a wide variety of modified proteins and affecting
numerous physiological and pathological processes. This remarkable
system and its numerous ramifications have been well reviewed else-
where (21, 70, 647–654), and will not be addressed in detail here.
Other forms of nucleocytoplasmic glycosylation have since been dis-
covered and characterized functionally in many organisms. For
example, oxygen-sensing in diverse protozoa depends on prolyl-4-
hydroxylation of the E3(SCF)ubiquitin ligase family subunit Skp1,
and modification of the resulting hydroxyproline with a series of
sugars. In the social amoeba Dictyostelium, O2 availability is rate
limiting for hydroxylation of newly synthesized Skp1. Knockout
mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glyco-
syltransferases confirmed that O2-dependent post-translational gly-
cosylation of Skp1 promotes association with F-box proteins and
their engagement in functional E3(SCF)Ub ligases, which in turn
regulate O2-dependent developmental progression (655–659).

Returning to the extracellular compartment, another classic
example is the modulation of IgG effector functions by the structural
features of the N-glycans in the IgG-Fc region (660–663).
Incomplete galactosylation of these glycans has been associated with
chronic inflammatory diseases (664–666), and there are clear-cut
effects of IgG-Fc glycan core fucosylation on antibody-dependent
cellular cytotoxicity (667–671) that are relevant to biotechnology
(672–673). Sialylation of a minor fraction of the IgG-Fc N-glycans
also appears to convert the IgG molecule into an inhibitor of inflam-
mation, and is thought to underlie the anti-inflammatory properties
of therapeutically delivered intravenous immunoglobulin in humans.
While many papers have been written about this effect, there is still
some controversy about the extent of the effects, and the details of
mechanisms in different models and species (674–701). One possible
explanation for the confusing results is that the immune responses
are subject to “hormesis”. This is poorly appreciated but common
biological phenomenon wherein low and high doses of the same
stimulus can result in opposite biological responses and outcomes
(702–705). Regardless of controversies, it is clear that subtle
changes in the glycosylation state of Ig-Fc regions of N-glycans can
profoundly influence not only circulating half-life, but also the
effector function of antibodies (706). Meanwhile, contrary to 40
years of X-ray crystallography suggesting immobility of the Fc-
region N-glycan, recent NMR studies suggest that this glycan is
actually mobile and dynamic in solution (707). Thus, it is possibly
the range of motion of the glycan that is being altered by the various
modifications, secondarily affecting interactions with Fc-receptors of
various types via an allosteric mechanism (708). Finally, while much
of what is stated above refers to IgGs prepared for therapeutic use,
it appears that modulation of IgG-Fc glycosylation occurs naturally
in vivo, in various inflammatory and infectious conditions (687)
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although the mechanisms of modulation are largely unknown. More
recent evidence suggests that the Fc-region of other Ig classes may
also alter effector function (709–710).

Epigenetic histone modifications

It is now clear that the addition of O-GlcNAc residues to histone
proteins surrounding chromosomal DNA is a key component of the
histone code that regulates gene expression. O-GlcNAcylation tar-
gets key transcriptional and epigenetic regulators including RNA
polymerase II, histones, histone deacetylase complexes and members
of the Polycomb and Trithorax groups. Given its dependence on
cytosolic UDP-GlcNAc levels, O-GlcNAc cycling is thought to serve
as a homeostatic mechanism linking nutrient availability to higher-
order chromatin organization. Evidence also suggests that this “sim-
ple” glycosylation mechanism can also influence X chromosome
inactivation and genetic imprinting (650, 652–653, 711), which
may be related to the fact that the O-GlcNAc transferase is encoded
on the X chromosome.

Extrinsic (interspecies) recognition of glycans

As mentioned earlier, it is not at all surprising that numerous patho-
gens and symbionts have evolved highly specific ways to recognize
aspects of the dense and complex forest of cell surface glycans they
encounter in host species. These interactions often involve glycan-
binding proteins (see Figure 3), and can result in symbiosis, com-
mensalism or disease, depending on the interaction in question and
on the biological circumstances. A few examples from this vast field
of knowledge are mentioned.

Bacterial, fungal and parasite adhesins

Among the numerous examples that can be cited for bacterial adhe-
sins (223, 712), the example of Helicobacter recognition of gastric
sialoglycans is particularly interesting, given its role in pathogenesis
of gastric ulcers and cancers (713–719). The F-pilus mediated
glycan-dependent binding of uropathogenic Escherichia coli
accounts for millions of urinary tract infections a year (720–721)
and small molecule inhibitors are being explored as therapies or pro-
phylactics (722). With regard to parasites, a well-known example is
the merozoite stage of Plasmodium falciparum, which initiates mal-
aria via recognition of densely sialylated glycophorins on target ery-
throcytes (723–730), with the types of sialic acids presented
affecting species specificity (731–733). At a later stage in malaria,
heparan sulfate on endothelial cells mediates the binding of P. falcip-
arum-infected erythrocytes via the DBL1ɑ domain of PfEMP1 (734),
likely accounting for some of the most serious complications of the
disease. Specificity for host glycans also plays a role in the binding
of a pathogenic fungus (Candida glabrata) to various target tissues
(735).

It is notable that in many instances expert researchers eventually
find “glycan-independent” mechanisms of pathogen interaction with
target cells and sometimes assume that the glycan-dependent process
is therefore unimportant. However, such studies are often done in
static conditions with long contact times, making the initial glycan
“handshake” less critical. The situation is quite different in real life,
where opportunities for contact and infection may be transient and
difficult. Of course, with increasing evolutionary time a highly suc-
cessful pathogen may come to rely more on glycan-independent
mechanisms, as appears to be the case with endemic P. falciparum
infections (727, 736–738).

Viral agglutinins

By tradition, viral glycan-binding proteins are called hemagglutinins,
because many were originally discovered by virtue of their ability to
agglutinate erythrocytes (which ironically are noninfectable, because
they do not have the machinery for viral replication). Of these the
best known is probably influenza hemagglutinin (the “H” in
“H1N1”), which plays a key role in the infection process of this
highly successful group of viruses. Much has been written about the
specificity of the binding of these pathogens in relation to the sialic
acid ligand, particularly the specific linkage to the underlying sugar
chain, which determines the preference of the virus for avian versus
human hosts (739–749). The evolution of the avian influenza viruses
towards infecting humans involves selection for a change in binding
specificity, which can be replicated experimentally (744).
Interestingly, even our closest evolutionary cousins (chimpanzees)
do not have a high density of human sialic acid composition or link-
age on their airway epithelium (750), explaining the lack of non-
human primate models and the unlikely choice of the ferret as a
model for human influenza––because it happens to express the
human-like linkage on its airway epithelium (751–752), and also
because it turns out to, like humans, be missing the nonhuman sialic
acid Neu5Gc (753). There are other examples of even more exquis-
ite sialic acid specificity of viruses, based on the presence of O-acetyl
esters at specific positions: while a 4-O-acetyl ester on sialic acid tar-
gets is required for mouse hepatitis virus infection (754–756), a 9-
O-acetyl ester on the sialic acid side chain is required for the binding
of certain other coronaviruses and influenza C and D viruses (624,
757–761). The difference between these two specificities is dictated
by only a few key amino acid changes in the viral receptors
(762–763).

