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Summary 
Notch is a highly conserved transmembrane protein that is involved in cell fate decisions and is 
found in organisms ranging from Drosophila to humans. A human homologue of Notch, TAN1,  
was initially identified at the chromosomal breakpoint of a subset of T-cell lymphoblastic leu- 
kemias/lymphomas containing a t(7;9) chromosomal translocation; however, its role in onco- 
genesis has been unclear. Using a bone marrow reconstitution assay with cells containing retro- 
virally transduced T A N 1  alleles, we analyzed the oncogenic potential of both nuclear and 
extranuclear forms of truncated TAN1 in hematopoietic cells. Although the Moloney leuke- 
mia virus long terminal repeat drives expression in most hematopoietic cell types, retroviruses 
encoding either form of the TAN1 protein induced clonal leukemias of exclusively immature 
T cell phenotypes in "~ of transplanted animals. All tumors overexpressed truncated TAN1 
of the size and subcellular localization predicted from the structure of the gene. These results 
show that TAN1 is an oncoprotein and suggest that truncation and overexpression are impor- 
tant determinants of transforming activity. Moreover, the murine tumors caused by TAN1 in 
the bone marrow transplant model are very similar to the TANl-associated human tumors and 
suggest that TAN1 may be specifically oncotropic for T cells. 

T he human T A N 1  gene encodes a transmembrane pro- 
tein (TAN1) that contains an extracellular domain pos- 

sessing a series of motifs, among which are iterated epi- 
dermal growth factor (EGF)l-like repeats, Notch/lin-12 
repeats, and a pair of evolutionarily conserved cysteine resi- 
dues; the intracellular portion contains ankyrin-like repeats, 
a glutamine-rich region, and a PEST sequence (Fig. 1) (1). 
Each of these motifs is also found in the protein product of 
Notch, a Drosophila melanogaster gene that appears to control 
cell fate decisions among equipotent progenitor cells in the 
developing fly (2, 3). TAN1 is expressed at relatively high 
levels in developing and adult thymus, suggesting that it 
might participate in normal T cell development (1, 3a). 

T A N 1  was originally identified through analysis of the 
(7;9)(q34;q34.3) chromosomal translocation found in a subset 

1Abbreviations used in this paper: EGF, epidermal growth factor; FSC, for- 
ward scatter; 5-FU, 5-fluorouracil; LTI:t., long terminal repeat; MoMLV, 
Moloney murine leukemia virus; RIPA, radioimmunoprecipitation assay; 
SSC, side scatter; SCF, stem cell factor; Su(H), Suppressor of Hairless; 
T-ALL, T cell lymphoblastic leukemia/lymphoma; WBC, white blood cell. 

of acute human T cell lymphoblastic leukemias/lymphomas 
(T-ALL) (1, 4). This rearrangement fuses the 3' portion of 
T A N 1  on chromosome 9 to the TCP,-[3 locus on chromo- 
some 7. The resulting allele is deleted for most of the cod- 
ing sequence of the extracellular domain of  TAN1. It di- 
rects the synthesis of a series of truncated polypeptides of 
~-,100-125 kD that have NH2-termini lying near the trans- 
membrane domain (Aster. J., R.. Hasserjian, F. Davi, and J. 
Sklar, manuscript submitted for publication). The t(7;9)- 
specific polypeptides localize predominantly to the nucleus, 
probably because of two conserved nuclear localization se- 
quences within the cytoplasmic domain of TAN1 (Aster, 
J., et. al., manuscript submitted for publication). Nuclear 
TAN1 has not been detected in cell lines expressing normal 
TAN1 transcripts or in developing murine thymus (3a), 
raising the possibility that altered subcellular localization 
might influence transforming activity. 

Although analysis of three tumors bearing the t(7;9) 
showed consistent disruption of  the T A N 1  gene at the chro- 
mosomal breakpoint at almost identical positions within the 
gene (1), the contribution of altered TAN1 to transforma- 
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tion is unknown. One  of  the three tumors studied, SUP-T1,  
had lost both normal T A N I  alleles, suggesting that T A N 1  
might be a tumor  suppressor gene (1, 5). Alternatively, re- 
moval  o f  the extracellular domain o f  the protein by the 
translocation might  cause constitutive activity o f  the intra- 
cellular domain, producing a dominant oncoprotein. The lat- 
ter possibility is supported by the results of  mutational analysis 
in Drosophila in which deletions removing the extracellular 
domain o f  Notch have been shown to lead to dominant  
gain-of-function phenotypes,  opposite to those produced 
by loss-of-function mutations associated with inactivation 
o f  the gene (6-8). 

