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The ubiquitous apicomplexan parasite Toxoplasma gondii
stimulates its host’s immune response to achieve quiescent
chronic infection. Central to this goal are host dendritic cells.
The parasite exploits dendritic cells to disseminate through the
body, produce pro-inflammatory cytokines, present its anti-
gens to the immune system and yet at the same time subvert
their signaling pathways in order to evade detection. This
carefully struck balance by Toxoplasma makes it the most
successful parasite on this planet. Recent progress has
highlighted specific parasite and host molecules that mediate
some of these processes particularly in dendritic cells and in
other cells of the innate immune system. Critically, there are
several important factors that need to be taken into
consideration when concluding how the dendritic cells and
the immune system deal with a Toxoplasma infection,
including the route of administration, parasite strain and host
genotype.

Introducing Toxoplasma gondii

Imagine you are Toxoplasma gondii, arguably the most successful
parasite on this planet.1-3 Your ultimate goal is to sexually replicate
in a feline, whether it be an Asian leopard, an African lion, a
South American puma or maybe the common European pet cat.4

The way you achieve this is to efficiently infect, yet not kill, an
intermediate host and persist to chronicity. The immune system
of your intermediate host presents challenges, but also opportun-
ities. At the forefront of what you encounter are dendritic cells
(DCs): secretors of defense molecules, mediators of crosstalk to T
cells, but also potential shuttle rides to various locations within
your host. The consequences of these interactions most likely
affect human infections, for example in terms of the prevalence of
particular parasite strains, their clinical impact and the way in
which the parasite has evolved to manipulate an intermediate
host.1,5-7

All warm-blooded mammals including humans and birds are
potential intermediate hosts for Toxoplasma and the parasite
exists in two inter-convertible stages: the lytic, invasive and active
tachyzoites and the slow-growing, encysted bradyzoites. In the
definitive host, the feline, the parasite presents as oocysts, which
are shed for a limited period in the feces and are highly infective
and long-lived.4 Natural infection usually proceeds by direct
contact with oocysts or by ingesting undercooked meat containing
bradyzoite cysts. Bradyzoite cysts convert to tachyzoites in the
small intestine of the intermediate host and can infect almost all
nucleated cells. Here they replicate within a parasitophorous
vacuole (PV), egress by lysing the cell and infect neighboring cells.
Tachyzoites elicit a potent immune response that eliminates most
parasites. However, some tachyzoites can evade this response,
convert back to bradyzoites and persist mostly in non-replicative
cells such as those in the brain or heart of their intermediate host.
Toxoplasma-infected intermediate hosts will present with a
chronic infection of bradyzoite cysts for the rest of their lives.
Tachyzoites that grow in the absence of a functioning immune
system cause tissue destruction, which can be fatal. Alternatively,
an overstimulation of the immune system can lead to hyperin-
flammation with equally fatal consequences to the host. Thus,
Toxoplasma needs to carefully strike a balance between inducing
and evading the immune response to reach its ultimate goal of
quiescent chronic infection in the brain. Clinically, immunocom-
promised individuals are most at risk of developing encephalitic,
ocular or pneumatic toxoplasmosis by reactivation of bradyzoite
cysts to tachyzoites in neural or muscle cells.3,8 Moreover, vertical
transmission of an acute infection from a mother to her unborn
child can lead to spontaneous abortion, stillbirth or severe birth
defects in the form of ocular or neurological deficits.9 To date no
human vaccine is available, the chronic phase of infection is
refractory to all anti-toxoplasmotic drugs and diagnosis of a recent
infection remains challenging.10

Furthermore, it is important to note that Toxoplasma exists as
strains of varying genotypes, resulting virulence and potential
disease outcome. Isolates from humans and livestock in Europe
and North America mostly fall within three clonal lineages, type I,
II and III. Of these, type I is highly virulent in mice (lethal to
mice at just one parasite), while type II and III Toxoplasma are
much less virulent (lethal to 50% of a mouse colony at 103–105
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parasites). Recent progress in sample collection from wildlife and
more advanced genotyping methods have securely placed atypical
strains on the Toxoplasma population map (reviewed in ref. 11).
Currently, it is unclear how and why this population structure has
evolved, what the natural hosts for different strains are and how
this has impacted parasite selection by hosts’ immune responses.
Moreover, distinct Toxoplasma protein products, such as Rop16,
Rop18, Rop5, Gra2 and Gra15 have been identified as some of
the causes of these differences in virulence at least in mice.12-17 In
the future it will become increasingly important to assess studies
of the immune response to Toxoplasma by carefully noting the
strain of Toxoplasma utilized, its dose and potential attenuation
state and the route of administration to which strain of mice.

