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ABSTRACT: Computational prediction of molecule−protein in-
teractions has been key for developing new molecules to interact
with a target protein for therapeutics development. Previous work
includes two independent streams of approaches: (1) predicting
protein−protein interactions (PPIs) between naturally occurring
proteins and (2) predicting binding affinities between proteins and
small-molecule ligands [also known as drug−target interaction
(DTI)]. Studying the two problems in isolation has limited the
ability of these computational models to generalize across the PPI
and DTI tasks, both of which ultimately involve noncovalent
interactions with a protein target. In this work, we developed
Equivariant Graph of Graphs neural Network (EGGNet), a
geometric deep learning (GDL) framework, for molecule−protein
binding predictions that can handle three types of molecules for interacting with a target protein: (1) small molecules, (2) synthetic
peptides, and (3) natural proteins. EGGNet leverages a graph of graphs (GoG) representation constructed from the molecular
structures at atomic resolution and utilizes a multiresolution equivariant graph neural network to learn from such representations. In
addition, EGGNet leverages the underlying biophysics and makes use of both atom- and residue-level interactions, which improve
EGGNet’s ability to rank candidate poses from blind docking. EGGNet achieves competitive performance on both a public protein−
small-molecule binding affinity prediction task (80.2% top 1 success rate on CASF-2016) and a synthetic protein interface prediction
task (88.4% area under the precision−recall curve). We envision that the proposed GDL framework can generalize to many other
protein interaction prediction problems, such as binding site prediction and molecular docking, helping accelerate protein
engineering and structure-based drug development.

■ INTRODUCTION
Physical interactions between a protein and other molecules are
key to many fundamental biological processes. Proteins mostly
perform their functions via noncovalent interactions with three
kinds of molecules, including proteins, nucleotides, and small
molecules. The mechanisms of action for most drugs involve
interacting with protein targets to modulate their biological
functions and activities. Being able to design drugs, either small
molecules or biologics, to selectively bind a protein target with a
desirable affinity is critically important for structure-based drug
design.
The ability to modulate protein-involved molecular inter-

actions with small molecules or synthetic peptides is a core
component of therapeutics development. There exist four
classes of problems in structure-based drug design for which
molecular interactions can be tackled by machine learning
(ML),1 including (i) protein complex property prediction, (ii)
binding site/interface identification, (iii) docking (binding pose
generation), and (iv) de novo design. Property prediction for

protein complexes is a task that can also serve as an integral
component for other tasks, such as evaluating binding poses
generated by docking algorithms or predicting the affinity for
computationally designed novel drug candidates. Many ML
methods have been developed for two popular groups of
property prediction tasks, protein−protein interactions (PPIs)
and drug−target interactions (DTIs), with the structure of the
protein complex provided as input. However, to the best of our
knowledge, none of the existing methods can be used across
both problems. In this work, we developed a unifying geometric
deep learning (GDL) framework for protein complex pose
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scoring that encompasses both DTI affinity prediction and PPI
interface prediction.
The proposed approach provides a generalizable and scalable

representation of macromolecular complexes that can efficiently
represent both protein−small-molecule complexes and pro-
tein−protein complexes. We also desire the representation to be
capable of handling synthetic peptides composed of both natural
and noncanonical amino acids. 3D graphs are commonly used to
represent the 3D structures of individual proteins and protein−
small-molecule complexes.1 To increase its generalizability and
scalability, we extend the 3D graph to a 3D graph of graphs
(GoG) representation.
GoG, also known as Network of Networks, is a special graph

where the nodes in the top-level graph are also graphs.2,3 GoGs
can be constructed naturally by connecting independent lower
level graphs by predefined associations,4 or similarity can be
measured by a graph kernel.5 GoG can also emerge from
partitioning a large graph into different subgraphs based on
topology or predefined rules. Message-passing GNNs have also
been extended to operate on both levels of graphs in GoG.4−6