Bacterial and plant toxins

Many soluble plant and bacterial toxins mediate their effects by
binding to target glycans on cells of another species. Typically, a
bacterial glycan-binding B subunit is multimeric and serves to bring
the toxic A subunit close to the membrane, whereby the latter then
crosses over to mediate its toxic actions in the cytosol (with or with-
out prior endocytosis). Classic examples include cholera toxin,
which binds GM1 ganglioside (256, 764), the infamous ricin toxin
that binds to terminal β-linked galactose residues (765–766), and
the entero-hemorrhagic E. coli/Shiga verotoxin that recognizes glo-
botriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer)
glycosphingolipids (767–769). The precise spacing of target ligands
can be very important to the optimal binding of the pentameric lec-
tins to the target (770–771). The single oxygen atom difference
between the Neu5Ac and Neu5Gc forms of sialic acids can also
determine the specificity of toxin binding, such as in the cases of the
typhoid (772) and SubAB (773) toxins. In some cases, there is also
evidence of dual specificity, e.g., fucosylated blood group structures
on glycoproteins may contribute to cholera toxin binding (774), via
an independent binding site (775).

Soluble host proteins that recognize pathogens

Vertebrates also express toxic glycan-recognizing peptides that can
attack bacteria. For example, the small intestinal mucus layer is rich
in RegIIIgamma, a secreted host antibacterial lectin, which is essen-
tial for maintaining partial sterility of a ~50-μm zone that physically
separates the luminal microbes from the intestinal epithelial surface
(776). Also, host galectins have been found to have unexpected

12 A Varki



toxicity towards bacteria via recognition of their surface glycans
(777–778). Killing occurs rapidly and independently of complement
and is accompanied by disruption of membrane integrity. Galectin-3
may also play an important role in innate immunity against infec-
tion and colonization of Helicobacter pylori. (779). Galectin-1 can
have dual and opposing effects on virus infection of human endothe-
lial cells (780). In other instances, circulating soluble multimeric
(typically pentameric) glycan-binding proteins recognize surface gly-
cans of foreign pathogens but do not directly kill the pathogen.
Instead they provide a signpost to attract other active components
of the immune system such as complement and macrophages.
Examples including collectins like the mannan-binding lectin, and
the ficolins (334, 781). Indeed this kind of triggering of innate
immune reactions via multivalent recognition of foreign glycans
represents some of the most ancient and effective forms of immun-
ity. For example, the hemolymph of horseshoe crabs recognizes
invaders through a combinatorial approach, using lectins with dif-
ferent specificities against glycans exposed on pathogens (782),
allowing these organisms to survive almost unchanged for >100 mil-
lion years, without the benefit of adaptive immunity.

Pathogen glycosidases

Numerous pathogens generate a diverse array of cell surface and
secreted glycosidases that serve to remodel or destroy the host glyco-
calyx, sometimes then utilizing the released monosaccharides as
food sources and/or providing a nutritional resource for other
microorganisms in the same milieu (783–785). Some mammals also
rely on symbiotic microorganisms within their digestive tract to gain
energy from plant biomass that is resistant to mammalian digestive
enzymes (786). In other instances, the glycosidase acts in a balance
with the binding activity of the same pathogen (787). For example,
the sialic acid-binding (“hemagglutinating”, H) activity of the influ-
enza viruses is balanced by the activity of its sialic acid releasing
enzyme (neuraminidase, N), the latter working both to allow the
virus to gain access to cell surfaces by cutting through interfering
molecules (788–789), and also to allow release from cells after repli-
cation (790). The elegant structure-based design of a modified ver-
sion of the previously known sialidase inhibitor Neu5Ac2en (791)
gave rise to the potent and specific inhibitor zanamivir (Relenza)
(792–793), and later to the structurally related agent oseltamivir
(Tamiflu) (794–795). It is worth noting that oseltamivir is not a gly-
can, showing how chemical shapes can be designed to mimic gly-
cans. In yet other cases, microbial glycosidases remodel host glycans
to generate the optimal receptor for subsequent binding. For
example the secreted neuraminidase of Vibrio cholerae removes all
but one specific sialic acid residue from host gangliosides, leaving
behind the GM1 monosialoganglioside, which is the specific recep-
tor for the B subunit of the AB5 exotoxin secreted by the same
organism (796).

Host decoys

It has been suggested that circulating erythrocytes might act as non-
infectable decoy receptors for glycan-recognizing viruses that gain
access to the bloodstream (164). The thick layer of mucin glycans
on the surface of epithelial cells lining hollow organs (139, 418,
448–452) also plays a critical role by providing decoy binding sites
for pathogens, diverting them from their intended targets on the
cells. Of course commensals may take advantage of such mucin
binding to remain within their preferred ecological niche (797–800)
and to favor dental biofilm development (801). But on the rare

occasions when such bacteria accidentally find their way into the
bloodstream, these same commensalism-favoring adhesins become
virulence factors, mediating interactions with platelets, which act as
carriers of the organisms to eventual infection of damaged heart
valves (798, 802–807). This is a recurring theme at sites of interspe-
cies interactions, wherein factors favoring routine commensalism
turn into potent “virulence factors”, on the occasions when physical
barriers are breached and/or host immunity is compromised.

Herd immunity

As discussed previously in the context of glycan evolution (164),
herd immunity refers to a form of indirect protection from infectious
disease, which occurs when a large percentage of a population is
resistant to an infectious agent, effectively providing protection to
individuals who are not immune. Since glycans are often the targets
for many infectious agents, intra- and interspecies polymorphisms in
the expression of such targets can provide herd immunity, and
restrict the spread of disease. As an example the ABO(H) blood
group system can affect the spread of a highly infectious noroviruses
that selectively binds one blood group structure and not another
(808–811). This is likely why not everyone is sick by the time a
cruise ship suffering a norovirus epidemic makes it back to port.
ABO blood group polymorphisms also appear to affect susceptibility
to cholera, as the cholera toxin has a secondary binding site for such
glycans (775). The high levels of competitive oligosaccharides in
human milk likely provide protection to breast-fed infants against
some viruses and toxins (812–814).

Pathogen-associated molecular patterns

It is now well recognized that innate immune cells also detect
pathogen-associated molecular patterns (PAMPs) using Pattern
Recognition Receptors (815–816), particularly Toll-like receptors
(TLRs) (817–818), NOD-like receptors (NLRs) (819–822) and C-
type lectins (823–826). Many PAMPs are glycoconjugates, e.g., bac-
terial lipo-oligosaccharides or glycan-based polymers, e.g., lipopoly-
saccharides and bacterial peptidoglycans, including bacterial DNA
or viral RNA (which are (deoxy)ribose-based polymers) (827–828).
Glucan and oligochitin oligosaccharides released from fungal cell
walls can also function as elicitors of plant defense (829).

Immune modulation of host by symbiont/parasite

In some instances, glycan molecules mediate symbiont or parasite
modulation of host immune responses. For example, glycans such as
polysaccharide A (an unusual pentasaccharide repeat), derived from
important mammalian gut microbiome members, helps to modulate
the host immune system into a more tolerant state (via T-reg engage-
ment) (213). Similarly, glycans derived from parasitic worms alter
the immune status of their long-term hosts (830), a process dubbed
as “glycan gimmickry” (831).