Immune Control of Toxoplasma gondii

Toxoplasma is promiscuous and can infect virtually any nucleated
host cell.18 Asymptomatic infection is achieved by the rapid
induction of a strong cell-mediated immune response, which
elicits production of high levels of gamma interferon (IFNc) by
natural killer (NK) cells, CD4+ and CD8+ T cells during the acute
and chronic phase of infection. Interleukin 12 (IL-12) is the
major cytokine inducing IFNc production by lymphocytes and is
derived mainly from dendritic cells, macrophages, neutrophils and
monocytes.19 These two cytokines drive the strong Th1-biased
phenotype of CD4+ and CD8+ T cells. Early in the acute phase of
infection, NK cell-derived IFNc is triggered by IL-12 production
leading to protection against the infection.20,21 Essential in both
the acute and chronic phase of infection is the IFNc-producing
capability of CD8+ T cells, ultimately aiding in the establishment
of chronic infection.22,23 Eventually, the anti-inflammatory
cytokines IL-10, TGFβ and IL-27 are responsible for dampening
the inflammatory response and minimizing damage caused by
inflammation.24-28 Toxoplasma seemingly has the ability to
determine its own destiny by maximizing its persistence and
minimizing host immunopathology, and all of this in the presence
of one of the most powerful pro-inflammatory responses known.
It is becoming increasingly clear that different types of
Toxoplasma elicit different innate immune responses and in
mice, virulent Toxoplasma fails to establish a life-long chronic
infection, killing the host prematurely due to hyperinflammation
or heavy parasite burden depending on mouse genotype.29-32

IFNc activates different intracellular anti-parasitic defense
mechanisms within infected cells. In both mice and humans the
production of reactive nitrogen intermediates by NK and T cells,
macrophages, antigen presenting cells (APC) and neutrophils
leads to metabolic poisoning of the parasite.33-36 IFNc activates
indolamine 2,3-deoxygenase that in turn induces tryptophan
degradation and thus inhibits parasite growth.37-39 The p47
GTPases, a class of large GTPases present in the mouse genome
are transcriptionally upregulated in response to IFNc in cells such
as macrophages, astrocytes and fibroblasts, and confer resistance to
Toxoplasma by mediating vacuolar degradation.40,41 In humans
and in mice, IFNc can also upregulate guanylate binding proteins,
that are implicated in Toxoplasma vacuolar recognition42,43 and
mediation of bacterial defense mechanisms, such as autophagy,

control of reactive oxygen bursts and control of ubiquitinated
cargo, reminiscent of potentially important anti-Toxoplasma
measures.44

In this review, we focus on how DCs are manipulated by the
apicomplexan parasite Toxoplasma gondii in its natural host to
achieve a state of chronic infection. For a brief visual summary
please refer to Figure 1.

Molecular Recognition of Toxoplasma gondii
by Dendritic Cells

Toxoplasma orchestrates a carefully balanced string of events
between various cell types including neutrophils, DCs and
macrophages upon first encountering the host’s innate immune
defense. A complex network of molecular signaling pathways leads
to the activation and regulation of cytokines and ultimately to the
production of effector molecules. Here, we focus on the parasite
molecules that stimulate or manipulate host responses in DCs. A
more global view of the parasites interaction with other cells of the
innate immune system has been expertly reviewed previously.19,45-47

IL-12 production by DCs is often used as a measure of
Toxoplasma recognition by these immune cells. It had been found
that the IL-12 response of splenic DCs to soluble parasite extract
(STAg) exceeded that of lipopolysaccharide (LPS) and CpG
oligonucleotides.48 In a seminal study, it was recognized that the
Toll-like receptor (TLR) adaptor protein MyD88 is a molecule of
major importance in host defense to Toxoplasma, with STAg
being capable of mediating the induction of IL-12 production by
DCs either in vivo or ex vivo (see Fig. 1, Infection Site).49 In the
search for which TLR would be the major player in DC
activation, TLR11 was identified to signal upon binding a
Toxoplasma profilin-like molecule.50 The resulting IL-12 pro-
duction was selective to the CD8a+ subset of DCs.50,51 In a more
recent study, TLR11 was localized intracellularly in association
with the nucleic acid-sensing TLR trafficking protein
UNC93B1.52 Mice carrying a single point mutation in
UNC93B1, retaining the protein in the endoplasmic reticulum
thus preventing intracellular TLR trafficking, are highly suscept-
ible to Toxoplasma and produce less IL-12 upon intraperitoneal
(i.p.) Toxoplasma bradyzoite infection.52,53 As direct infection of
DCs by Toxoplasma was not required, but in fact very low levels
of Toxoplasma profilin were sufficient to induce cytokine
production in a transwell assay, it can be speculated that the
intracellular location of TLR11 is a very sensitive way to sense
Toxoplasma products after phagocytosis.52 However, TLR11−/−

mice survive acute Toxoplasma infection in contrast to the severe
lethality seen for MyD88−/− animals, but display increased cyst
burden in the chronic phase.50

Albeit not demonstrated specifically in DCs, other TLRs, such
as TLR2, can also be activated in response to Toxoplasma.54

TLR2 and TLR4 both signal after binding Toxoplasma
glycosylphosphatidylinositol (GPI) anchors,55 however single
absence of either TLR2 or TLR4 in DCs did not reduce the
production of IL-12 in response to STAg.49

The route of infection plays an important role in TLR
recognition of Toxoplasma. It has long been established that
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C57BL/6 mice infected per oral (p.o.) with Toxoplasma develop
severe pathology in the small intestine due to pro-inflammatory
cytokines.56 DC maturation and migration to the draining lymph
node (LN), as well as resulting CD8+ and CD4+ T cell activation are
impaired in TLR9−/− mice infected orally with Toxoplasma.57,58

