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Abstract: The development of DNA microarray and RNA-sequencing technology has led to an
explosion in the generation of transcriptomic differential expression data under a wide range of
biologic systems including those recapitulating the monogenic muscular dystrophies. Data gener-
ation has increased exponentially due in large part to new platforms, improved cost-effectiveness,
and processing speed. However, reproducibility and thus reliability of data remain a central issue,
particularly when resource constraints limit experiments to single replicates. This was observed
firsthand in a recent rare disease drug repurposing project involving RNA-seq-based transcriptomic
profiling of primary cerebrocortical cultures incubated with clinic-ready blood–brain penetrant
drugs. Given the low validation rates obtained for single differential expression genes, alterna-
tive approaches to identify with greater confidence genes that were truly differentially expressed
in our dataset were explored. Here we outline a method for differential expression data analysis
in the context of drug repurposing for rare diseases that incorporates the statistical rigour of the
multigene analysis to bring greater predictive power in assessing individual gene modulation. In-
genuity Pathway Analysis upstream regulator analysis was applied to the differentially expressed
genes from the Care4Rare Neuron Drug Screen transcriptomic database to identify three distinct
signaling networks each perturbed by a different drug and involving a central upstream modulat-
ing protein: levothyroxine (DIO3), hydroxyurea (FOXM1), dexamethasone (PPARD). Differential
expression of upstream regulator network related genes was next assessed in in vitro and in vivo
systems by qPCR, revealing 5× and 10× increases in validation rates, respectively, when com-
pared with our previous experience with individual genes in the dataset not associated with a
network. The Ingenuity Pathway Analysis based gene prioritization may increase the predictive
value of drug–gene interactions, especially in the context of assessing single-gene modulation in
single-replicate experiments.

Keywords: transcriptomics; differential expression analysis; rare disease; drug repurposing

1. Introduction

Rare diseases including the muscular dystrophies system are significant contributors
to human disability and illness. Although defined as less than 1 in 2000 people in Europe
and less than 1 in 200,000 people in the United States, they are collectively common,
carrying significant medical, societal, and economic costs [1–4].

There are comparatively few effective rare disease therapies; one approach to iden-
tifying new treatments involves genome-wide differential expression (DE) analysis (the
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process through which transcriptomic data are converted to statistical measures of gene
expression) by microarray and RNA-sequencing [5–12], as a means of potentially correcting
the pathogenic protein expression which underlies so many diseases [13].

Although the DE pipeline has been extensively customized for individual research
purposes [14], the diverse approaches generally share the same workflow [15]: raw data
processing, DE analysis, and multiple testing correction [16,17], followed by choice of a
statistical cut-off to identify differentially expressed genes (DEGs). The DEGs must then
be classified and validated to extract biologically useful information. Research involving
transcriptome-wide DE data analysis may either focus on gene enrichment patterns or DE
of single genes, this is particularly so when studying rare diseases for it is the modulation of
a specific gene that can hold the greatest therapeutic promise (e.g., utrophin for Duchenne
muscular dystrophy). In the former analysis, which relies primarily on the gene annotation
and enrichment analysis [18], a certain degree of statistical rigour can be achieved by
virtue of the number of differentially expressed genes being studied. One such example
is the analysis of drug-mediated transcriptome modulation to identify novel indications
for established drugs, pioneered by Lamb et al. who first used connectivity mapping of
transcriptomic signatures to pair clinically approved drugs with disease signatures [19].

In contrast, single-gene modulation observed in system-wide datasets is not as repro-
ducible, and this is especially the case in single-replicate experiments. This can be seen in
efforts to repurpose drugs to treat rare monogenic diseases by mining transcriptome-wide
drug screen data for drug hits on rare disease genes of interest [12,20–23]. This work,
unlike the broader assessment of groups of genes outlined above, focuses on single-gene
DE resulting in suboptimal reproducibility, particularly in single-replicate experimental
systems. As a result, although several genes from these studies have been validated at the
in vitro level and in whole-animal experiments, the validation rates were only 20% in vitro
and 5% in vivo [12,20].