Antigen recognition, uptake and processing

Antigenic proteins must first be taken up by antigen presenting cells
(macrophages and especially dendritic cells), which process them
into peptides, to be presented by MHC Class II molecules, for recog-
nition by T lymphocytes. This process can be facilitated by glycans
on the target protein. For example, the presence of high densities of
terminal Man or GlcNAc residues on foreign proteins or microbes
can trigger phagocytosis via C-type lectins on antigen presenting
cells, with resulting delivery of the antigenic proteins to processing
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compartments (832–834). As another example, nonhuman ɑ-Gal
(835) or Neu5Gc (836) residues carried on injected glycoproteins
can result in immune reactions, and in the formation of immune
complexes, which in turn can enhance immune reactivity against the
peptide backbone. An alternative form of self/nonself recognition is
exemplified by foreign glycolipid presentation by CD1 molecules,
which are detected by restricted or invariant TCRs of NKT cells
(837–842).

Bacteriophage recognition of glycan targets

The complexity and diversity of surface polysaccharides found on
strains of a single bacterial species (>100 in the case of the pneumo-
coccus) (843) might be explained not only by selection for evasion
of the vertebrate antibody response (844), but also by the need to
evade attack by environmental bacteriophages (843, 845), which
often use bacteria surface glycans as targets for recognition, and
sometimes subsequent cleavage. While studies are continuing (846–
849), this remains a poorly explored area. Given the very high dens-
ity of bacteriophages in nature (10 million viruses per milliliter of
surface seawater!) (850), there are likely a huge number of such as
yet undiscovered viruses with exquisite specificities for diverse gly-
can structures. Indeed, it is possible that a cognate bacteriophage
exists for every variant of every bacterial surface polysaccharide that
occurs in nature. Thus bacteriophages are effectively a massive reser-
voir of glycan-binding and glycan-hydrolyzing proteins still waiting
to be exploited for glycan analysis and bacterial diagnostics as well
as therapeutics (851), e.g., a potential new source of therapeutic
“enzybiotics” (852) or disrupters of biofilms (853). Early steps in
this kind of systematic search are promising (854).

Intrinsic (intraspecies) recognition of glycans

As mentioned earlier, numerous pathogens and symbionts have
evolved highly specific glycan-binding proteins that can recognize
aspects of the cell surface glycans they encounter in host species. For
a long time, examples of glycan-binding proteins with clear-cut func-
tions intrinsic to the same species (see Figure 3) proved elusive. Even
when candidates such as the asialoglycoprotein receptor were found,
their intrinsic functions were not obvious. Beginning with the dis-
covery of the specific functions of P-type lectins in mediating lyso-
somal enzyme trafficking (discussed earlier), many examples of
glycan-binding proteins with intrinsic functions are now well
known, and participate in a wide variety of functions. Only a few
examples are mentioned below.

Intracellular glycoprotein folding and degradation

In addition to the biophysical effects of attached glycans on nascent
glycoprotein folding discussed above, specific recognition of certain
glycan residues plays a key role regulating the process of ER-
associated degradation (ERAD). After the unusual
Glc3Man9GlcNAc2-P-P-dolichol structure of the lipid-linked oligo-
saccharide donor for N-glycosylation was first fully defined (855), it
turned out to be identical in almost all eukaryotes studied.
Conservation of this structure for more than a billion years of evolu-
tion strongly suggested that it serves a very important purpose. But
while many features of the structure were clearly needed to ensure
optimal N-glycan transfer (856–859), variations were possible in
some parasites (860–861) and mutant cell lines (235), and the
exquisite conservation of the native structure remained largely unex-
plained. A clue finally emerged when it was discovered that the third

glucose residue on N-glycans is repeatedly removed and then put
back on again during glycoprotein folding in the ER (862–863).
This in turn led to the discovery that this terminal glucose residue is
recognized by certain ER chaperones, calnexin and calreticulin
(864–868). The key role of this glucosylation/deglucosylation cycle
in protein folding is now well established (63, 71, 869–878).
However, even after the last glucose residue has been permanently
removed, there are further steps of recognition of the oligomannose
type N-glycans that have been partially processed by ER mannosi-
dases (879–884). These recognition events are mediated in part by
mannose 6-phosphate receptor homology domains in several chap-
erone proteins, as well as additional mannosidase-like proteins and
recognition complexes (130, 879, 881–888). Effectively, a byzantine
array of glycan-modifying and glycan-recognizing proteins deter-
mines the final fate of a glycoprotein molecule in the ER––whether it
will be allowed to go forward into the Golgi pathway towards its
final destination, or be consigned for ERAD. And since most pro-
teins that enter the ER are glycosylated, this system has a huge
impact in normal and diseased states, as well as on unfolded protein
stress responses (883, 889). As mentioned earlier, O-mannosylation
and O-fucosylation can also play a role in monitoring the folding of
newly synthesized proteins. Proteins that fail to fold are eventually
removed from harmful futile protein folding cycles and prepared for
disposal, via reverse translocation into the cytosol. There is even a
sophisticated cytosolic pathway for removing and recycling the N-
glycans from misfolded proteins prior to the action of proteasomes,
beginning with the action of a previously mysterious cytosolic
Peptide: N-glycanase (890). Notably O-GlcNAcylation of nucleocy-
toplasmic proteins can also occur cotranslationally, protecting nas-
cent polypeptide chains from premature degradation by decreasing
cotranslational ubiquitinylation (891).

Intracellular glycoprotein trafficking

As discussed earlier, the classic example of glycan roles in intracellu-
lar trafficking is that of the mannose 6-phosphate recognition system
for the targeting of lysosomal enzymes to lysosomes. There is now
evidence for other lectin-like molecules within the ER-Golgi path-
way, which likely modulate the trafficking of specific classes of gly-
coproteins. For example, the LMAN1 gene product ERGIC-53 in
the ER-Golgi intermediate compartment is a mannose-selective and
calcium-dependent human homolog of leguminous L-type lectins
(892) and acts as a critical chaperone for the coagulation factors V
and VIII during their biosynthesis in hepatocytes (893) and endothe-
lial cells (894) respectively, also potentially affecting the biosynthesis
of some other glycoproteins (895). Other examples are VIPL and
VIP36 (896–901). Overall, it is reasonable to predict the existence
of more such glycan-recognizing proteins in the ER-Golgi pathway,
potentially involved in trafficking and/or chaperone functions.

Triggering of endocytosis and phagocytosis

A variety of cell surface receptors that recognize terminal glycans
can trigger uptake of molecules (endocytosis), particles (phagocyt-
osis) or even intact cells. The classic examples are the asialoglyco-
protein receptor of hepatocytes and the mannose receptor of
macrophages, mentioned in the introduction. A large variety of lec-
tins are known to carry out endocytosis in macrophages and den-
dritic cells. Such recognition processes may be critical not only for
providing antigens to process and present to T cells, but also for
clearing away damaged cells or glycoproteins, such as occurs when
microbial sialidases enter the circulation during sepsis and cause
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desialylation of platelets (902–903), or when cancers secrete incom-
pletely glycosylated mucins (512).

Intercellular signaling

In addition to the plant oligosaccharins already mentioned in the
introduction, oligogalacturonides released from pectins can also act
as regulators in plants (141, 904–906). Another well-established
example of intercellular signaling is represented by bacterial Nod
factors (820) (not to be confused with the NLRs of vertebrate
inflammasomes), which communicate signals between rhizobacteria
and the roots of their leguminous plant hosts (907–911), initiating
the symbiosis that is eventually responsible for the bulk of the nat-
ural nitrogen fixation on the planet––a process key to the survival of
many organisms that benefit from the resulting food chain. The
chito-oligosaccharides that transmit the signal show structural speci-
ficity for organism and host (907–908) and appear to be detected by
a specific lectin (911). Transferring this capability into nonlegume
crop species is obviously an exciting prospect. However, this may
not be easy, since nonlegumes recognize the Nod factor via a mech-
anism that results in strong suppression of responses (912). In verte-
brate systems hyaluronan fragments released during injury can be
detected by TLRs, thus triggering host immune responses (467,
913–915).