Parasite-induced damage of the intestinal mucosa is decreased in

TLR4−/− mice59 and in mice treated with broad-spectrum
antibiotics60 in association with decreased pro-inflammatory
cytokines. In contrast, TLR2−/−, TLR4−/− and TLR9−/− mice
infected systemically i.p. with Toxoplasma demonstrate limited
susceptibility and no appreciable defect in IL-12 production in
response to the infection as opposed to the same animals receiving

Figure 1. Complexity of dendritic cells interactions with Toxoplasma gondii on its way to achieve persistence in the host. Infection site: Toxoplasma enters
an intermediate host’s body either via the natural route of infection in the gut or as in numerous studies covered here, after being intraperitoneally
injected as tachyzoites. Regardless, dendritic cells (DCs) present the first line of defense. Toxoplasma infected and bystander DCs secrete the cytokine IL-
12, which in turn stimulates the production of IFNc by natural killer (NK) cells. Molecular recognition of Toxoplasma products by DCs proceeds via CCR5
sensing Toxoplasma cyclophilin18, TLR-mediated sensing of Toxoplasma profilin or other yet unknown parasite products. It remains to be investigated if
IFNc-upregulated GTPases and autophagy contribute to parasite elimination in DCs as already shown in macrophages. Arrow (A): Infected and activated
bystander DCs travel from the infection site to the secondary lymphoid organ. Secondary lymphoid organ: Infected and activated bystander DCs produce
IL-12 and activate CD4+ and CD8+ T cells to proliferate and produce IFNc to activate effector molecules and mechanisms. Arrow (B): Proliferated and
activated CD4+ and CD8+ T cells travel back to the infection site. Arrow (C): Infected DCs/monocytes are used as a Trojan horse by Toxoplasma to cross
the blood brain barrier. Next activated CD4+ and CD8+ T cells cross the blood-brain barrier. Brain: Toxoplasma-infected and bystander DCs, astrocytes and
microglia can present antigens to CD4+ and CD8+ T cells which secrete IFNc. IFNc secretion by CD8+ T cells is the dominant and necessary immune
response for the parasite to be maintained in the bradyzoite stage and to avoid recrudescence to tachyzoites.
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the parasite orally.58 Germ-free mice fail to produce IL-12 upon
p.o. Toxoplasma infection, an ability that can be rescued by co-
administering LPS.58 The resulting model proposes that parasitic
infection causes damage to the intestinal epithelium resulting in the
translocation of microflora and subsequent MyD88-dependent
signaling and IL-12 production.

DC mobilization and IL-12 production by DCs are moreover
mediated by a MyD88-independent mechanism via the chemo-
kine receptor CCR5 (see Fig. 1, Infection Site). Following
Toxoplasma infection, increased parasite cyst numbers correlate
with lower levels of serum IL-12 and IFNc in CCR5−/− animals.61

Secreted parasitic cyclophilin (C18) was shown to trigger IL-12
production by DCs albeit to a lesser extent than STAg itself.62 It is
important to note that both of these studies were performed by
i.p. injection of STAg. When tachyzoites of type I vs. type II were
injected i.p., different panels of chemokines were produced by
macrophages at the site of infection possibly leading to the
recruitment and retention of different cell populations.63,64

Natural Toxoplasma infection usually occurs by ingesting
infectious oocysts or bradyzoite cysts. Few studies have addressed
the role of DCs and how they sense parasite products after oral
infection. Gr-1+ inflammatory monocytes were found to be
required to mediate mucosal resistance of Toxoplasma after oral
infection of B57BL/6 mice, a property not dependent on CD11c+

DCs, but on the presence of the chemokine receptor CCR2.65

It is possible that DCs can directly act as effector cells to
eliminate Toxoplasma as suggested by their ability to display
oxygen-dependent microbicidal activity after IFNc activation.66

Moreover, plasmacytoid DCs (pDCs) have been shown to be
efficient at autophagy,67 a process known to eliminate
Toxoplasma in primed macrophages68-71 and to involve the family
of p47 GTPases (see Fig. 1, Infection Site).69 The various subsets
of DCs possibly recognize either direct infection with Toxoplasma
or sense parasite products differently, and are thus important
mediators of parasitic elimination and facilitators for the
development of an efficient adaptive immune response. We will
discuss which DC subsets are responding with IL-12 production
after sensing the parasite in the next section.

Toxoplasma gondii Stimulates IL-12 Production
by Dendritic Cells

Toxoplasma is a powerful inducer of DC-derived IL-12. IL-12
critically drives Th1 cell development.72 In the first report linking
this cytokine to mouse DCs, splenic CD8a+ DCs stimulated in
vivo intravenously with STAg produced IL-12 without priming
by IFNc.73 Subsequently, CD11c+ DCs, both of the CD8a+ or
CD8a− type, and pDCs have all been shown to play an important
role in host resistance to Toxoplasma through their capacity to
produce IL-12. Additionally, besides DCs, inflammatory mono-
cytes, neutrophils and macrophages are all implicated in IL-12
production during early phases of infection.20,74-76 Which of these
cellular sources confer protection against the infection in vivo is
currently being investigated and debated.