The GoG data structure has been used to represent drug−drug
interaction networks and metabolite networks.4,6 However, it
has not been applied to model the 3D structures of
macromolecules.
In this study, our contributions are 2-fold: (i) we developed a

featurization procedure to use the GoG data structure to
efficiently unify the representations of all types of molecules,
including small molecules, intermediate molecules such as
peptides, and macromolecules. The 3D GoG representation
retains both atomic- and residue-level information on molecular
complexes. (ii) We developed EGGNet, an end-to-end GDL
architecture based on an equivariant graph neural network
(GNN) to learn from the GoG representations of the 3D
structures of protein complexes, optionally integrating a physics-
informed inductive bias to learn atomic-level interactions.7 Our
architecture can be used to predict both DTIs and PPIs.
Notably, we achieved state-of-the-art protein−small-molecule
binding affinity predictive performance. We further analyzed the
effects of different choices of lower level molecule graph models
and evaluated the potential of transfer learning between the DTI
and PPI prediction tasks. We also showed that our model
improves the outputs of the blind docking models.

■ RELATED WORK
Prior approaches for structure-based prediction of DTIs and
PPIs with ML represent 3D structures of protein complexes
using three common representations of protein structures based
on 3D grids, 3D surfaces, and 3D graphs.1 Among them, the 3D
graph representation is the only one that preserves all of the
information from the input protein structure. However,
representing macromolecules with 10,000 atoms using 3D
molecular graphs at all-atom resolution is computationally
inefficient. Therefore, researchers decomposed the all-atom 3D
graphs to graphs of frames, where individual nodes (frames)
represent monomers such as amino acid residues. For instance,
AlphaFold2’s Invariant Point Attention (IPA)8 models amino
acids as residue gas, which is composed of backbone frames and
χ angle for the side chain. However, residue gas is only a coarse-
grained representation that does not preserve all of the covalent
bonds in the residue compared to all-atom molecular graphs.
For the DTI prediction, all the three types of representations

and some of their combinations have been explored. For
instance, KDEEP9 estimates binding affinities by representing

the protein−ligand complex as a 3D grid and learns from this
representation using a 3D convolutional neural network. 3D
graph representations of protein−ligand complexes can be used
to extract topological and spectral features for traditional ML
models,10−13 achieving state-of-the-art performance on scoring
benchmarks.10 On the other hand, 3D graphs can also be
leveraged by graphML approaches. For instance, PotentialNet14

builds 3D graphs for the protein−ligand complex using their
atoms as nodes and chemical bonds and noncovalent
interactions as edges and then leverages message passing
graph neural networks (GNNs)15 to learn from the 3D
heterogeneous graph. PIGNet7 extended PotentialNet by
adding the physics-informed inductive bias to a gate-augmented
graph attention network.16 The physics-informed inductive bias
is encoded by parameterized energy equations calculating a few
noncovalent forces based on the corresponding interatomic
distances. HoloProt17 combines the graph and surface
representations of proteins. These studies decompose amino
acid residues into atoms and bonds, making it difficult to
incorporate potentially useful residue-level features for the ML
model to learn from, such as embeddings from protein language
models.18−21

3D graph representations that capture the structural
information at atomic resolution are computationally more
expensive for PPIs than DTIs; therefore, 3D grids are the most
prevalent representation of 3D protein complexes in protein−
protein interface prediction. For instance, DeepRank22 is a 3D
CNN-based deep learningmethod that first maps the amino acid
residues at the protein−protein interface to a 3D grid centered
on the interface. More recently, deep local analysis23 extends
such 3D grid representations to an ensemble of 3D grids.

■ METHODS
Overview of the EGGNet Approach. Overall, EGGNet

takes the 3D structure of a protein complex (also known as pose)
as the input andmakes predictions about the global properties of
the pose, such as the binding affinity between two molecules in
the protein complex. We refer to this problem as protein
complex pose scoring. The input protein complex is composed
of a proteinmolecule and an interaction partner that takes one of
the three types: (1) small molecules, (2) synthetic peptides, and
(3) natural proteins. EGGNet first converts the input protein
complex pose into a GoG to unify the representations of
different types of molecules. Next, EGGNet’s architecture can
learn from GoG representations by coupling an equivariant
message-passing GNN with different lower level molecule-to-
vector methods. Further, EGGNet incorporates physics-
informed energy-inductive biases.