DEGs are often analyzed in aggregate using gene enrichment bioinformatic tools [24]
or, more recently, commercial pathway analysis tools such as Ingenuity Pathway Analysis
(IPA) [25]. IPA and similar tools (e.g., iPathwayGuide [26], PathVisio [27], GeneGO Meta-
Core [28]) are similar to gene-set enrichment analysis platforms [29], with the added benefit
of knowing the direction (up- or downregulation) of each pathway. Based on annotated
knowledge of functionally related DEGs, IPA upstream regulator analysis (URA) identifies
a common upstream regulator (e.g., transcription factor, kinase, drug) and analyzes the
DE of downstream genes. The tool then generates an associated z-score and p-value of
overlap that impart statistical significance and directionality (up- or downregulation) to
each upstream regulator [25].

Here, by marrying the statistical robustness of gene network analysis to single-gene
DE measurement, we propose a method of gauging the validity of single DEGs identified
from in vitro transcriptomic data, helping identify those that warrant further investigation
in cellular and animal systems. Data from the Neuron Screen Database (available at
http://bigbear.med.uottawa.ca:1000, accessed on 7 June 2021) [12] were analyzed by IPA
URA to identify three DEG groups that share statistically activated or inhibited upstream
regulators: (i) thyroid hormone upregulation of deiodinases (DIO) network as positive
control for the URA methodology, (ii) novel hydroxyurea (HU)-mediated inhibition of
FOXM1 to investigate in vitro validation rates, and (iii) dexamethasone (DEX)-mediated
activation of PPARD to investigate in vivo validation rates. The use of the URA-based
method to select DEGs resulted in a validation rate far superior to that achieved previously
for single genes not related to a network. This suggests the utility of the IPA-directed
approach in distinguishing true DEGs from stochastic artifacts.

2. Results
Pathway Analysis

URA of RNA-seq DE data from the recently published Neuron Screen of clinic-ready
drugs [12] was conducted to assess whether an a priori “reliability” of an observed drug-
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conferred single-replicate single-gene DE might be achieved. Samples of “activated” and
“inhibited” networks elicited by the 50 drugs that modulated the greatest number of
transcripts were identified by IPA using upstream regulator analysis of DE data. Six
statistically significant activated and inhibited URA networks (|z| > 2, and a minimum of
five downstream DEGs with p-adj < 0.05) were selected for further study: Levothyroxine
(DIO3), hydroxyurea (FOXM1), DEX (PPARD), DEX (STAT4), vigabatrin (MKNK1), and
pregabalin (PGR) (Table 1).

Table 1. Summary of six upstream regulators identified in the Neuron Screen data.

Drug Name Upstream
Regulator

Expression
Fold Change

Predicted
Activation State

Activation
Z-Score

p-Value of
Overlap Number of Genes

Levothyroxine DIO3 4.385 Inhibited −2.975 1.79 × 10−7 8
Hydroxyurea FOXM1 −3.579 Inhibited −3.245 1.63 × 10−10 8
Dexamethasone PPARD 2.522 Activated 3.126 4.58 × 10−2 10
Dexamethasone STAT4 NA Activated 2.933 7.36 × 10−4 12

Vigabatrin MKNK1 1.187 Inhibited −3 1.40 × 10−4 5
Pregabalin PGR 1.013 Activated 3.376 7.77 × 10−9 13

The expression fold change indicated is derived from the original study reporting the RNA-seq results from the neuronal screen. The level
of mRNA (i.e., RNA-seq read numbers) for a given gene in the presence of a drug is compared against the average mRNA level of that
gene for all conditions while the upstream regulator is the central molecule in the network. The activation z-score serves as a statistical
measure as well as a directional tool (negative/downregulated, positive/upregulated) while the p-value of overlap serves as an additional
measure of statistical certainty pertaining to the interrelated nature of the molecules forming each network. NA, data not available as gene
expression was not included in the Neuron Screen data [25].

The deiodinase 3 (DIO3) network, inhibited by the thyroid hormone analog levothy-
roxine (T4) in the Neuron Screen data (z-score = −2.975), was initially analyzed. The DIO3
gene, known to be regulated by thyroid hormone, encodes type 3 iodothyronine deiodi-
nase that inactivates thyroid hormone and downregulates thyroid hormone-responsive
genes [30]. The postulated downstream targets of DIO3 (Figure 1) are known transcrip-
tional targets of thyroid hormone (e.g., Shh, Sema7a, Hr) and have been validated in mouse
cerebrocortex and cortical cultures [12,31]. Thus, the DIO3 network was labelled with a
z-score of −2.975, since the IPA software assumed inhibition of DIO3 (although DIO3 was
in fact upregulated) because of the upregulation of thyroid hormone-responsive genes
(Figure 1). This analysis serves to highlight the possible discrepancy that exists between an
upstream regulator and the downstream genes, while confirming the reliability of URA
network-directed prioritization of DEGs since all the genes in the DIO3 network are up-
regulated in response to thyroid hormone experimentally (from the Neuron Screen data)
and in the published literature. Another example is the STAT4 network, which has a robust
activation z-score with 12 network-related genes. This occurs despite the fact that STAT4
did not appear as a differentially expressed gene in the Neuron Screen data, and thus there
is no fold expression present. This then is an example of using this approach to identify a
potential upstream regulator in the absence of it showing up as a DEG itself.