IL-12 is a heterodimer consisting of a p40 subunit that is also
shared with the cytokine IL-23. The p40 subunit is covalently

linked to a light chain p35 subunit to make biologically active
IL-12, also known as IL-12p70. IL-12p40 deficient mice are more
susceptible to Toxoplasma infection than IL-12p35 deficient
mice, but both are more sensitive than wild-type mice.77 Mice
deficient in IL-23p19, the subunit specific to IL-23, develop
normal T cell responses upon Toxoplasma infection and can
control parasite replication.77 Several cell types produce high levels
of the heterodimer IL-12p70 and its production depends upon
parasite genotype. In macrophages, it has been shown that acute
type II infections induce both IL-12p40 and IL-12p70
production while type I infections primarily induce high levels
of IL-12p40.76,78 An attenuated type I parasite in contrast to
replicating type I Toxoplasma led to the production of IL-12p70
systemically and in peritoneal cells.79

Conventional CD11c+ DCs have been shown to play key roles
in host resistance to Toxoplasma bradyzoite cysts administered
i.p.80,81 In the first study, a lineage ablation approach was used by
transgenic expression of simian diphtheria toxin receptor under
control of the CD11c promoter. Diphtheria toxin administration
to these mice causes transient deletion of CD11c-expressing cells
and renders these animals more susceptible to i.p. Toxoplasma
bradyzoite infection. In the second study, MyD88 was exclusively
deleted by Cre recombinase in CD11c-expressing cells. This
decreased early IL-12 production, again after i.p. infection with
Toxoplasma bradyzoite cysts, and delayed the IFNc response by
NK cells, rendering the mice more susceptible to infection. While
both elegant studies, they do not formally exclude the possibility
that IL-12 is produced by CD11c-expressing macrophages.
Besides conventional DCs, pDCs have been shown to expand
after p.o. or i.p. infection with type II parasites.82 In vitro infected
pDCs were shown to produce IL-12p40, a phenomenon
dependent on TLR11.82 Upon deletion of the transcription factor
interferon regulatory factor 8 (Irf8), mice infected i.p. with type II
bradyzoite cysts failed to transcribe IL-12p40, a property ascribed
to either macrophages and/or dendritic cells and rendering the
mice susceptible to the infection.83 Batf3−/− mice are specifically
defective in generating CD8a+ DCs and exhibited decreased
IL-12 and IFNc production and succumbed during the peak of
acute infection to Toxoplasma type II tachyzoite administered
i.p.84 Splenic CD8a+ DCs expanded from 2.5% to 17% of the
total DC compartment after infection in wild-type mice, and
interestingly the resulting CD8+ T cell response to two
endogenous Toxoplasma antigens (Gra4 and Gra6) investigated
was defective. Another report finds circulating Ly6C+ monocytes
to be recruited to the site of Toxoplasma infection and to
differentiate into macrophages and IL-12 producing CD11b+

CD8a− DCs. NK cell-derived IFNc was deemed to be crucial for
monocyte differentiation at the site of infection.85 This study was
performed using i.p. infection with Toxoplasma type II bradyzoite
cysts. Both studies reciprocally infect with bradyzoite vs.
tachyzoites i.p. and confirm that this changes the major IL-12
producing DC subset originally described. Thus it seems
imperative to correlate the original question asked with the type
and route of Toxoplasma infection chosen.

It has been shown that injection of STAg renders DCs
unresponsive to further IL-12 production triggered by subsequent
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Toxoplasma infection.86,87 This phenomenon of DC paralysis is
induced by lipoxin A4, an arachidonate inhibitor of inflam-
mation.86-88 Lipoxin A4 activates the receptors AhR and LXAR in
DCs and thus triggers the expression of SOCS-2, a suppressor of
cytokine signaling.89 Consequently, SOCS-2 partially dampens
the pro-inflammatory IL-12 mediated response to Toxoplasma, in
part by downregulating CCR5.89

Even though systemic administration of STAg alone induces
rapid splenic DC-derived IL-12,73,86 maximal levels of bioactive
IL-12p70 are produced only after receiving a second signal via
CD40 ligation on DCs.90 Infection with type II Toxoplasma can
also induce splenic CD8a+ and CD8a− DCs to become activated
and produce IL-12 dependent upon CD40 cross-linking.91

CD40L knockout mice produce lower levels of IL-12, however,
this is enough to induce IFNc production to ensure the survival of
the mice through acute infection.92 In human DCs, CD40-
CD40L interaction is required for IL-12 production in response
to Toxoplasma infection.93,94 Interestingly, this may explain why
patients defective in CD40L expression are more susceptible to
intracellular infection linked to T cell mediated immunity.95

Once Toxoplasma reaches the brain it encysts as bradyzoites.
IL-12 production by CD11c+ DCs isolated from the brain has
been found to persist for one year post-infection.96 Continued
production of IL-12 in the chronic phase of infection prevents
parasite recrudescence.97

What are the long-term consequences of an intact IL-12
response mostly mediated by DCs for the outcome of a
Toxoplasma infection? In bacterial listeriosis, IL-12 via IL-
12p35 is thought to promote the generation of effector memory
CD8+ T cells, but dampen the differentiation of long-term central
memory CD8+ T cells.98 For a replication attenuated type I
Toxoplasma strain, similar results were found as in IL-12p35
deficient animals CD62LlowKLRG1+ CD8+ effector T cells did
not develop.99 Also, IL-12 appeared dispensable or maybe even
slightly negative for central memory CD8+ T cell differenti-
ation.100 Nevertheless, IL-12p40 is required for protective
immunity elicited by vaccination with the replication deficient
strain and re-challenge with type I replicative RH type I
Toxoplasma.101 Thus, replication deficient type I Toxoplasma
probably induces enough IL-12p70 to mediate long-lasting CD8+

T cell-mediated immunity. Mice infected i.p. with type I vs. type
II Toxoplasma tachyzoites both expressing and secreting
ovalbumin develop fewer DCs at the site of infection and fewer
antigen-specific CD8+ T cells. In this study, IL-12p70 admin-
istration during type I infection moderately rescued this
deficiency.64 It remains to be investigated how different strains
of Toxoplasma induce varying levels of IL-12 and what the
consequences for long-term protective immunity are.