GoG Representation of Molecule Complexes. Formally,
a GoG is a higher level graph, ( , )= , where the node set is
composed of lower level graphs G G G, , ..., n1 2= { }. The
lower level graph is used to represent the molecule’s building
blocks at atomic resolution; hence, Gi = (Vi, Ei) is a graph with
atoms as nodes, atom ∈ V, and covalent bonds as edges, bond ∈
E. For convenience, we represent all notations used in this paper
in Table 1.
Given a molecular structure, one can directly construct an

atomic resolution graph for the entire molecule by connecting
atoms with covalent bonds. We denote this graph as G = (V, E).
To construct a GoG from G, we first perform edge-cut graph
partitioning to partitionV into disjoint subsetsV1 ∪···∪ Vn =V of
all of the atoms, vu ∈ V, in graphG, resulting in n subgraphs, each
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of which corresponds to a lower level graph, Gi = (Vi, Ei). We
performed the graph partition by cutting the molecular graph at
peptide bonds (Figure 1). Next, we construct the higher level
graph, ( , )= , using the k-nearest neighbor (kNN)
algorithm to connect k = 30 nearest residues following prior
works.24,25 The distance between subgraphs is defined as the
Euclidean distance between the C-alpha or the geometric
centroids of heavy atoms if the subgraph is not an amino acid
residue.
With this procedure, we can unify the representations of small

molecules and macromolecules: a small molecule is a special
case of GoGwhere the higher level graph is composed of a single
node (i.e., G( , )1= = { } ). The GoG representation has
the advantage over one-hot encoding with fixed vocabulary

commonly used in protein language models18−21 because it can
generalize to noncanonical amino acids such as penicillamine
used in synthetic peptides.
We also use the same GoG construct to represent a protein in

complex with other molecules including small molecules,
peptides, or proteins. To do that, we simply apply the edge-
cutting graph partition procedure to every polymer chain to
derive the lower level graphs and then construct the higher level
graph by using kNN to connect spatially proximal lower level
graphs (Figure 2).

Model Architectures for Protein Complex Pose
Scoring. This section describes the novel deep learning
architectures for protein complex pose scoring. The overall
architectures for EGGNet are shown in Figure 3.
We formulate the protein complex pose scoring problem as a

supervised graph-level prediction task. The goal of this task is to
learn a function, y f ( )= , mapping a GoG, , representing the
protein complex’s structure (pose) to a scalar value, y,
representing the global property of the pose such as the binding
affinity between the molecules.
EGGNet first computes feature vectors si

G d from the
lower level graphs Gi representing residues by siG = fθ(Gi). There
aremany possible choices for the residue featurizer, f G: d

, including (1) chemical fingerprints such as MACCS and
ECFP/Morgan,26 (2) GNN models trained on small-molecule
graphs, and (3) language models trained on the SMILES strings
of small molecules such as MolT5.27

The residue feature vector is then concatenated with the node
features on the higher level graph, concats s s( , )i i

G
i

m d+

. We denote the node features on higher level graph as
h s x( , ) ,i i i

m d 3= + × ; for simplicity, we denote the

node and edge features as H ,n m d n( ) 3× + × × and
H ,m 3| |× | |× × , respectively.
GVP-GNN25 is a SE(3)-equivariant GNN in which all node

and edge embeddings are tuples (s, x) of scalar features s and

Table 1. Table of Notations

symbol definition

G = (V, E) an atomic graph of a molecule, with atoms as
nodes, atom ∈ V, and covalent bonds as edges,
bond ∈ E