Intercellular adhesion

The mechanism of species-specific recognition of disaggregated
sponge cells has already been mentioned in the introductory sec-
tions. The selectin-based system for cell–cell interactions of leuko-
cytes, platelets and endothelial cells has also been discussed. The
fact that oral fucose feeding results in correction of leukocyte adhe-
sion deficiency-II by restoring selectin ligands provides the genetic
proof of concept of this system in humans (385). The role of selectin
interactions in a variety of normal and pathological conditions like
inflammation and cancer is now understood (309, 916–921), and
therapeutic approaches are in evaluation (921–923). One particu-
larly promising therapeutic outcome is based on the finding that
selectins interact with sickled red cells and leukocytes in the circula-
tion to facilitate endothelial adhesion and other interactions
(924–927) ultimately contributing to vascular occlusion and “sickle
cell crisis” (928). The effectiveness of the pan-selectin inhibitor
GMI-1070 in reducing selectin-mediated cell adhesion and abrogat-
ing crisis shows much promise in early clinical trials (922, 929).
Another classic example is the role of Myelin-associated glycopro-
tein (MAG, Siglec-4) in mediating key interactions between neurons
and glia (930–932), a process critical for maintaining the stability of
the myelin sheath that insulates axons (933–934).

Cell–matrix interactions

Evidence for critical matrix interactions with cell surface glycans can
be found in the variety of muscular dystrophies resulting from
altered glycosylation of the α-dystroglycan ligand for major matrix
proteins such as laminin, described in the introduction (191–204).
In another example, hyaluronan matrices synthesized by stressed
cells that recruit inflammatory cells are early events in many patho-
logical processes (935–936). Interestingly, this is a process that most
if not all cells undergo, when dividing in a hyperglycemic environ-
ment. This phenomenon likely impacts experiments of many investi-
gators who use “standard” commercial tissue culture media, which

actually have unphysiologically high amounts of glucose (937), at
levels that might even cause diabetic coma in a patient.

Fertilization and reproduction

Many early studies suggested that glycan-recognition processes were
a critical part of many sperm–egg interactions (75, 938–939). This
field lagged behind for a while, partly because many researchers
were looking for a single overarching glycan-recognition mechan-
ism––until the realization that species-specific variations were in
fact, exactly what one would expect! In a few instances such as in
humans, specific glycans have now been identified as binding targets
(940–941). Glycans also appear to be involved at many steps in the
reproductive process, and in the processes of sperm migration to the
site of fertilization (942). During the latter process, there is even evi-
dence that circulating antibodies can enter the uterine fluid and des-
troy sperm carrying nonspecies-specific glycan antigens (943). After
fertilization, there is evidence that glycans and glycan-binding pro-
teins are involved in the processes of implantation (944) and placen-
tal functions (945–946) in mammals.

Clearance of damaged glycoconjugates and cells

Terminal sialic acids on circulating glycoproteins can be removed by
endogenous sialidases during natural aging of the proteins (947), or
suffer an attack by a pathogen expressing a sialidase. In either case,
there would be exposure of underlying glycans recognized by spe-
cific receptors, such as the hepatocyte asialoglycoprotein receptor
mentioned earlier. Data indicate that this kind of “eat me” signal
may even mitigate the lethal coagulopathy of sepsis by clearing
away damaged platelets (902–903). There also appears to be a very
high-capacity system for clearance of incompletely glycosylated
mucins by the liver (512). Such molecules are released in large
amounts by cancer cells, but could also potentially appear during
damage to otherwise healthy organs. The subset of cancer-derived
molecules (e.g., CA125, Sialyl-Tn and CA19-9) that survive such
clearance then become useful markers of disease progression
(948–951). The value of such markers for early detection remains
unclear (952), a problem known to plague many predictive serum
markers (953).

Glycans as clearance receptors

Glycans themselves can act as clearance receptors for other mole-
cules. For example, heparan sulfate proteoglycans in the liver space
of Disse mediate clearance of triglyceride-rich lipoproteins independ-
ently of the well-known LDL receptor family members (954–955).

Danger-associated molecular patterns

Innate immune cells also recognize glycans released from tissue dam-
age in vertebrates such as hyaluronan fragments (467, 914–915)
and some matrix proteoglycans (956–957) as danger-associated
molecular patterns (DAMPs) or “alarmins”, triggering responses
similar to those generated by exogenous PAMPs (see earlier discus-
sion). While fungal glycans can act as PAMPs to activate the host
immune response, they can also instead mask other glycoconjugates
to prevent such activation. Examples include Candida albicans (443,
958–959) and Histoplasma capsulatum (960).
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Self-associated molecular patterns

As mentioned above, signals initiated by DAMPs and PAMPs are
transduced via similar pathways, activating innate immune inflam-
matory responses. It was recently proposed that glycans could also
act as self-associated molecular patterns (SAMPs) (961), being
recognized by intrinsic inhibitory receptors to maintain the baseline
nonactivated state of innate immune cells, and to dampen their
reactivity following an immune response. A clear example of
glycan-based SAMPs has been reported in the form of inhibitory
Siglec recognition of cell surface sialoglycans (962–964), which
may also provide a mechanism for the host to discriminate
between infectious nonself and noninfectious self (965). Recent
work (157, 966–968) has also affirmed prior evidence that sialo-
glycan recognition by factor H can blunt immune responses by
inhibiting the alternate pathway of complement activation (966,
969). Siglec-9 recognition of hyaluronan may be another example
of a SAMP system (970). Not surprisingly, these very same self-
glycans are also common candidates for molecular mimicry by
commensals or pathogens that engage these inhibitory receptors
(see below).

Antigenic epitopes

In addition to the blood groups already mentioned, intra- and
interspecies variations in glycosylation can result in strongly anti-
genic epitopes. Indeed a significant fraction of circulating Ig found
in normal humans may be directed against foreign glycan antigens
(971–973). Certain types of modifications of N-glycans found on
plant and invertebrate glycoproteins can trigger immune reactions
in humans (974–977), including therapeutic glycoproteins
(835–836). In a more complex scenario, individuals exposed to
Lone Star tick bites seem to develop IgE antibodies against ɑ-Gal
epitopes (humans do not have these epitopes). Upon subsequent
exposure to mammalian foods that are rich in ɑ-Gal motifs (such
as red meats), individuals react (sometimes severely) in an apparent
“red meat allergy” (978–979). On another practical note, glycans
like ɑ-Gal and the nonhuman sialic acid Neu5Gc represent the
major xenoantigens that must be bypassed, to pursue the goal of
xeno- (pig organ) transplantation into humans. In pursuit of this
difficult goal, ɑ-Gal- and Neu5Gc-double null pigs have recently
been generated (980–983).