To examine whether  TAN1 can function as an onco-  
protein, we have used recombinant  retroviruses to express, 
in vivo, proteins resembling the truncated polypeptides 
found in cells beating t(7;9). Tumors  developed in ~ 5 0 %  
o f  mice that received bone marrow transduced by 5' de-  
leted forms o f  TAN1,  In all cases, the tumors were T cell 
neoplasms of  an immature phenotype.  Expression o f  either 
cytoplasmic or  nuclear forms o f  TAN1 resulted in a nearly 
identical disease. This suggests that transformation by TAN1 
results primarily from overexpression and truncation o f  the 
protein, rather than subceUular localization. These results 
also directly implicate TAN1 in the pathogenesis o f  t(7;9) 
human T-ALL.  

Materials  and  M e t h o d s  

Retroviral Vectors and Constructs. AECT + and AECT- were con- 
structed by llgatingJK5T, a previously described TAN1 cDNA (1), 
to a PCIL product spanning base pairs - 1 4  to +70, which en- 
codes the 5' TAN1 translational start site and signal peptide. Each 
construct was subcloned into the BclI site of the pGD retroviral 
vector (9). The mature polypeptides encoded by AECT + and 
AECT- are predicted to be composed of amino acids 1673-2555 
and 1704-2555 and to have NH2-termini located 61 and 30 amino 
acids external to the transmembrane domain, respectively. ICT was 
constructed by ligating an oligonucleotide containing an ATG 
translational start site to a unique Bsu36I site within the JK5T 
cDNA. The resultant construct encodes amino acids 1770--2555 
and is predicted to produce a polypeptide consisting of the entire 
intracellular region of TAN1 minus the first 13 amino acids. Se- 
quencing of the 3' long terminal repeat (LTR) ofpGD has shown 
that it is derived from the Moloney murine leukemia virus 
(MoMLV) LTR (M. Scott, unpublished data). 

Retroviral Production and Bone Marrow Infection Protocols. Transfec- 
tion of the retroviral vectors, cocultivation with 5-fluorouracil 
(5-FU)-treated bone marrow, and injection into lethally irradi- 
ated BALB/cByJ recipients were performed as previously de- 
scribed (10). Cocultivation of the transfected Bosc23 cells and 
5-FU-treated bone marrow was performed in a cocktail consist- 
ing of DME, 10% heat-inactivated FBS (JILH Biosciences, Len- 
exa, KS), 5% WEHI-conditioned medium, 6 U/ml recombinant 
mouse IL-3 (Genzyme Corp., Cambridge, MA), 10,000 U/ml 
recombinant mouse IL-6 (Genzyme), 5U/ml recombinant mouse 
stem cell factor (SCF) (Genzyme), 1 ~g/ml polybrene (Sigma 
Chemical Co., St. Louis, MO), 100 U/ml streptomycin (GIBCO 
BRL, Gaithersburg, MD), 100 U/ml  penicillin (GIBCO BILL), 
and 2 mM t-glutamine (GIBCO BILL). Between 5 • 10 s and 
1 • 10 6 nonadherent cells were injected into a tail vein of each 

recipient animal. Bone marrow and spleen cells from all tumors 
were cultured in DME supplemented with 20% heat-inactivated 
FBS 0ILH Biosciences), 100 U/ml  streptomycin (GIBCO BRL), 
100 U/nil  penicillin (GIBCO BILL), 2 mM L-glutamine (GIBCO 
BR.L), and 4 U/ml recombinant mouse IL-2 (Genzyme). Bone 
marrow cells derived from mice T6, I8, and I22 adapted to con- 
tinuous in vitro growth. Tumor cells from all AECT animals 
were readily transplantable to syngeneic mice. Transfer of ICT 
tumors to secondary recipients was not attempted. BALB/cByJ 
mice were obtained from Jackson Laboratories (Bar Harbor, ME) 
and maintained at the animal facilities at Rockefeller University 
and Massachusetts Institute of Technology under specific patho- 
gen-flee conditions. 