( , )= a GoG where the node set is composed of
lower level graphs G G G, , ..., n1 2= { }

f G: d a residue featurizer parameterized by θ, mapping
an atomic graph to a vector

s s, ,G d m scalar features on a node a graph

x 3× vector features on a node of a graph

h = (s, x) features on a node or an edge of a graph

H ,n m d n( ) 3× + × ×
all the node features on a GoG

( , )=

H ,m 3| |× | |× ×
all the edge features on a GoG

( , )=

Z n d× node embeddings on the higher level graph of a
GoG ( , )=

f : n d× a GVP-GNN parameterized by ϕ

E( )· energy

Figure 1. GoG representation of molecular structures. To construct GoG from molecular structure (left column), we first perform graph partition by
cutting peptide bonds (middle column) and then connect subgraphs using kNN, leading to a higher level graph (right column). The figure shows how
GoG representation can generalize to small molecules, peptides with noncanonical amino acid residues, and proteins.
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geometric vector features x. GVP-GNN operates on the node
and edge features from the higher level graph

fZ H H( , )= (1)

Next, we use a readout network/prediction head to take the
learned equivariant node representations, Z n d× , to make
graph-level prediction

y READOUT Z( )= (2)

We also design a multistage variant of our model architecture
to have two additional GVP-GNNs to learn from two GoGs
representing the two interacting molecules, ( , )1 1 1= ,
which are two subgraphs of the complex GoG, ( , )= ,
where 1 2= and 1 2 int= . int denotes the
edges representing intermolecular interactions.

Figure 2. GoG representation of protein complexes. To construct GoG from the structures of protein complexes (left column), we first identify the
binding pocket or interaction interface between molecules (middle column), then perform graph partition by cutting peptide bonds, followed by
connecting subgraphs using kNN, leading to a higher level graph (right column). The nodes in the higher level graphs of GoGs are colored by the origin
of the molecules. The figure shows how GoG representation can generalize to DTI and PPI.

Figure 3. EGGNet model architecture. The multistage EGGNet model learns GVP embeddings from graph representations of the protein and ligand
structures and appends these to the corresponding nodes of the protein−ligand complex graph representation. The single-stage EGGNet model does
not append node embeddings from these upper level graphs and only trains for the energy objective with the complex graph.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04889
ACS Omega 2024, 9, 7471−7479

7474

https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04889?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


fZ H H( , )1
1

1 1= (3)

fZ H H( , )2
2

2 2= (4)

The second stage of GVP-GNN then computes node
representations

f concatZ Z Z H( ( , ), )1 2
3

int= (5)

Objective Functions and Model Training. We use the
mean-squared error and binary cross-entropy for binding affinity
regression and binary interaction prediction tasks, respectively.
Additionally, we adopted the physics-informed energy-inductive
biases from PIGNet.7 Briefly, we use an energy decoder as the
readout function to approximate four types of noncovalent
interaction energies (van der Waals interactions, hydrogen
bonds, metal−ligand interactions, and hydrophobic interac-
tions) from a protein complex using parameterized equations.
The energy decoder is a set of two-layered multilayer
perceptrons approximating the four individual noncovalent
interaction energies with the same setting from the PIGNet
model.7

E Energy Decoder Z( )= (6)

E yMSE( , )= (7)

All the parameterized equations take the atom-level
representation, z z,i j

d , as inputs. For instance, van der
Waals interaction takes the following form

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjjj

y
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zzzzzz

i
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zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
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d

d

d

d
2

i j
ij

ij

ij

ij

ij

vdW

,

12 6

=
(8)

where dij = ∥zi − zj∥ and dij′ = ri + rj +MLP([zi,zj]). ri denotes the
radii or the ith node.
We also decompose the energy from the whole protein

complex to intramolecular (monomer) and intermolecular
energies E = E(1) + E(2) + Eint as a novel physics-inductive bias,
where E(1), E(2) denote intramolecular energy from the two
molecules and Eint denotes the intermolecular energy. Intra-
molecular energy can be computed by selecting atoms within a
molecule and plugging into eq 8, whereas intermolecular energy
can be computed by enumerating atom pairs spanning two
molecules.
We use stochastic gradient descent (SGD) to learn

parameters ϕ, and optionally residue featurizer parameter θ, to
optimize the objective function. When using SGD to learn both
ϕ and θ, we essentially allow the end-to-end training of the lower
level residue featurizer and the higher level GVP-GNN. Similar
end-to-end joint training of models operating at different data
modalities has also been used for protein function prediction.28