Xeno-autoantigens

It has recently been found that the nonhuman sialic acid Neu5Gc
can become metabolically incorporated from dietary sources (par-
ticularly red meat) into certain cell types in the body, appearing on
the surfaces of human cells as if it was synthesized by the individual
(984–985). These “xeno-autoantigens” are recognized by pre-
existing circulating “xeno-autoantibodies”, and the resulting “xeno-
sialitis” is suggested as one mechanism for the epidemiological asso-
ciation between red meat consumption and the exacerbation of
some common disease states, such as carcinomas and complications
of atherosclerosis (984–985). It would not be surprising if other
examples exist. One can imagine for example that bacterial nonulo-
sonic acids or plant monosaccharides that are structurally related to
host monosaccharides might get activated to their corresponding
nucleotide sugars and then get transferred onto endogenous glycans
at a low rate. While the efficiency of such a process would likely be
lower than that of Neu5Gc, the resulting immune responses might
be even stronger.

Molecular mimicry of host glycans

Given that the host immune system recognizes typical glycans found
on many pathogens are PAMPs and that endogenous glycans func-
tion as SAMPs, it is not surprising that microorganisms have
evolved ways to achieve molecular mimicry of host glycans. What is
remarkable is the striking extent to which such mimicry has been
achieved, via all imaginable mechanisms. Just a few examples are
cited here, with an emphasis on sialoglycan mimicry by vertebrate
pathogens.

Convergent evolution of host-like glycans

It was originally thought that pathogen molecular mimicry was
being achieved via vertebrate to bacterial gene transfer. While there
is continued controversy about the extent of horizontal gene transfer
between prokaryotes and eukaryotes (986), most instances of glycan
molecular mimicry by pathogens seem to involve convergent evolu-
tion of pre-existing pathogen biosynthetic pathways, or de novo
generation of functional genes. Demonstrating the power of natural
selection at the host-pathogen interface, Group B Streptococcus
polysaccharides (987) display identity to specifics of host glycan
structure such as the Neu5Acα2-3Galβ1-4GlcNAcβ1- (which per-
fectly matches the structure of N-glycan antennae on many human
glycoproteins), and Campylobacter species carry out near-perfect
mimicking of complex brain ganglioside glycans (988–989). In the
former case, it is evident that this mimicry allows the organism to
imitate endogenous SAMPs and down-regulate innate immune
responses by engaging the inhibitory Siglecs (962). In the latter
instance rare human immune responses against the ganglioside-like
structures can even result in serious illness, with the complement-
fixing antibodies damaging peripheral nerves (Guillain-Barré syn-
drome) (990–991). While Campylobacter sialylation may also
modulate immune responses via Siglecs during sporadic contacts
with humans (992–995), it is unclear why the organism (which nor-
mally lives in the chicken intestine) (996) has evolved this remark-
able degree of molecular mimicry of vertebrate ganglioside. Perhaps
there are Siglec-like inhibitory pathways in the chicken that have yet
to be discovered.?

Appropriation of host glycans

Continuing with the example of sialic acids as host molecular
mimics, microorganisms seem to have evolved every other conceiv-
able mechanism to achieve this goal. These mechanisms range from
the simple acquisition of host sialoglycans (997) to the direct trans-
fer of host sialic acids by trans-sialidases (998), to the highly efficient
uptake of the small amounts of environmental free sialic acids (999)
or even the direct utilization of trace amounts of CMP sialic acid
present in host body fluids (968, 1000). In addition to acting as
SAMPs recognized by Siglecs or limiting complement activation via
factor H recruitment, such terminal sialic acids also serve to mask
antibody recognition of underlying structures. The fact that numer-
ous organisms have independently evolved so many different ways
to decorate themselves with host-like sialoglycans (1001) speaks to
the strong selection pressure for this mimicry.

As with examples mentioned earlier, these “virulence factors”
may actually represent attempts at commensalism and symbiosis,
which become pathological in some circumstances. Many other
examples of host glycan mimicry can be cited (1002), such as the
bacterial re-invention of hyaluronan (163, 1003), heparosan (the
backbone of heparan sulfate) and chondroitin (the backbone of
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chondroitin sulfate) (1004–1005). Interestingly, there appear to be
limits to the “inventiveness” (constraints to convergent evolution) of
microorganisms. Despite hundreds of millions of years of selection,
no prokaryotes seem to have reinvented sulfation of glycosaminogly-
can backbones, nor recreated the difficult biosynthesis of the non-
human sialic acid Neu5Gc. While not exactly full-blown “mimicry”,
most viruses simply take over and use the host glycosylation
machinery to install glycans that mask and protect them from
immune destruction. Examples of molecular mimicry by pathogens
of plants or invertebrates need to be further investigated.

Multifunctional roles of the single type of glycan

The above classification of biological roles falls apart when one con-
siders certain glycan molecules that can mediate many different types
of roles, depending on the circumstance. An example is the lipopho-
sphoglycan of Leishmania species, which is needed for establishment
of initial infections in vertebrate hosts, and not for persistence or
pathology (1006)––but is later needed for binding to galectins
located on the surface of midguts of their invertebrate vectors
(1007). A more striking example is the myriad functions of heparan
sulfate proteoglycans, with different roles being mediated by slight
modifications of the molecule (155, 425, 427, 572, 628, 1008–-
1011). This is also exemplified by the widely disparate phenotypes
arising from genetic modifications in various steps involved in bio-
synthesis of the molecule. Thus for example, mice deficient in hepar-
an sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate
biosynthesis, abnormal placentation and late embryonic lethality
(1012) and autism-like socio-communicative deficits and stereotypes
appear in mice lacking heparan sulfate only in the brain (1013).

Even a structurally simple molecule like polysialic acid (an ɑ2-8-
linked homopolymer of N-acetylneuraminic acid) can have a
remarkable range of endogenous functions. For example, polySia
has been implicated in numerous normal and pathological processes
and phenotypes, including cell migration (1014–1016); cell differen-
tiation (1014, 1016); neurite outgrowth (1017–1019); blockade of
myelination (1020–1022); binding and modulation of neurotrophin
function (559, 1023–1025); alteration of synaptic plasticity (1026–-
1028); effects on learning and memory (1029–1032); facilitation of
repair following injury (546–547, 1033–1036); schizophrenia
pathogenesis (391, 1037–1042); major depression (553, 1043–-
1045); bipolar disorder (391–392, 1044); alcoholism (1046); epi-
lepsy (1047–1048) and social interaction (1049).

Some questions and issues arising

Some readers will likely feel that the examples of biological func-
tions discussed are not the most striking ones, and others will doubt-
less complain that numerous additional functions have not been
mentioned. Such deficiencies and limitations are simply an indica-
tion of how far the field has come in the last 20+ years since the last
review in 1993. Let us conclude this incomplete attempt by discuss-
ing some questions and issues arising, and some future prospects.

Why did glycans become the preferred cell surface

covering during evolution?