The FOXM1 network, inhibited by treatment with hydroxyurea (HU) (activation
z-score of −3.245; p-value of overlap at 1.63 × 10−10) was used to determine the rate
of in vitro validation of network-associated DEGs. The FOXM1 transcription factor has
documented roles both in cell cycle gene regulation and DNA damage repair cascade activa-
tion [32]. However, the role of HU in the transcriptional modulation of the FOXM1 network
genes has not been well described. The IPA analysis showed that eight FOXM1-target
genes involved in G2 (growth phase 2) and M phase (mitosis phase) of cell cycle progres-
sion were downregulated in response to hydroxyurea treatment or mouse cortical cultures
(Figure 2A). To determine the validation rate of the HU-elicited FOXM1-associated DEGs,
human U87 glioblastoma cells were treated for 0, 4, and 8 h with 250 µM HU. Quantitative
RT-PCR revealed HU-mediated increases (minimum significance of p < 0.05) of seven of the
eight FOXM1-network genes at 4 and/or 8 h (Figure 2C–E; Supplementary File, Figure S1).
The level of the upstream regulator gene FOXM1 was not significantly affected by 4 or 8 h
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of HU treatment (Figure 2B). These results confirmed the efficiency of identifying DE genes
from URA network analysis, while serving to highlight that such results are not contingent
on the individual upstream gene (in this case FOXM1).

The PPARD network, activated by DEX treatment (z-score = 3.126 and p-value = 0.0458),
was next used to assess the in vivo validation of DEGs identified by URA networks.
The activity of 1 mg/kg DEX oral treatments was confirmed by the upregulation of the
DEX-responsive gene Fkbp5 in the cortex of C57BL6 mice shown by qRT-PCR [33,34]
(Supplementary File, Figure S2A). Subsequently, qRT-PCR analysis of the PPARD network
in cortical tissue from DEX-treated mice was undertaken. Seven of the ten genes in the
PPARD network were studied by qRT-PCR. Three genes (Bcl2l1, Ilk, Mfsd2a) showed
statistically significant upregulation in DEX-treated mice (Figure 3B–D), while Pdk4 and
Kyat3 showed a trend toward upregulation in DEX-treated mice (Figure 3E; Supplementary
File, Figure S2B). Only two of the seven genes tested (Mertk and Lrp5) showed no increase
in response to DEX treatment in the mouse cortex (Supplementary File, Figure S2C,D).

Figure 1. Robust URA network induced by levothyroxine treatment of mouse cerebrocortical cultures. Dashed orange
lines signify activation (loss of inhibition) and red symbols signify upregulated genes with the Neuron Screen Z-score and
adjusted p-value (p-adj) (<0.05) appearing directly below each symbol. The upstream regulator DIO3 is blue, indicating
downregulation based on the C4R drug screen data.
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Figure 2. Validation of downregulated gene expression prioritized by IPA analysis. (A) The URA network shows down-
regulation (green symbols) of the putative upstream regulator (FOXM1) and the downstream molecules (with associated
Z-score and p-value given under each gene, for p values, E-n symbolizes E-n)) (Care4Rare Neuron Screen). Blue arrows
indicate inhibition of the physiological activating relationship between FOXM1 and related genes. Only genes for which
p-adj < 0.05 are included. (B–E) U87 glioblastoma cells were treated with 250 µM hydroxyurea for 0, 4, and 8 h. qRT-PCR
(n = 3) was employed to determine target gene expression with geometric normalization against GAPDH and HPRT1.
(B) Fork-head box M1 (FOXM1). (C) Polo-like kinase 1 (PLK1). (D) Cyclin B1 (CCNB1). (E) Centromere protein E (CENPE).
Statistical significance was measured by one-way ANOVA (nonparametric) with Tukey post hoc analysis (** p < 0.01,
*** p < 0.001, ns = nonsignificant).
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Figure 3. Validation efficiency for upregulated gene expression prioritized by IPA analysis. (A) The PPARD upstream
regulator identified by URA analysis is upregulated in dexamethasone-treated mouse cerebrocortical cultures (Care4Rare
Neuron Screen). Orange arrows signify an activating relationship with downstream genes and red symbols signify
upregulated genes with the Neuron Screen Z-score and p-adj appearing directly below each symbol. Only genes for which
p-adj < 0.05 are included. (B–E) Adult male C57BL6 mice were treated p.o. with vehicle or DEX (1 mg/kg) for 5 days, and
qRT-PCR was employed to determine gene expression of 7 of the 10 targets of PPARD (n = 3). The four genes with the
most robust upregulation are shown. (B) Bcl-2-like protein 1 (Bcldl1). (C) Integrin-linked kinase (Ilk). (D) Major facilitator
superfamily domain containing 2A (Mfsd2a). (E) Pyruvate dehydrogenase kinase 4 (Pdk4). For all hits, statistical significance
was measured by Student’s paired two-tailed t-test (** p < 0.01).