Datasets and Experiments. We use PDBbind,29 Prot-
CID,30 MANY,31 and DC32 datasets for training and validation
of our models. These datasets cover two otherwise distinctive
tasks, DTI and PPI prediction, that can be unified by our
approach.
For the DTI binding affinity regression task, we used the same

splits of the PDBbind and CASF-201633 datasets as the PIGNet
study.7 Briefly, the PDBbind 2019 refined set provides
quantified binding affinity data (in pKd, where Kd is the
experimentally measured dissociation constant) and corre-
sponding structure of protein−ligand complexes deposited in

the protein data bank (PDB).34 We used 4514 samples for the
training set, which is the PDBbind 2019 refined set after
removing the redundant samples from the core set of PDBbind
2016. We randomly sampled 20% from the training set as the
validation set for early stopping. For hold-out evaluation, we
used the CASF-2016 benchmark dataset, which originated from
the PDBbind 2016 core set. We used 283 samples for the scoring
and ranking and 22,340 samples for the docking benchmark. All
protein−ligand complexes were processed to focus on the
pocket-ligand structure, which removes amino acid residues
whose minimum distance between the ligand is greater than 5 Å
to remove amino acid residues distant to the protein’s binding
pocket. We adopt the evaluation metrics recommended in the
CASF-2016 dataset.33 Briefly, we calculate Spearman’s
correlation coefficient ρ as the evaluate metric for the ranking
setting in CASF-2016. For the docking setting, we used the
predicted binding affinities to rank candidate poses from each
protein−ligand pair and then define a success docking if the top
1 ranked pose has the lowest root-mean-square deviation (rmsd)
among candidate poses (decoys). We then compute the top 1
success rate across all protein−ligand pairs as the fraction of
successful docking from all docking experiments in the CASF-
2106 benchmark.
ProtCID dataset30 is used for the binary binding classification

task. Here, the aim is to distinguish physiological binders with
nonphysiological ones. Physiological binders were defined as
those homo- and heterodimers which had at least five crystal
forms. If an interface is only seen in one crystal form of this
UniProt ID in addition to not being in any common cluster, then
it is likely to be nonphysiological. For data preprocessing, we
remove amino acid residues whose C-beta distance is greater
than 6 Å from any amino acids from the protein chain of the
binding partner. We also removed large interfaces with more
than 105 atoms, leading to 15,736 and 3889 protein interfaces for
training set and hold-out test set, respectively. The train/test
split was performed by sequence clusters resulting from
MMseq235 with an identity cutoff of 30%.
Similarly, the MANY31 and DC32 datasets contain physio-

logical and nonphysiological (crystal) dimers in balanced
proportions. We download the datasets from the SBGrid data
repository, https://data.sbgrid.org/dataset/843/, and follow
the same experimental setup as in refs 22 and 36. Briefly, we
train ourmodel using 80% of theMANYdataset, with 20% as the
validation set, and test the model performance on the hold-out
DC dataset. For data preprocessing, we experimented a range of
cropping threshold from 6 to 14 Å to when removing amino acid
residues outside of the interfaces (Figure 4).
We evaluate the model performance on the binary

classification task by using the area under the receiver operating
characteristic curve (AUROC) and the area under the
precision−recall curve.
For EGGNet models trained on the above datasets, we set

GVP-GNN to have three GVP convolutional layers with node-
and edge-hidden dimensions to be (200, 32) and (64, 2),
respectively. In the single-stage EGGNet, only one three-layered
GVP-GNN is used as the higher level GNN, whereas the
multistage EGGNet contains three independent three-layered
GVP-GNNs without weight sharing. We used the following
hyperparameters for model training: learning rate of 1 × 10−4,
per-GPU batch size of 16. To avoid overfitting, we employed an
early stopping criterion with patience = 50 epochs and trained
for a maximum of 1000 epochs. ADAM37 optimizer with β1 =
0.9, β2 = 0.999 is used for optimizing the learnable parameters.
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All models are implemented using the Pytorch deep learning
library,38 and training is performed using the Pytorch-Lightning
library with 16 bit mixed precision training using four NVIDIA
V100GPUs with 16GB of memory each on Amazon SageMaker.