Protein Analysis and Immunohistochemistry. kadioimmunopre- 
cipitation assay (ILIPA) extracts (11) were prepared from cell lines 
and tumors, and 10 Izg of protein was subjected to electrophoresis 
in 6% discontinuous SDS-polyacrylamide gels and then trans- 
ferred electrophoretically to nitrocellulose membranes. The blot 
was probed with affinity-purified polyclonal rabbit anti-TAN1 
raised against the T3 region of the cytoplasmic domain (Fig. 1) 
and developed by a chemiluminescent method (Amersham Inter- 
national, Little Chalfont, Buckinghamshire, UK). DNA encoding 
a portion of TAN1 termed T3 (codons 1733-1877) was amplified 
by PCIL from JK5T (1), ligated into the vector pGEX-4T (Phar- 
macia), and subsequently purified from detergent lysates with glu- 
tathione-Sepharose beads (Pharmacia Biotech, Inc., Piscataway, 
NJ) (11). Serum from immunized rabbits was affinity purified by 
sequential passage over an AflqGel-15-GST column (Bio-iLad 
Laboratories, Hercules, CA) and an AflqGel 15-GST-T3 column. 
For immunohistochemistry, sections cut from paraffin-embedded 
tissue were deparaffinized and boiled in a 5% urea solution for 10 
min (12). Immunoperoxidase staining was performed with affin- 
ity-purified rabbit anti-T3 according to a previously described 
method (13). Slides were counterstained with hematoxylin. For 
staining of T6E and I22 cells, the cells were allowed to adhere to 
poly-r-lysine-coated slides, fixed in 3% paraformaldehyde, and 
permeabilized with 0.1% saponin. Indirect imnmnofluorescent 
and immunoperoxidase staining was performed with affinity- 
purified anti-T3 and secondary anti-rabbit antibody linked to 
FITC (Sigma) or HRP (Sigma), respectively. 

Flow Cytometry. Spleen cells or LN cells were obtained from 
mice T8A1, I8, T3A2, T7, or age-matched controls and analyzed 
for forward scatter (FSC), side scatter (SSC), and expression of 
Thyl.2, CD4, and CD8 by multiparameter flow cytometry as de- 
scribed (14). For each animal, FACS | analysis was performed on 
tumor samples derived from at least two different sites, and in all 
cases, results from the different sites were concordant (data not 
shown). Control spleen was obtained from an age-matched 
BALB/cByJ mouse. T8A1 spleen cells were derived from a 
mouse that had received 10 s T8 tumor cells, and T3A2 LN cells 
were derived from a mouse that had received 105 T3 bone mar- 
row cells. The staining patterns of the primary T8 and T3 tumors 
were very similar to the patterns found in T8A1 and T3A2. Anti- 
bodies used were the following: CDSa-FITC (YTS169.4; Caltag 
Laboratories, San Francisco, CA), CD4-PE (YTS191.1; Caltag), 
TCtM3-PE (H57-597; Caltag), TCRy/8-PE (GL3; Caltag), 
Thyl.2-FITC (5a-8; Caltag), CD3-FITC (500-A2; Caltag), 
B220-PE (RA3-6B2; Caltag), MAC-1-PE (M1/70.15; Caltag), and 
CD24-PE (M1/69; PharMingen, San Diego, CA). Fluorescence 
was analyzed on a FACScan | flow cytometer with CellQuest soft- 
ware (Becton Dickinson, San Jose, CA). 

DNA Analysis. High molecular weight DNA was isolated 
from fresh or snap-frozen tissues, digested with appropriate re- 
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striction enzymes, and analyzed by Southern blot hybridization as 
previously described (10). For each animal, DNA was prepared 
from tumors from at least two different sites. In each case, the 
proviral integration patterns were identical in the tissues from 
multiple sites (data not shown). 