3. Discussion

Recent technologies have permitted the massively parallel interrogation of biologic
systems generating many orders of magnitude of data points. The challenge is how to
extract reliable information of biological utility from such massive sequencing and gene-
array datasets. In this regard, although multiple biological replicates are necessary for
traditional statistical calculations, it is not always feasible (high cost of RNA-seq) or possible
(personalized medicine) to use biological replicates to truly validate a given result.



Int. J. Mol. Sci. 2021, 22, 6295 7 of 12

This problem is offset to some extent when a subset of data is analyzed, as the
statistical strength of such profiles is greater than that achieved with the measurement of
a single data point. This can be seen in rare disease drug repurposing studies utilizing
genome-wide DE analyses that involve the orthogonal signature technique, pioneered by
Lamb et al. (2006) [19,35,36]. In contrast, our lab has adopted a more targeted approach,
mining DE datasets to identify drug-based modulation of single genes with potential
therapeutic benefit for monogenic diseases [12,20–22]. However, the inherent variability
of single-gene instances within system-wide datasets is borne out by in vitro and in vivo
transcriptional validation rates of 20% or lower documented in these studies.

In particular, in the analysis of our recent RNA-seq drug screen using primary cere-
brocortical cultures, the attempted validation of 32 DEGs taken from 60 rare neurogenetic
disease-associated genes originally catalogued by Mears et al. (2017) was successful in only
six cases, a validation rate of less than 20% [12,20].

One technique that has been used to solve the lack of biological replicates is hy-
pergeometric distribution analysis, which has been proposed for individualized therapy
development for glioblastoma multiforme [9]. In an alternative approach, we have in the
present study explored the use of IPA-based URA to assign a reliability probability for
single-gene instances found within system-wide RNA-seq datasets. The URA technique is
well suited given the lack of replicates, as the addition of a minimum of four biologically
related genes to serve as biological replicates of a gene of interest dramatically increases
the efficiency of the individual gene validation. Importantly, our technique of reliably iden-
tifying DEGs does not depend on the degree of gene expression of the upstream regulator.
For example, validation of the FOXM1 network revealed a high rate of validation of down-
stream genes (e.g., PLK1, CCNB1), yet a lack of validation of the FOXM1 gene itself (despite
being downregulated in the RNA-seq data in response to HU, it was not downregulated
in qRT-PCR validation). With regard to the STAT4 network, gene expression results for
STAT4 were not even included in the original RNA-seq data (that were input into the IPA
software). However, the network achieved statistical significance due to the number of
transcriptional targets of STAT4 that were upregulated by DEX.

Our robust networks include a minimum of five DEGs per URA network both for op-
timal statistical strength and given that roughly a fourth of protein-coding genes have been
linked to a rare genetic disease [37,38] (with the general expectation that this proportion
will increase with the ongoing delineation of novel ultrarare diseases). Each network would
thus have a reasonable probability of including at least one rare disease gene; for example,
rare disease-causing genes are seen in both the HU-responsive FOXM1 network (CENPE,
CENPF) [39,40] and the DEX-responsive PPARD network (MERTK, MFSD2A) [41,42]. Ob-
viously, a robust network could comprise a different number of genes depending on the
research question being posed.