Toxoplasma gondii Modulates Dendritic Cell
Interactions with T Cells

Dendritic cells are known as professional APCs that are specialized
in loading peptides derived from exogenous and endogenous
sources onto both MHC class I and II molecules for presentation
to CD8+ and CD4+ T cells respectively.102 Toxoplasma is

controlled in the acute and chronic phase of infection by CD8+

T cells22,23,103,104 which means that its antigens are effectively
presented in the context of MHC class I (see Fig. 1, Secondary
Lymphoid Organs). Potential problems arise when thinking about
Toxoplasma antigen presentation from infected DCs. First, the
PV has long been believed to be a nondegradative and
nonfusogenic compartment.105 Thus, potential antigens contained
in this compartment need to escape and with a pore limit of 1300
daltons, this seems an inexplicable task.106 Second, infection of
DCs and macrophages by Toxoplasma interferes with several
signaling pathways that are crucial to develop protective
immunity.107 Toxoplasma can replicate in nonhematopoietic cells
as well as professional APCs. It is not clear which cell type in
general primes T cells in a Toxoplasma infection in vivo.

Most studies to date have been undertaken with model antigens
such as ovalbumin expressed and secreted into the PV by type I or
type II parasites.64,108-113 Recently, four endogenous Toxoplasma
MHC class I epitopes were identified, restricted to two separate
class I MHC alleles.100,114,115 The H-2Ld MHC locus expressed by
BALB/c mice has been ascribed to mediate resistance to
toxoplasmic encephalitis in the chronic phase of infection in
H-2d mice,116-118 thus BALB/c mice were used for the two former
studies. Epitopes from the two Toxoplasma’s dense granule
proteins Gra4 and Gra6 were identified, as well as one from the
inactive rhoptry kinase Rop7. In order to be able to use basic
immunological tools confined to C57BL/6 mice, the last study
identified another epitope from an unidentified Toxoplasma
protein called T57 on this background. Moreover, using somatic
cell nuclear transfer, antigen-specific transnuclear CD8+ T cell
mice for all of these epitopes were generated and are easily
maintained (ref. 119 and unpublished results).

Bone marrow-derived DCs infected in vitro with Toxoplasma
tachyzoites expressing and secreting ovalbumin have been shown
to induce CD8+ T cell proliferation dependent on the transporter
associated with antigen processing (TAP).112 Additionally, the
generation of the endogenous epitope GRA6 in DCs is dependent
on the ER-associated aminopeptidase.114 Cross-presentation of
dead parasite material out of uninfected DCs or general
splenocytes was ruled out as a presentation pathway in a number
of studies employing ovalbumin-secreting tachyzoites.108-110

However, two reports show cross-presentation by bystander
DCs both in the LN early in infection as well as during
toxoplasmic encephalitis.120,121 When investigating which antigens
targeted to intra-parasitic and intra-vacuolar locations would be
efficiently presented by bone-marrow DCs or macrophages ex
vivo to OT I T cells, it was determined that only antigen secreted
into the vacuole would be appropriate.113 Employing this strain of
transgenic Ova-secreting parasites, the ER was speculated to fuse
with the vacuole108 to enhance antigen presentation, a process
dependent on Sec22b.122

The role of DCs in presenting Toxoplasma antigens to CD4+ T
cells is less clear. It has been proposed that Toxoplasma profilin is
a major immunodominant antigen that can simultaneously
activate DCs and be processed to be presented to CD4+ T cells
dependent upon TLR11.51 Active invasion by Toxoplasma
tachyzoites blocks LPS-induced bone marrow-derived DC
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maturation in vitro and their subsequent capacity to activate
CD4+ T cells.123 In contrast, pDCs expand during acute i.p.
tachyzoite infection with Toxoplasma, upregulate MHC class II
and co-stimulatory molecules and prime CD4+ T cells.82 IL-12
production and pDC maturation was dependent on TLR11
which suggests that this DC subset is important to control the
infection in vivo.82 Recently, a Toxoplasma 15-mer epitope
presented on I-Ab MHC molecules in C57/BL6 mice has been
identified and immunization with this peptide was shown to
confer significant protection against parasite challenge.124 A
peptide-specific T cell response was observed by these authors
even with heat-killed parasites, while another study found
enhanced presentation of the secreted version of the model
antigen ovalbumin.111 Further studies with this newly identified
immunogenic CD4 Toxoplasma epitope will facilitate the
understanding of the CD4 antigen processing pathway and the
exact role CD4+ T cells play in controlling the infection.