With the possible exception of transient bloodstream phase of cer-
tain parasites, there appears to be no exception thus far to the
“rule” that the surfaces of all cells in nature are covered with a
dense and complex coating of glycans, which is taxon-, species- and

cell-type specific (178). If it had been biologically possible to evolve
a living cell devoid of such a coating, such a cell would have no
doubt emerged from >3 billion years of evolutionary selection.
There is no single best explanation for this ubiquity of cell surface
glycans, and several mutually nonexclusive ones can be considered.
In addition to providing a physical barrier to protect the plasma
membrane, glycans tend to be hydrophilic, often do not have rigid
structures, and instead have significant freedom of motion in aque-
ous solution. These are the optimal properties for a class of mole-
cules that interact at the interface with an aqueous environment.
Also, it is difficult for cells coated only with proteins to evolve and
escape mechanism from a pathogen that binds to a specific cell sur-
face protein. Most amino acid changes are not usually well tolerated
by proteins, impacting folding and/or stability or even rendering the
molecule dysfunctional. In contrast, most intrinsic glycan functions
are mediated not by a single absolutely required sequence, but by an
ensemble of structures, spanning a continuum. Even the apparently
“lock-and-key” example of Man-6-P recognition of lysosomal
enzyme N-glycans discussed earlier actually involves a spectrum of
Man-6-P bearing structures with a range of binding properties to
two different M6PRs. In other words, many glycan functions are
“analog” not “digital”. Thus, it is easier for a host to escape patho-
gens by subtly changing glycosylation (i.e., glycans may convey
more robustness to the organism) without drastically altering intrin-
sic functions. Last but not least, a vastly greater number of struc-
tural variations can be generated via monosaccharide
oligomerization and branching in comparison with nucleic acids or
amino acids (1050). This increases the odds of evolutionary selec-
tion to escape from a cell surface interacting pathogen or toxin.

Red Queen effects in glycan evolution?

Given the above considerations, it is reasonable to suggest that gly-
cans are particularly prone to Red Queen effects (running to stay in
one place) (164). As illustrated in Figure 4, one can envisage several
such effects involving glycan interactions, leading to a delicate bal-
ance between preserving endogenous function and evading pathogen
attack (170). A more nuanced and sophisticated view that takes into
account additional evolutionary considerations can be found in
Figure 5 (173).

What is the significance of lineage-specific deletions or

additions of specific glycans?

In contrast to the genetic code, there are many more species-specific
variations in glycans, ranging from entire classes of glycoconjugates,
e.g., sulfated glycosaminoglycans not found in prokaryotes, to spe-
cific glycans, e.g., the absence of ɑ-Gal epitopes in old world mon-
keys (1051), and the independent losses of the sialic acid Neu5Gc in
humans (1052), new world monkeys (1053), mustelids and related
taxa (753), and apparently in sauropsids (the ancestors of birds and
reptiles) (1054). In every instance of apparent lineage-specific loss, a
careful phylogenetic analysis is needed to ascertain if the differences
are due to gain or loss of a specific gene or pathway and/or due to
convergent evolution (or particularly in the case of prokaryotes,
horizontal gene transfer). Regardless of the underlying mechanisms,
more studies are needed to understand not only the functions of
taxon-specific glycans but also the biological significance of their
loss in some lineages. Some data suggest that taxon-specific glycan
losses may have played a role in protection from parasites like mal-
aria (732, 1055), and even in speciation events, such as the origin of
the genus Homo (943).
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Why did evolution select O-GlcNAc as the dominant

form of intracellular eukaryotic glycosylation?

In striking contrast to the bewildering diversity of extracellular gly-
cosylation, there seems to be a limited number of forms of intracel-
lular glycosylation, with a single modification (O-GlcNAc)
numerically dominating the scene (647–648). One possible explan-
ation is that this intracellular environment is not subject to selection
pressures by myriad pathogens that express diverse and specific
glycan-binding proteins. More specifically with regard to O-GlcNAc
it has been suggested that the donor molecule UDP-GlcNAc acts as
an optimal metabolic sensor for multiple pathways, i.e., uridine,
phosphate, glucose, nitrogen and acetate (649, 651–653).

Do free oligosaccharides in the cytosol and serum have

specific functions?

During the N-glycosylation of glycoproteins in the ER, considerable
amounts of unconjugated polymannose-type glycans are generated
from breakdown of the lipid-linked precursor (1056). Later, mis-
folded glycoproteins that are returned to the cytosol for proteasomal
degradation are first subject to a cytosolic PNGase enzyme that
releases free oligosaccharides (890). Such free oligosaccharides are
then subject to either further cytosolic catabolism or pumped back
into lysosomes for degradation (1056). Even free complex N-glycans

bearing sialic acids can also be found in the cytosol (1057). The
question arises as to whether such glycans mediate any specific func-
tions in the nucleocytosolic compartment, before they are degraded,
such affecting transcription. Meanwhile, free sialyloligosaccharides
related to N-glycans have recently been found in serum (1058), and
may also have novel functions yet to be discovered.

Can a glycan-binding protein recognize more than one

class of glycan?

Glycan-binding proteins are often discovered based on their recogni-
tion properties, and given names related to their initially discovered
binding targets, e.g., Galectins bind β-galactosides (323), and Siglecs
recognize sialic acids (329). However, many examples have emerged
wherein well-known glycan-binding proteins are discovered to also
bind to unrelated glycan class, sometimes not even obviously similar
in structure. In some instances, this is simply because the protein in

Fig. 4. Red Queen effects in the evolutionary diversification of glycans. Each

arrowed circle represents a potential evolutionary vicious cycle, driven by a

Red Queen effect, in which hosts are constantly trying to evade the more

rapidly evolving pathogens that infect them. Hosts require glycans for crit-

ical cellular functions but must constantly change them to evade glycan-

binding pathogens, and yet do so without impairing their own fitness. Hosts

also produce soluble glycans such as mucins, which act as decoys to divert

pathogens from cell surfaces; but pathogens are constantly adjusting to

these defenses. Hosts recognize pathogen-specific glycans as markers of

“non-self,” but pathogens can modify their glycans to more closely mimic

host glycans. There are also possible secondary Red Queen effects involv-

ing host glycan-binding proteins that recognize “self”. In each of these

cycles, hosts with altered glycans that can still carry out adequate cellular

functions are most likely to survive. Reproduced with permission from Varki

A. 2006. Cell. 126:841–845. Copyright Elsevier.

Fig. 5. Evolutionary conflicts between alleles and individuals. For single

allele-single individual, single alleles conflict with themselves when their

positive effects in one context cause negative effects in another. Some

examples are here. Selectins on epithelial cells bind glycans on leukocytes

and guide them to sites of inflammation, but this can also be exploited by

cancer cells. Regulatory or functional changes that separate conflicting tasks

are expected to evolve in response. For single allele-multiple individuals,

conflicts can extend across individuals that share an allele. Females that lack

Neu5Gc raise antibodies against it. Males that lack Neu5Gc have higher rates

of fertilization, and females have lower rates. Individual-specific regulation

could resolve these conflicts. For multiple genes-single individual, selfish

alleles can bias reproduction in their favor at the cost of individual reproduc-

tion, causing conflict with other genes in the genome. Mutant alleles that

favor heterozygotes are passed more often than expected but increase the

risk of congenital disorders of glycosylation. Other genes are selected to sup-

press the selfish allele, often by modification of chromosomal recombination

and linkage. For multiple genes-multiple individuals, molecular markers of

self cause cells to direct benefits toward identical genetic relatives, but they

can be exploited by pathogen mimics. Co-evolution is a common outcome,

as hosts develop more reliable markers of self, and pathogens develop more

effective molecular mimics. Reproduced with permission from Springer and

Gagneux, 2013, J Biol Chem, 288:904–6911.
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question has two distinct binding modules, e.g., the L-type lectin
mannose receptor can also have a separate R-type lectin module
that recognizes sulfated GalNAc residues on pituitary glycoprotein
hormones (1059). However, in many other cases, the binding region
is shared or very close by. Thus for example, selectins that were ori-
ginally defined by their binding to sialylated fucosylated glycans can
bind quite well to certain subsets of heparan sulfate glycosaminogly-
cans (1060–1061). Likewise, Fibroblast Growth Factor-2 can bind
both to polysialic acid and heparan sulfate (1025), and Siglec-9
binds both sialic acids and hyaluronan (970). Recently, it has even
been shown that some galectins bind efficiently to as yet undefined
motifs on bacterial surfaces (777) as well as to some sulfated glyco-
saminoglycans (1062), in a manner still inhibitable by its canonical
ligand lactose. In most such instances, it is unclear what the shared
glycan motif is. Given great dissimilarities in primary structure,
cross-recognition perhaps arises from “clustered patch” combina-
tions (146, 302) of components of more than one monosaccharide,
such as hydroxyl, carboxyl, sulfate, acetyl groups, etc. Given exist-
ing difficulties in efficiently incorporating even small, defined cog-
nate ligands into the binding pockets of crystal structures of glycan-
binding proteins, it will be challenging to compare such disparate
ligands and define the shared recognition components. Regardless, it
is clear biological functions of a glycan-binding protein should not
be assumed to be mediated by the canonical glycan ligand class that
originally defined the name of the protein.