Several other studies using URA-based analysis of networks to interpret transcrip-
tomic data, while not quantifying the validation rate, have reported good reproducibil-
ity [43–46]. However, in contrast to the present report, the goal of these studies was to
validate the upstream regulators, not to identify and prioritize DEGs for validation as
we have done. Although the sample size was small, our network-directed prioritization
of DEGs resulted in 100% validation of mouse cerebrocortical culture hits in human im-
mortalized cultures (FOXM1 DEGs). Moreover, a roughly 40% validation from tissue
culture to whole animals was documented (PPARD DEGs). Collectively, the results sug-
gest that for drug-conferred DEGs that are also constituents of a robust transcriptional
network response, there is a greater likelihood of validation in the original system as
well as in other in vitro and in vivo models, even extending to different species, thus rep-
resenting true physiological relationships that transcend the boundaries of species and
experimental conditions.

Finally, novel network analyses, such as weighted correlation network analysis
(WGCNA), could be used to search for clusters of highly correlated genes [47]. WGCNA al-
gorithms have been used in dyslipidemias [48], cancer [49,50], andautismspectrum disorder [51].
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4. Materials and Methods
4.1. Animals and Treatments

All animal protocols were approved by the Animal Care and Veterinary Services
(ACVS) and Ethics Board of the University of Ottawa. For in vivo drug studies, male
C57BL6 mice (8 weeks old) were obtained from Charles River, housed in triplicate, and
given food and water ad libitum. Mice were treated once daily with 1 mg/kg DEX
(Sigma-Aldrich, Oakville, ON, Canada) by oral gavage for 5 days. Roughly four hours
after the last dose, the mice were anesthetized by isoflurane (Sigma-Aldrich, ON, Canada)
and euthanized by cervical dislocation. Cerebral cortices were then collected from each
animal and flash-frozen in liquid nitrogen. Total RNA extraction from the cortex was
performed by QIAzol lysis reagent according to the manufacturer’s recommendations
(Qiagen, Montreal, QC, Canada). The RNA was then purified over Qiagen RNeasy Mini
spin columns (Qiagen, Montreal, QC, Canada) and frozen at −80 ◦C.

4.2. Human Glioblastoma Cell Culture

Human U87 glioblastoma cells (ATCC) were cultured in DMEM high-glucose sup-
plemented with 10% fetal calf serum (Life Technologies, Burlington, ON, Canada) and
2 mM L-glutamine (Life Technologies, ON, Canada). For the validation of FOXM1 tar-
gets, U87 cells were plated in 10 cm dishes at 120,000 cells per dish in a volume of 10 mL.
After an overnight settling period, U87 cells were treated for 0, 4, or 8 h with 0.25 mM
HU (Sigma-Aldrich, ON, Canada). After treatment end-points, cells were washed with
1 × phosphate-buffered saline (PBS) (Sigma-Aldrich, ON, Canada), trypsinized, and pel-
leted by centrifugation at 300× g for 5 min. Pellets were rinsed in 10 mL of 1 × PBS and
then stored at −8 ◦C. RNA extraction was performed by Qiagen RNeasy Mini column-
based extraction (Qiagen, Montreal, QC, Canada) and purification (Qiagen, Montreal, QC,
Canada) according to the manufacturer’s instructions.

4.3. Dataset Used and Ingenuity Pathway Analysis

Primary murine neuronal cultures were incubated with 219 drugs mostly derived
from the Screen-Well Food and Drug Administration approved drug library v2 (Enzo Life
Sciences). Drugs were selected for blood–brain barrier penetrance, comparative safety
consistent with long-term use, and oral bioavailability representing 80 therapeutic classes,
using concentrations approximating those attained in patients (more details are available
at http://bigbear.med.uottawa.ca:1000/, accessed on 7 June 2021). cDNA libraries, con-
structed from the poly-A fraction of total RNA extracted from drug- and control-treated
cultures, were sequenced and analyzed, establishing a transcriptome-wide DE dataset
representing all 227 sequenced libraries. For each sample, gene expression for 14,000 genes
with cpm > 1 was normalized against the average of all conditions. Given that the screen
was performed as a single replicate, the expression of a given gene across all samples
served as the background to represent unaffected expression distributions. Robust z-scores
and p-adj for each potential drug–gene interaction were generated, with DE being defined
as p-adj < 0.05. The transcriptome-wide DE datasets of 50 of the most transcriptionally
active drugs from the Neuron Screen were entered into the IPA software. Default settings
were used for the analysis with a statistical limit of z-score > 3 for all data points. The
two metrics of differential expression that were entered were “z-score” and p-adj. Each
dataset was individually analyzed by IPA, and the URA function was used to identify up-
stream regulator pathways that were “activated” (z-score > 2) or “inhibited” (z-score < −2).
IPA also calculated the p-value of overlap that was considered significant if p < 0.05. Up-
stream regulator networks chosen for validation were curated by removing genes that
had p-adj > 0.05. Networks identified as “robust” contained ≥ 5 statistically significant
gene-targets that were modulated in a direction consistent with the IPA prediction.