R e s u l t s  

Retroviral Expression of Truncated T A N 1  in Murine Bone 
Marrow Induces T-cell Neoplasms. To assess the transform- 
ing potential o f  truncated TAN1 in hematopoietic cells, 
three T A N 1  c D N A  constructs (Fig. 1) were cloned into 
the pGD retroviral vector (9). This retroviral vector ex- 
presses the truncated T A N 1  gene under the control o f  the 
promoter  dements  o f  the M o M L V  LTR.. T w o  constructs, 
AECT + and A E C T - ,  encoded polypeptides consisting o f  
the TAN1 signal peptide fused to sequences just external to 
the transmembrane domain. The major difference between 
these two polypeptides was that one retained a pair o f  evo- 
lutionarily conserved extracellular cysteines (AECT+), 
whereas the other did not (AECT-) .  Both o f  these con- 
structs produced polypeptides that localized predominantly 
to endoplasmic reticulum and nuclear membrane when sta- 
bly overexpressed in N I H  3T3 cells (Aster, J., unpublished 
data). The third construct, ICT,  encoded most o f  the cyto-  
plasmic domain o f  TAN1 and showed predominantly nu-  
clear localization when transiently or stably overexpressed 
in murine fibroblasts (Aster, J., unpublished data). These 
forms were chosen for three reasons. First, the size o f  the 
encoded polypeptides (~120 kD for the AECT polypep- 
tides and ~ 1 1 0  kD for ICT) roughly resembles that o f  the 
polypeptides found in cells bearing the t(7;9). Second, the 
different subcellular localization o f  the encoded polypep- 
tides serves to test the importance o f  nuclear localization in 
transformation. Finally, comparison of  AECT + and A E C T -  
might identify a role for the conserved extracellular cys- 
teine residues in transformation, a possibility suggested by 

the observation that mutation o f  either o f  these two resi- 
dues in Notch  produced a gain-of-function phenotype in 
the fly (8). 

These T A N 1  constructs were individually transfected 
into the ecotropic retroviral packaging line, Bosc23, and 
the resulting high titer retroviral supematants were used to 
infect BALB/cByJ bone marrow in vitro (10). 10 lethally 
irradiated syngeneic mice received bone marrow infected 
with each construct. From 11 to 40 wk after transplant, 11 
mice showed sudden onset cachexia and increases in their 
white blood cell (WBC) counts coincident with the ap- 
pearance o f  leukemic blasts in the peripheral blood. One  
additional mouse, T3, became cachectic and had circulat- 
ing blasts without increased WBCs (Table 1). Tumors arose 
in four mice receiving AECT + bone marrow, in three 
mice receiving A E C T -  marrow, and in five mice receiving 
ICT  marrow, suggesting that the tumorigenicity o f  each 
construct was approximately equivalent. This suggests that 
the presence or absence o f  the conserved extracellular pair 
o f  cysteine residues does not influence transforming activ- 
ity. The observed frequency with which tumors arose (30- 
50%) is probably less than the actual frequency, as several 
sudden and unwitnessed deaths occurred in each group. 

At necropsy, five o f  the mice had thymic masses, while 
seven mice contained only thymic remnants, the latter be- 
ing consistent with postirradiation involution (Table 1). I0  
o f  12 mice had lymphadenopathy and marked hepatosple- 
nomegaly secondary to extensive infiltration and distortion 
by leukemic blasts (not shown). The remaining two ani- 
mals, T3 and I9, had microscopic leukemic cell infiltration 
o f  spleen and liver. 

T A N  l-associated Tumors are Composed of Immature T cells. 
Flow cytometric analysis showed that each of  the 12 tu- 
mors was composed of  immature T cells (Fig. 2). While all 
12 tumors reacted with antibodies to Thy l .2  (Fig. 2 and 
data not shown) and TCP,-[3 chain (not shown), individual 
tumors showed variable patterns o f  reactivity with anti- 
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Figure 1. Structure of TAN1 and AECT and 
ICT cDNA constructs used in the bone marrow 
transplant experiments. The arrow indicates the 
approximate site at which the TAN1 cDNA se- 
quence is disrupted by recombination of TAN1 
with TCR-I8 in tumors with t(7;9) (q34; q34.3) 
(1). The deletion in T1 occurred 5' to the cDNA 
insert in the pGD vector and is indicated by T1. 
The deletion in [21 occurred 3' to the cDNA in- 
sert in the pGD vector and is indicated by I21 and 
the deletion in I22 occurred 5' to the cDNA in- 
sert in the pGD vector and is indicated by I22. 
The T3 region of TAN1 used for immunization 
is underlined. Legend: black, hydrophobic leader; 
stippled, EGF-like repeats; diagonally striped, 
LNt< repeats; C~ paired, conserved cysteines resi- 
dues located 49 and 42 amino acids external to 
the transmembrane domain; black but with 
extended lines, transmembrane domain; dotted, 
ankyrin repeats; Q, glutamine-rich region; P, 
PEST sequence; X, XbaI; R, EcoRl. The Mo- 
MLV LTP,. and neo resistance gene of the pGD 
retroviral vector are indicated. 