How many more glycan-binding proteins are there yet

to be discovered?

Regarding extrinsic (interspecies) binding proteins, it is reasonable
to predict that for every specific glycan found on the cell surfaces of
a host there is somewhere, a pathogen or symbiont that has devel-
oped an exquisitely specific binding protein for the glycan. Indeed, if
this vast array of binding proteins could be isolated and converted
into useful probes, one could have a new approach to “glycomics”,
which actually studies the intact (naturalistic) glycome, in a manner
that is exactly as it is “seen” by binding proteins in nature. The first
steps in this direction have already been taken, and the results are
very promising (1063–1066).

With regard to intrinsic (intraspecies) binding proteins, the situ-
ation is less clear. However, the serendipitous mechanism by which
many of them have been discovered suggests that a systematic
approach to future discovery may be useful. Consider the case of
sialic acid-binding proteins. As late as the 1970s, it was thought that
sialic acids were just biological masks, and that there were no bind-
ing proteins intrinsic to the organism synthesizing them. Notably of
the few sialic acid-binding proteins reported since then, i.e., Factor
H (1067–1068), Selectins (286), Siglecs (324–325), PILRs (1069)
and PECAM-1 (1070–1071), almost all were discovered serendipit-
ously to recognize sialic acid, based on an unexpected loss of a func-
tional readout upon sialidase treatment. Given that sialic acids have
been present on the glycocalyx of the Deuterostome lineage of ani-
mals for more than 500 million years, it would not be surprising if
there are many more as yet undiscovered sialic acid-binding proper-
ties of other already known proteins. The same is likely to be true
for other classes of glycans, especially terminal and exposed struc-
tures. On the other hand, given relatively low single-site-binding
affinities, a systematic approach to discovering such proteins may
not be trivial. Sialoglycan array studies recently revealed the sialic
acid-binding properties of M-ficolin (1072). On a cautionary note,

the very high density of targets in glycan arrays might also detect
binding specificities that may not exist in nature.

Is glycan recognition by proteins really of “low

affinity”?

Compared to protein–protein interactions that typically have mea-
sured binding affinities in the nanomolar range, studies of important
glycan–protein interactions usually give values in the micromolar, or
even millimolar range. While there can be a high degree of recogni-
tion specificity, the single-site affinity is typically poor. Various rea-
sons are discussed, and this general observation underscores the
frequent need for multivalent avidity, in order to generate effective
biological functions or effective experimental probes (1073). Of
course, multivalency is the general state of most biology at the cell
surface as nothing is present in only one copy. Thus effective affinity
in nature is actually quite high. Regardless, in reality most glycans
in aqueous solution are in constant motion and constitute an ensem-
ble of many different shapes generated by many mobile bond angles,
which are constantly interchanging (1074–1075). In order for the
more rigid and ordered binding pockets of glycan-binding proteins
to bind such “shape-shifting” glycans, they must actually “trap”
one of the numerous possible solution conformations of the cognate
glycan into the pocket, where the immobilized glycan can be seen in
a crystal structure. Strictly speaking then the effective concentration
of the true cognate glycan is far lower than that of the total glycan
concentration, likely in the nanomolar range. Exceptions may arise
when the glycan targets are restricted in their motion, forming “clus-
tered saccharide patches”, such as on the surface of densely glycosy-
lated cells, mucins or viruses (146, 544).

Can we better define and name specific glycoform

ligands for glycan-binding proteins?

In some cases, the natural ligands for glycan-binding proteins can be
defined by the primary sequence of the cognate glycan, e.g., the
Sambucus nigra agglutinin binds the motif Siaα2-6Gal(NAc).
However, in other instances the ligand is a specific glycoform of a
particular glycoprotein, which is difficult to define in terms of a cog-
nate glycan sequence. This results in the inadvertently erroneous
statements, implying that the polypeptide is the ligand, e.g., “PSGL-
1 is the ligand for P-selectin” (1076); or “CD24 is the ligand for
Siglec-10” (965) (PSGL-1 and CD24 are actually the designated
names of the core polypeptides). It also leads to incorrect assump-
tions, e.g., that a glycoform of CD24 must automatically be the lig-
and for mouse Siglec-G, the mouse ortholog of human Siglec-10
(965). In these and many other such instances, the ligand is actually
a specific glycoform of the named polypeptide, and is only synthe-
sized by certain cell types with the right kind of glycosylation
machinery, i.e., the same carrier polypeptide does not serve as a lig-
and in other situations. In the case of a CD44 glycoform from hem-
atopoietic stem cells that is a specific ligand for E- and L-selectin
(1077–1078), the authors reasonably chose to rename the molecule
altogether as HCELL (hematopoietic cell E- and L-selectin ligand)
(921). However, this leaves out the useful information that the
underlying polypeptide is CD44. A compromise may be to list the
name of the polypeptide and use the superscript to indicate that it is
a specific glycoform that generated the ligand in question, e.g.,
CD44HCELL or HCELLCD44. As with most nomenclature issues, it
may be hard to find consensus on this matter. Suffice it to say that
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there is need for a resolution, to make it easier to understand the lit-
erature on ligands for glycan-binding proteins.

Why has it taken so long to elucidate biological roles

of glycans?

It is clear that glycans got “left out” of the initial phase of the
molecular biology revolution of the 1980s, not only because they
were more complex and difficult to study, but also because they
were not part of the original “central dogma” (1079). This resulted
in a peculiar distortion of the bioscience community, in which an
entire generation of biologists (beginning in the 1980s) has been
trained without much knowledge or appreciation about the struc-
ture, biosynthesis and roles of glycans in nature (1080). The relative
lack of interest in glycans can also be partly traced to the early lack
of understanding of their biological roles. So, why was it so difficult
to elucidate biological roles of glycans? Some of the reasons are
obvious, such as the technical difficulties in detection, analysis and
manipulation in biological systems. Some additional considerations
are outlined in Figure 6. Because of the information embedded in
the template-driven biosynthesis of nucleic acids and proteins, it has
been relatively easy to go from one to the other, using sophisticated
yet facile experimental methods, and via bioinformatic predictions.
Also as shown in the upper panel of Figure 6, the path to defining a
specific function as being mediated by a specific protein has been
relatively straightforward. In striking contrast the field of glycos-
ciences originated in “descriptive” carbohydrate chemistry and bio-
chemistry and remained in these domains for a long time. New
glycans were discovered by a variety of means (such as those shown
in lower panel of Figure 6) and their structure and biosynthesis were
elucidated. Studies of changes in development and disease were
almost guaranteed to show interesting findings, justifying further
funding and research. It was also necessary to decipher the biosyn-
thetic enzymes and mechanisms involved in generating each glycan.
Thus there was plenty of interesting work to do, other than take on
the most difficult task of elucidating function. Also, many of the
functions of glycans tend to be “analog” and not “digital”, and
many glycans have more than one disparate function. Finally, the
rapid evolution of glycans has generated a lot of species-specific dif-
ferences, making it difficult to find common themes applicable to all
major model systems studies in biology. With the power of modern
glycomics and the move to integrate glycosylation data into multio-
mic studies, it now possible to get past these difficulties and study
the functions of glycans like never before. But we still then need to
define the glycome.