■ RESULTS AND DISCUSSION
GoG Representation of Molecules Allows Flexible

Transfer Learning of Molecule-to-Vector (Mol2Vec)
Methods. In this work, we leverage the GoG data structure
to represent the 3D structures of small- and macromolecules.
Macromolecules, such as proteins and nucleic acids, are
composed of small-molecule building blocks (amino acids and
nucleotides) connected by covalent bonds. Inspired by this
observation, we view a macromolecule as a graph of small-
molecule residues, which can be represented by graph of atoms
connected by chemical bonds. The GoG representation of
molecules provides the flexibility in modeling macromolecules
with out-of-vocabulary residues such as post-translational
modifications and noncanonical amino acids. It also unifies
the chemical space of small- and macromolecules by applying
Mol2Vec methods to the lower level graphs.
We first demonstrate that EGGNet is able to take advantage of

any Mol2Vec representation approaches on the GoG
representation of proteins in complex with small-molecule
ligands. We experimented with three classes of Mol2Vec
approaches: (i) chemical fingerprint approaches including
MACCS keys and Morgan fingerprints,26 (ii) GNNs pretrained
on a small-molecule chemical library using structures and
properties, and (iii) language models pretrained on SMILES
strings of small molecules. We evaluated the performance of
single-stage EGGNet with different Mol2Vec methods for the
PDBbind/CASF-2016 binding affinity regression task. Our
results show thatMol2Vecmethods based on deep learning such
as Graph Isomorphism Network (GIN)39 and MolT527

achieved better performance than chemical fingerprints (Table
2) by 0.9% in docking capability while underperformed the latter
in ranking setting. We also observe that EGGNet with the
MolT5 model achieves an improved docking success rate than
with GIN by 1.3%, suggesting that the more powerful pretrained
Mol2Vec model can further boost the overall model perform-
ance. However, MolT5 models (MolT5-small: ∼77 M
parameters; MolT5-base: ∼250 M parameters) are significantly
larger than GIN (∼1.8 M parameters). As such, we use GIN for
later experimentation due to the training efficiency.

It worth noting that chemical fingerprints (MACCS) and
pretrained molecule GNNs are competitive feature representa-
tions for amino acid residues and small molecules to be utilized
by the higher level GNN in EGGNet. However, this does not
suggest that GIN’s representation lacks advantages because it
can be jointly optimized with the higher level GNN in EGGNet.

Performance of EGGNet on Protein−Molecule Bind-
ing Prediction Benchmarks. Next, we evaluated EGGNet on
two distinctive protein complex pose scoring tasks: (i) protein−
small molecule binding affinity prediction and (ii) protein−
protein interface classification.

Protein−Small Molecule Binding Affinity Regression. On
the binding affinity prediction task, we trained our model on the
PDBbind training set and evaluated on the CASF-2016 ranking
and docking benchmarks. Our results show that EGGNet with
joint training and energy-inductive biases outperforms PIGNet7

in the same setting on both docking and ranking benchmarks
(Table 3). We found that our best performing model on the
docking setting achieved an 80.2% top 1 success rate over 77.4%
reported in PIGNet.
Interestingly, we found that the joint training of the GNNs at