After natural oral infection with Toxoplasma, lamina propria
DCs are hampered in their ability to induce regulatory CD4+ T
cells in vitro. Consequently, IL-2 production in the gastro-
intestinal tract and in the periphery is reduced leading to
immunopathogenesis via heightened IFNc-producing effector T
cells.125 Also, gut DCs exposed to Toxoplasma antigen in vitro
induce fewer regulatory T cells.125

It will be important to revisit some of the specifics of antigen
presentation to CD8+ T cells using the knowledge of the true
endogenous epitopes and their associated tools, as there may be
crucial differences depending on parasite strain and epitope under
study, antigen expression level, mode of infection and time-point
post-infection. Moreover, antigen presentation to CD4+ T cells
remains virtually uncharacterized, yet activated CD4+ T cells are
found equally numerous as CD8+ T cells in a chronically
Toxoplasma-infected mouse brain. Knowledge of how DCs
manipulate the generation of this effector T cell population and
control the levels of regulatory T cells may have profound
influence on the generation of vaccine-mediated immunity.

Dendritic Cells are Hijacked by Toxoplasma gondii

Commonly, Toxoplasma infects its intermediate host via the oral
route or in the case of a congenital infection it passes through the
placenta. Oocysts or bradyzoites can be ingested by an
intermediate host in contaminated water, soil or meat and will
end up in the gut. The dissemination out of the gastrointestinal
tract before activation of an immune response is crucial for the
establishment of a chronic infection and Toxoplasma must cross
the intestinal epithelium to achieve this. Bradyzoites and
sporozoites released from oocysts infect cells of the small intestine
where they convert to fast-replicating and highly invasive
tachyzoites.18,126 This is a rapid process. Already one hour after
oral infection with bradyzoites, parasites can be found in the
lamina propia (LP).126,127 Within two hours, parasites are
transported to the LNs and they are able to reach the brain
within six days of initial contact with the host.126 To travel quickly
Toxoplasma uses highways within the host’s body, namely the
bloodstream and the lymphatic system. As extracellular parasites

are more vulnerable to elimination from the blood than
intracellular ones,128 Toxoplasma hijacks host cells and uses them
as means of transportation (see Fig. 1A and C).

Toxoplasma can infect any nucleated cell, but it has a
preference for cells of the immune system, mainly DCs.129-131

DCs are present in many tissues, scanning the body for invading
pathogens. As described above, upon detection of an intruder,
they raise an alarm by producing cytokines that attract and
activate other cells of the immune system, and migrate to LNs to
activate pathogen-specific T cells.132 It may seem paradoxical that
Toxoplasma chooses to target the cell type that predominantly
fights infections. However, the parasite does not want to kill its
intermediate host. Hence, triggering the immune system in order
to be kept under control while hitching a ride may thus be of
interest to the parasite. Because of their motile properties, DCs are
likely candidates to act as Trojan horses to disseminate
Toxoplasma to other tissues. DCs infected with Toxoplasma
exhibit a hypermotility phenotype.131,133-136 Type II tachyzoites
are superior to type I at inducing migration of human DCs in
vitro,131 and murine DCs in vivo.134 Lambert et al.133 showed that
only live Toxoplasma can induce a migratory phenotype in DCs,
suggesting that it is not simply the effect of recognition of the
pathogen and maturation of the DCs, but active manipulation of
the DCs by Toxoplasma. In contrast to mouse DCs, human DCs
migrate in response to soluble antigens produced by both type I
and type II strains of Toxoplasma without maturation.137

Toxoplasma is not the only pathogen that manipulates migratory
function of DCs as Neospora caninum-infected DCs exhibit the
same phenotype.135 Importantly, type II Toxoplasma use DCs
more effectively as a shuttle, while type I parasites are
predominantly using the extracellular route.134 This serotype
difference in the infection/migration route may dictate by the
greater ability of type I tachyzoites to cross the epithelial barriers
as an extracellular parasite than type II tachyzoites.127 Toxoplasma
hidden inside DCs can travel to the secondary lymphoid tissue
and to other organs of the body away from the inflammatory site
and into the circulation (see Fig. 1A).

Toxoplasma infects different subtypes of DCs including
pDCs.131,134,138 Bierly et al.138 showed that in an i.p. infection
with the type I Toxoplasma tachyzoites, CD11c+GR1+ DCs
expressing pDC markers B220 and PDCA-1 were preferentially
infected and responsible for shuttling Toxoplasma from the
peritoneum to the spleen. Additionally, using CCR2−/− mice they
demonstrated that this receptor unlike CCR5 was important for
migration.138 Nevertheless, first contact of Toxoplasma with DCs
in the course of a natural oral infection will occur in the small
intestine, where Toxoplasma invades epithelial cells.127 Resident
intestinal DCs are likely to be among the first leukocytes to be
infected by Toxoplasma. Many different subtypes of conventional
and pDCs residing in the intestinal mucosa have been described
(reviewed in refs. 139 and 140). However, the question of which
DC subsets are important for Toxoplasma dissemination in early
mucosal infection has not been fully addressed. In vitro
CD11c+MHCII+ DCs isolated from LP of the small intestine
and Payer’s patches (PP) can be effectively infected by type I and
type II Toxoplasma tachyzoites.134 When Courret et al.130 orally
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infected mice with type II Toxoplasma bradyzoite cysts,
mimicking a natural infection, two days post-infection the
majority of CD11c+CD11b+/− cells in the LP were parasitized.
This suggests that CD11c+CD11b+/− cells present in the LP are
likely to be used by the parasite to travel from the intestine to the
mesenteric lymph nodes (MLN) and PP.