http://bigbear.med.uottawa.ca:1000/
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4.4. Quantitative qRT-PCR

DEGs from robust URA networks were investigated by qPCR in human U87 cells
and C57BL6 mouse cortex. Gene-specific primers were designed for each gene of interest,
and Gapdh and Hprt1 were used as housekeeping genes (Table S1). Primers for qPCR were
designed using NCBI Primer-BLAST in accordance with the MIQE guidelines. Reverse
transcription of purified RNA using the Bio-Rad iScript advanced RT kit (Bio-rad, Missis-
sauga, ON, Canada) on a T100 Thermal Cycler (Bio-rad, Mississauga, ON, Canada) and
qPCR using the iQ SYBR Green Master Mix (Bio-Rad, Mississauga, ON, Canada) on a
CFX96 Touch Real-Time PCR Detection System (Bio-rad, Mississauga, ON, Canada) were
performed as previously described [12]. Bio-Rad CFX software (Bio-rad, Mississauga,
ON, Canada) enabled geometric mean normalization of target gene expression to Gapdh
and Hprt1.

4.5. Statistical Analysis

Statistical tests were performed using IBM SPSS Statistics for Windows, Version 25.0
(IBM Corp., Armonk, NY, USA). All data are expressed as mean and standard deviation
unless otherwise indicated. Statistical significance was measured by one-way ANOVA
with Tukey post hoc analysis (for in vitro validation) and by Student’s paired two-tailed
t-test (for in vivo validation).

5. Conclusions

In conclusion, we present a method to prioritize the investigation of DEGs identified in
transcriptome-wide studies in neurogenetic disease. We believe our approach, combining
the statistical rigour of gene enrichment and pathway analysis while utilizing accessible
bioinformatics tools, may serve as a useful low-cost rapid filter to prioritize single DEGs
worthy of further analysis. Although IPA was used for gene prioritization in our study, it
is likely that other roughly equivalent tools (iPathwayGuide, PathVisio, GeneGo) would
allow for similar gene prioritization. As an ever-expanding number of organisms are being
added to the list of sequenced genomes, pathway tools such as IPA may be developed
that can integrate gene expression results of nonmodel organisms. The URA-directed
prioritization technique could then be broadly applicable in the context of transcriptomic
data with impacts in fields as diverse as personalized drug discovery, the effect of ocean
acidification on marine species, or elucidating mechanisms of antibiotic resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22126295/s1, Figure S1: Validation of the effect of HU on four FOXM1 downstream
genes. U87 glioblastoma cells were treated for 0, 4, and 8 h, and qRT-PCR was employed to deter-
mine gene expression of (A) cyclin-dependent kinase 1 (CDK1), (B) centromere protein F (CENPF),
(C) BUB1 mitotic checkpoint serine/threonine kinase (BUB1), and (D) cyclin A2 (CCNA2). Statistical
significance was measured by one-way ANOVA (nonparametric) with Tukey post hoc analysis
(** p < 0.01, *** p < 0.001, ns = not significant), Figure S2: Validation of the effect of dexamethasone
on three PPARD targets in vivo. Male C57BL6 mice were treated orally for 5 days with vehicle
(n = 3) or DEX (1 mg/kg) (n = 3). Gene expression of PPARD targets was determined by qRT-PCR.
(A) FKBP prolyl isomerase 5 (Fkbp5), (B) kynurenine aminotransferase 3 (Kyat3), (C) C-mer proto-
oncogene tyrosine kinase (Mertk), (D) LDL receptor-related protein 5 (Lrp5), Table S1: Mouse and
human primers.
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