both the lower level and higher level graphs of the GoG
improves the models’ performance on the ranking task while
slightly decreasing performance on the docking task. The
ranking task examines a model’s ability to generalize to different
combinations of different protein−ligand pairs, which corre-
sponds to different compositions and geometries of the GoGs.
Meanwhile, the docking task probes the models’ ability to rank
candidate poses of the same protein−ligand pair, which
corresponds to GoGs with the same composition of lower
level graphs but different geometries. Therefore, we reason that
the model with the ability to adjust the embeddings of the lower
level residue representations is beneficial only to tasks that
prioritize in distinguishing the composition rather than the
geometry of the GoGs. This also explains the observation that
the multistage variant of EGGNet is more performant on the
docking setting (Table 3). The multistage variant has more
learnable parameters that model the intermolecular geometries.
We also confirmed the findings from Moon et al.7 that using

the noncovalent interaction energy as an inductive bias for the
deep learning model can significantly improve binding affinity
prediction. Without the energy-inductive bias, the model can
only achieve a 22.9% top 1 success rate, compared to 75.8% with
the energy-inductive bias (Table 3). As the energy, E, was
calculated for the entire protein−ligand complex, we hypothe-
sized that the inductive bias is more informative to the model if
we decompose it to E = E(1) + E(2) + Eint. That is, for a two-
molecule complex, the noncovalent interaction energy can be

Figure 4. Performance of EGGNet on the biological versus crystal
interface classification task from the DC dataset. AUROCs are shown
across a range of cropping thresholds used to isolate the protein−
protein interfaces when constructing the GoGs. Experiments were
performed using GIN as the lower level GNN within the single-stage
EGGNet architecture without joint training. We found 12 Å to be the
optimal threshold for isolating the interface.

Table 2. Residue-Level Representation Models Improve
Binding Affinity Predictiona

Mol2Vec methods docking top 1 success rate ranking ρ
baseline (zero vector) 0.802 0.675
MACCS 0.820 0.727
Morgan/ECFP4 0.806 0.670
GIN 0.816 0.715
MolT5-small 0.760 0.702
MolT5-base 0.813 0.715
MolT5-small with joint training 0.827 0.722

aThe following experiments use GVP backbone with energy-inductive
biases and identical training hyperparameters and setups, except for
the residue-level model.
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decomposed as the sum of intramolecule energy (E(1), E(2)) and
intermolecule energy (Eint). However, our results on the
PDBbind/CASF-2016 experiments do not support this
hypothesis (Table 4). This is probably due to the inaccurate

estimation of the protein’s intramolecular energy, E(1), because
we used only the binding pocket rather than the entire protein
structure to construct the GoG to make the training memory
efficient.
Protein−Protein Interface Classification. Next, we eval-

uated that EGGNet on another common type of protein
complex pose prediction task to distinguish whether a protein−
protein interaction interface is physiological or an artifact of the
crystallization process. This task can be useful to deduce
solution-state quaternary states (dimers, trimers, etc.) and/or to
identify novel functions of protein families that were originally
deemed crystal artifacts.40 In addition, models trained for this
task could be fine-tuned for detection of binders and non/weak
binders for protein interface design. We trained and validated
our models on the ProtCID30 dataset. We found that different
variants of our models are able to significantly outperform
CAMP,41 which only takes the sequence information on the
protein pairs (Table 5). We also found that the joint training of
GNNs at different levels of the GoGs improves the predictive
performance over freezing the lower level GIN by at least 5.8% in
AUROC.
Next, we evaluated whether the GoG representation leveraged

by EGGNet is comparable to other types of representations of
protein−protein interfaces. We trained and evaluated EGGNet
on the publicly available MANY/DC datasets for protein−
protein interface classification (Table 6). We found that our
model outperforms traditional ML approaches including PISA42

and PRODIGY-crystal43,44 by 8.8 and 1.9%, respectively. Both
PISA and PRODIGY-crystal operate on tabular features
computed from the interfaces. EGGNet is also competitive
with DeepRank-GNN,36 a recently developed GNN-based