What is the glycome?

It is clear that the glycome of an organism is far, far more complex
than that of its genome, transcriptome or proteome, and it is only
recently that “glycomics” has become practically feasible (1065,
1081–1089). Daunting and sophisticated as it is, most of what is
called glycomics in 2016 still amounts to generating a “parts list” of
all the glycans one can find in a given cell type or tissue at a particu-
lar point in time and space, i.e., similar to a peptide map of a mix-
ture of proteins. In addition, current methods partially or
completely destroy or miss labile modifications like acetylation, sul-
fation, phosphorylation, lactylation, pyruvylation, etc. More efforts
are needed to discover all the glycan attachment sites on proteins
and lipids, in a cell type in question (1089). Eventually, we
need not only to define all of the above, but also to understand and
visualize the conformation and organization of glycans on

individual cell types and surfaces, in the form of “clustered sacchar-
ide patches” (146, 302), or glycosynapses (87). In the final analysis,
full understanding of the biology of glycans will require this compre-
hensive type of view for which analytical techniques are yet to be
defined. But great advances are being made by many investigators in
all of the above levels of glycomics, and the future looks bright.
Moreover, we can take advantage of the fact that pathogens and
commensals have already spent million of years adapting to interact
with the glycans of their hosts, and have already evolved highly spe-
cific binding proteins for recognition. Thus as mentioned earlier, an
entire array of probes for defining the glycome is already available
in nature, waiting to be isolated, characterized and eventually con-
verted into practical tools, if necessary with further mutations.
Initial steps in this direction are also very promising (1090).

What biological roles do glycans not mediate?

This rhetorical question seeks to emphasize that the biological roles
of glycans are highly varied, and span the spectrum of possibilities.
So the exceptions are few. So far there does not seem to be an
example of multigenerational information transfer directly mediated
by glycans, such as that mediated by DNA or RNA. But it has
recently become evident that O-GlcNAc can modify RNA polymer-
ase II, histones, histone deacetylase complexes and members of the
Polycomb and Trithorax groups (1091–1092). Thus, it is suggested

Fig. 6. Contrasts in early approaches to the discovery and characterization of

proteins and glycans. Compared to the robust and relatively easy interdirec-

tional progress in the early study of proteins, often originating from initial

knowledge of their functions (upper panel), early approaches to the discov-

ery and characterization of glycans (lower panel) did not often originate from

functional clues. See text for discussion.
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that O-GlcNAc cycling serves as a mechanism linking nutrient avail-
ability to chromatin organization, histone modification and epigen-
etics (711). It remains to be seen if such epigenetic effects can
mediate intergenerational transfer, in a manner similar to other epi-
genetic marks. There are also no clear-cut examples of glycans act-
ing as enzymes [if one excludes RNA from being considered as a
polysaccharide, and intramolecular self-cleavage of PolySia (1093)
as a chemical anomaly].

Why the persisting lack of attention to this fundamental

component of biology?

Glycans are a major and integral part of all biological systems, and
>3 billion years of biological evolution has failed to generate any

life form on the planet that is not absolutely dependent on glycan
chains for its existence. Yet the current situation is comparable to
that in cosmology, with a standard model based on extant knowl-
edge––that functioned well until it was realized that the bulk of the
universe consists of dark energy and dark matter, which had been
previously ignored. In effect, glycans have become the “dark mat-
ter” of the biological universe (1094), important yet poorly under-
stood and therefore deserving special attention. However the levels
of funding, the number of scientists involved and the scientific popu-
larity of Glycosciences remain low. Many of the reasons are evident
from the foregoing discussion. As mentioned earlier, a major issue is
the fact that an entire generation of scientists has been trained with
a limited knowledge of this class of molecules, and they are unlikely

Fig. 7. Approaches towards elucidating biological roles of glycans. The figure assumes that a specific biological role is being mediated by recognition of a cer-

tain glycan structure by a specific glycan-binding protein. Clues about biological roles could be obtained by a variety of different approaches. For detailed dis-

cussion of each approach, see the original reference. Not shown are newer methods taking advantage of the power of chemoenzymatic synthesis and the

introduction of modified sugars with bioorthogonal reporter groups into biological systems. Drawing by R. Cummings, updated from ref. 160 with permission

from the Consortium of Glycobiology Editors.
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to now turn to studying them. Thus, a new generation of young
minds needs to be educated, in this aspect of biology. The other
major factor is the lack of easily available technologies for the syn-
thesis and analysis of glycans. In this regard, the 2012 US National
Academies/National Research Council report on the future of
glycoscience concluded by recommending: “…transforming Gly-
coscience from a field dominated by specialists to a widely studied
and integrated discipline, which could lead to a more complete
understanding of glycans and help solve key challenges in diverse
fields”, and emphasized the need to invest in education and technol-
ogy development (1095). A more recent NIH working group report
further emphasizes the need for training in Glycoscience (1080).

Future prospects

Many functions of glycans will continue to be discovered by the
conventional processes of scientific investigation that will serendipit-
ously come upon such functions. However, there are several poten-
tial systematic approaches to uncovering these functions that are
depicted in Figure 7. Each approach has its pros and cons, which
are discussed in detail elsewhere (160). Also not fully shown in this
figure are newer methods taking advantage of the power of che-
moenzymatic synthesis (62, 127, 158) and introduction of modified
sugars with bioorthogonal reporter groups into biological systems
(111). As with any biological questions, there are pros and cons of
studying isolated cells versus intact organisms. And one must always
ask how species- or taxon-specific a given function might be. All of
approaches depicted in Figure 7 are rendered difficult in the case of
glycan types that have numerous nonoverlapping functions in the
same biological system. As the late Philip Majerus once put it, trying
to decipher the roles of such molecules by preventing their synthesis
or by destroying them after the fact is like “sifting through the ashes
to find out how dynamite works”. Of course this problem is not
unique to glycans. Complexity and pleiotropy are inherent in all of
biology, and the same could be said of other post-translational
modifications.

One would have to go back very many decades to find reviews
about “biological roles of nucleic acids” or “biological roles of pro-
teins”. The fact that such a review on roles of glycans was necessary
in 1993 indicates how far behind we were in our understanding of
their biology. As this update after 23 years shows, we have come a
very long way, and one author now can barely scratch the surface
of the topic in a single review. The time has come for the biology of
glycans to be “mainstreamed” with that of the other major macro-
molecules that are universal to all life forms. But this requires a con-
certed effort on the part of all biologists and naturalists, to fully
integrate the roles of glycans into their thinking about living sys-
tems. Once that happens, there will no longer be any need for writ-
ing another review like this one.
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