It is not clear whether Toxoplasma transported in DCs to the
LNs needs to change its vehicle to disseminate further into the
bloodstream and to other organs. It is generally accepted that DCs
do not leave the secondary lymphoid organs once they have
entered. However, there is indirect evidence for DCs leaving LNs
to act as Trojan horses.141 It is conceivable that the hyper-
migratory phenotype of DCs infected with Toxoplasma would
allow them to exit the LNs and via the thoracic duct enter the
bloodstream. This hypothesis still awaits verification. Another,
more probable scenario is that the DCs carrying Toxoplasma to
the LNs are being lysed, and released tachyzoites can in turn infect
neighboring cells that enter the blood stream. As reported by
Courret et al.130 parasitized leukocytes found in the blood are of a
different phenotype (CD11c−CD11b+) than those in LNs
(CD11c+CD11b+/−).

Toxoplasma gondii Employs Dendritic Cells
to Enter Immune-Privileged Organs

The chronic phase of Toxoplasma infection is characterized by
cysts of the bradyzoite stage localized in different body tissues of
the intermediate host. However, preferential target organs for
Toxoplasma are immune privileged sites like the brain or the
eye.3,8 In these organs, as well as in the developing fetus (targeted
by the parasite during acute infection of a pregnant female)
immune responses are limited or prevented. This enables
Toxoplasma to hide from surveillance by the cells of the immune
system as well as from circulating antibodies. To reach these
organs Toxoplasma has to pass barriers protecting them from
exaggerated immune responses. In the case of the brain this
involves crossing the blood-brain barrier (BBB) while to infect the
fetus Toxoplasma must cross the placenta.

Entering the placenta. In the case of acute infection during
pregnancy, Toxoplasma is able to pass the placental barrier and
infect the fetus.142,143 The mechanism by which this happens is
poorly understood. One possible route is directly via the maternal
blood to the cells forming the fetal part of the placenta. Another
option is that infected maternal leukocytes bring Toxoplasma to
the decidua—the maternal part of the placenta that participates in
the exchange of oxygen, nutrients and waste with the developing
fetus as well as protecting the fetus from the maternal immune
system.144 The infected maternal leukocytes will be killed by
residing NK cells or lysed by the multiplying parasites. Released
extracellular tachyzoites may cross to the fetus by infecting cells of
the fetal part of the placenta. A number of in vitro studies have
shown that placental cells can be infected by Toxoplasma;
however, no strain differences were noted in infection
capability.145

An alternative mechanism for Toxoplasma to traverse the
placenta is to again use host cells as Trojan horses. Maternal

leukocytes rarely travel to the fetus. However, it has been
suggested that maternal APC, possibly decidual DCs cross the
placenta to reside in fetal LNs where they induce the development
of regulatory T cells.146 This type of DC could give Toxoplasma
the opportunity to shuttle across the placenta to infect the fetus.

In an in vitro system, Toxoplasma type II exhibited a higher
dependency on DC-mediated transmigration for efficient trans-
location across polarized cellular monolayers in contrast to type I
parasite, which transmigrated as extracellular tachyzoites.135 These
findings are consistent with the notion that Toxoplasma type I
parasites preferentially disseminate extracellularly,127 whereas type
II parasites preferentially exploit the shuttling-function of DCs.134

As Toxoplasma type II causes more vertical infections in
comparison to type I,5 it is likely that the Trojan horse
mechanism is more effective in crossing the placenta and infecting
the fetus than extracellular transmigration.

Crossing the blood-brain barrier. Toxoplasma can invade
endothelial cells, but its ability to cross the BBB as extracellular
parasites in vivo needs clarification. Only few Toxoplasma
tachyzoites injected i.v. in mice were observed in the brain in
contrast to those injected i.v. as intracellular parasites.128 Thus,
Toxoplasma most likely uses leukocytes as Trojan horses to enter
the brain. Access of immune cells to the brain is limited but it
does occur, not only during neuroinflammation, but also as an
immune surveillance mechanism (reviewed in ref. 147). It is
therefore reasonable to hypothesize that DCs transporting
Toxoplasma from the infection site to the LNs could play the
role of Trojan horses sneaking it into the brain (see Fig. 1C).
However, a study by Courret et al.130 suggests CD11c−CD11b+

cells, most likely monocytes, play this role. They showed that
both CD11c+ and CD11b+ cells circulating in blood are able to
cross the BBB and can be detected in the brain of infected mice
seven days after p.o. infection with type II Toxoplasma cysts.
Nevertheless, at day seven post-infection (the earliest time point
for parasite detection in the brain) the majority of brain
mononuclear cells containing parasites were of CD11c−CD11b−

or CD11b+ phenotype and only at day 15 post-infection more
CD11c+ cells were found to be parasitized. That would suggest
that CD11c−CD11b+ cells are carrying Toxoplasma across the
BBB. CD11c−CD11b+ cells are in general considered to be
monocytes or macrophages, however DCs of that phenotype
have also been reported.148 In contrast, Lachenmaier et al.136

using i.v. injection of type I Toxoplasma-infected cells showed
that there is no difference between the ability of CD11b+ and
CD11c+ cells in crossing the BBB, suggesting that both
macrophages and DCs are used by Toxoplasma as Trojan
horses. Discrepancies between these two studies can probably be
explained by the different strains of Toxoplasma used (type I vs.
type II) and different routes of infection (i.v. vs. p.o.) where the
model used by Courret et al. most closely reflects the natural
course of infection.