method. We noted that approaches using graph representations
underperform DeepRank,22 which represents the interfaces as
3D grids. It is worth pointing out that the featurization process
and representation of EGGNet are generalizable to any
molecular interaction interfaces, whereas competing methods
including DeepRank22 and DeepRank-GNN36 rely on features
specific to proteins such as precomputed position-specific
scoring matrices.
The evaluation of interface classification is similar to the

ranking setting of PDBbind/CASF-2016, where the model is
tasked to classify different protein−protein interaction pairs
rather than the same protein−protein pair with different poses.
Therefore, we observed that the energy-inductive bias is not
useful in improving the binary classification performance (Table
7).
Thanks to the uniform GoG representation of the protein

complexes, our model architectures used for the protein−
protein interface prediction and the protein−small-molecule
binding affinity prediction are identical. We next evaluated if a
model trained on the binding affinity prediction task can
improve protein−protein interface prediction via transfer
learning. However, our results show that transfer learning
from the model trained to predict small-molecule binding
affinity does not help with this task compared to a model trained
from scratch (Table 8). We speculate that this is due to the
distributions of the input GoGs, and the labels between these
datasets are disparate.

■ CONCLUSIONS
In this work, we first developed a biologically inspired data
structure, GoG, to represent the structures of molecules and
molecular complexes. We construct GoGs by applying edge-
cutting graph partition on the atomic graphs of molecules, which
is inspired by the fact that macromolecules are composed of
small-molecule residues connected by common covalent bonds
such as peptide bonds for proteins and phosphodiester bonds for
nucleic acids. Next, we developed EGGNet, an equivariant
GNN to learn from the GoG representations of molecular
complexes to predict their properties. The unifying representa-

Table 3. Model Performances on the CASF-2016 Binding Affinity Regression Task

model lower level GNN model backbone energy-inductive bias docking top 1 success rate ranking ρ
Ours GIN GVP none 0.230 ± 0.005 0.653 ± 0.036

GIN MS-GVP none 0.148 ± 0.019 0.566 ± 0.031
GIN joint training GVP none 0.205 ± 0.009 0.715 ± 0.019
GIN joint training MS-GVP none 0.200 ± 0.023 0.690 ± 0.009
GIN GVP E 0.759 ± 0.020 0.719 ± 0.025
GIN MS-GVP E 0.802 ± 0.020 0.658 ± 0.032
GIN joint training GVP E 0.779 ± 0.021 0.765 ± 0.023
GIN joint training MS-GVP E 0.788 ± 0.007 0.760 ± 0.015

3D GNN none GNN E 0.299 0.604
PIGNet none GNN E 0.774 0.672

Table 4. Decomposing Energy Terms Do Not Improve the
Model Performances on the CASF-2016 Binding Affinity
Regression Taska

energy-inductive bias
docking top 1 success

rate ranking ρ
E 0.827 0.722
W([E(1), E(2), Eint]) 0.583 0.638
W(BatchNorm([E(1), E(2), Eint])) 0.442 0.677
W(concat([E(1), E(2), Eint])) 0.474 0.694
W(BatchNorm(concat([E(1), E(2),
Eint])))

0.378 0.670

aE = [EvdW, Ehbond, Emetal, Ehydrophobic].

Table 5. Binary Protein−Protein Interaction Prediction on
ProtCID

model lower level GNN model backbone AUROC AUPR

Ours GIN GVP 0.673 0.858
GIN MS-GVP 0.671 0.857
GIN joint training GVP 0.734 0.875
GIN joint training MS-GVP 0.745 0.890

CAMP none CNN 0.522 0.800
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tion allows EGGNet to perform both DTI and PPI prediction
tasks, achieving competitive performances.

■ ASSOCIATED CONTENT
Data Availability Statement
The PDBBind/CASF-2016 data can be downloaded from
https://zenodo.org/record/6047984. TheMANY/DC datasets
can be downloaded from the SBGrid data repository, https://
data.sbgrid.org/dataset/843/. The source code for this study is
available for research and noncommercial use at https://github.
com/aws-samples/eggnet-equivariant-graph-of-graph-neural-
network.
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