To fully characterize which leukocytes are important for
dissemination of Toxoplasma to the brain during natural oral
infection additional studies should be performed taking into
account different parasite strains, stage of infection and infection
route.
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DCs in the Infected Brain Facilitate Persistence
of Toxoplasma gondii

Upon entry to the brain tachyzoites infect astrocytes, neurons and
microglial cells (see Fig. 1, Brain). The rapidly replicating
tachyzoites transform into the very slowly replicating bradyzoites,
which form cysts that can persist throughout the lifetime of the
host. Infiltration of the parasite is followed by expansion and
recruitment of mononuclear cell populations in the brain. There
are multiple reports indicating substantial increase in the number
of DCs in the brain upon infection with Toxoplasma.96,149-151

Different sources of these DCs have been reported. Fischer at al.96

showed expansion of a population of brain DCs that originates
from bone marrow precursors and expands in the brain upon i.p.
infection with cysts of Toxoplasma type II. This occurs relatively
late, four weeks after infection and is dependent on GM-CSF
production.96 However, occurrence of this DC expansion is not
only specific for an infection with Toxoplasma as a similar
population arises in the brain upon induction of experimental
autoimmune encephalomyelitis (EAE).152 Additionally, John
et al.151 reported that DCs can be recruited to the Toxoplasma
infected brain from the circulation and that this recruitment is
dependent on Gai-coupled receptor signaling and engagement of
LFA-1.

What is the role of DCs in the brain in a Toxoplasma infection?
DCs isolated from Toxoplasma-infected brains were shown to be
the main producers of IL-12 and in vivo IL-12 production was
associated with dividing parasites (see Fig. 1, Brain).96 IL-12 is
important for maintaining IFNc production by T cells.72

Regulated IL-12 production by DCs in the Toxoplasma-infected
brain is a well-balanced mechanism essential to eliminate rapidly
dividing tachyzoites that may be released from sporadically
bursting cysts, but not responding to the latent bradyzoite form of
the parasite thus preventing encephalitis.

With the development of new imaging techniques including
two-photon microscopy, it is now possible to visualize real-time
DC-T cells interactions in the brain.149,152 It has been shown that
DCs in Toxoplasma-infected brain interact with T cells and that
many of the DCs are localized proximal to infected cells or free
tachyzoites.149,151 Schaeffer et al.149 demonstrated that DCs and
CD11c−CD11b+ cells in Toxoplasma-infected brain form aggre-
gates around isolated, mainly extracellular parasites, but not intact
cysts suggesting that DCs can sense free parasites released from
bursting cysts and shape a barrier around them to prevent the
infection spreading.

Moreover, DCs isolated from the Toxoplasma-infected brains
were shown to have a mature phenotype and to be able to trigger
antigen-specific T cell responses.96,151 Aggregating DCs observed

by Schaeffer et al.149 were surrounded by antigen-specific T cells
suggesting their role in antigen presentation and T cell activation.
These DCs were not parasitized by Toxoplasma, thus cross-
presentation of the Toxoplasma-derived antigens to the CD8+ T
cells is conceivable.149

Taken together, brain-infiltrating DCs may be crucial for local
restimulation of Toxoplasma antigen specific effector T cells
during Toxoplasma infection and may contribute to the
chronicity of the host response.

Concluding Remarks and Outlook

Toxoplasma has learned to exploit and subvert DCs of its
intermediate host’s immune system to achieve persistent chronic
infection. It is becoming clear that Toxoplasma can stir cytokine
production by DCs, use DCs to mediate interactions with T cells
and employ DCs to circumnavigate the host. Identification of
further molecular players of Toxoplasma that can differentially
modulate DC function will be key to understanding the link
between innate immune recognition and protective adaptive Th1-
mediated immunity. Equally important is to identify host effector
molecules and mechanisms that elicit defined immune responses
to the parasite in DCs and other effector cells. Host-pathogen
interactions are like two sides of the same coin and cannot be
investigated without taking both into account. Careful dissection
of parasite and host genotype, route of infection and stage of the
parasite are essential to properly address and answer questions of
how Toxoplasma became the most successful human parasite.
The completion of several Toxoplasma strain genomes of different
virulence combined with host genomes will facilitate identifica-
tion of new host-pathogen interaction mechanisms.153,154

Furthermore, Toxoplasma might transcriptionally modify DCs
to serve its desired purpose, which can now easily be studied using
tools for epigenetic gene regulation. As it is becoming clear that
there are major differences in how different strains of Toxoplasma
exert their different virulence phenotypes, it will be imperative to
distinguish between their ability to subvert the immune response
in general and DCs in particular. This knowledge will be
important in designing effective counter-measures, particularly
vaccines.
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