2285 Pear et al. 



Table 1. Summary of Tumors in TAN1 Transplants 

Latency Terminal Thyrnic 
Animal Construct (weeks) WBC/mm 3 involvement 

B a l b / c  
S p l e e n  

T1 AECT-- 11 70 No 
T3 AECT-  16 4 No TSA1 

S p l e e n  
T4 AECT-- t2 68 No 
T6 AECT+ 15 42 Yes 

T7 diECT+ 40 65 Yes 
T8 dtECT+ 15 41 No I8 

Spleen 
T14 AECT+ 16 55 Yes 
I8 ICT 25 25 Yes 
I9 ICT 25 32 No 

I21 ICT 18 40 No TaA2 
I22 ICT 1 8  5 0  N o  N o d e  

I46 ICT 21 150 Yes 

CD4 and anti-CD8. The observed immunophenotypes re- 
vealed cell populations ranging from predominantly Thyl .2  + 
C D 4 -  C D S -  double negative cells (Fig. 2, T7), resembling 
immature cortical thymocytes, to predominantly Thy l .2  + 
CD4 + CD8 + double positive cells (Fig. 2, T8A1 and I8, 
and also T1, T4, 19, and I46 [not shown]), resembling a 
more mature cortical thymocytic phenotype. Five tumors 
(T3, T6, T14, I21, and I22) expressed high levels o f  CD8 
and lower levels o f  CD4 (Fig. 2, T3A2 and data not 
shown), compatible with a maturation stage between dou-  
ble-negative and double-positive cells (15, 16). Additional 
studies showed that cell lines derived from several o f  these 
tumors (T6, I8, and I22) had intermediate to high level sur- 
face expression of  CD24 (heat stable antigen) and expressed 
R A G - 2  (Pear, W., unpublished data), features also shared 
by normal cortical thymocytes (17, 18). R.AG-2 expression 
was also observed in liver infiltrated by the T3 and T7 tu- 
mors (Pear, W., unpublished data). As exemplified by I8 
and T3A2 (Fig. 2), some tumors contained several subpop- 
ulations o f  cells with distinct immunophenotypes.  

TANl-induced Tumors Contain Integrated Proviruses and 
Overexpress Truncated Forms of TAN1.  All tumors contained 
integrated proviruses, as shown by Southern (DNA) blot 
analysis (Figs. 3 a and 4 a). The proviral structure was intact 
in nine tumors, while three contained small deletions that 
mapped within vector sequences flanking the c D N A  inserts 
(see Fig. 1). Further blot analysis showed that 10 of  11 tu- 
mors that could be evaluated contained a single integrated 
provirus, while one tumor, T3, contained two unique 
proviral sequences (Figs. 3 b, 4 b, and data not shown). 
Clonal TC1K J[32 rearrangements were observed in 9 o f  11 
tumors evaluated (Figs. 3 c and 4 c). Because tumor infiltra- 
tion in the spleen and liver o f  the I9 mouse was minimal, 
this tumor could not be evaluated for proviral integration 
number or TC1K-[3 rearrangement. 

All o f  the tumors expressed the introduced truncated 
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Figure 2. Immunophenotyping of" TANl-associated tumors by flow 
cytometry. Two-parameter contour plots show FSC versus SSC (left) and 
CD4 versus CD8 expression (right). Cursors on the right were set on the 
basis of profiles of normal splenocytes and thymocytes. A single-parameter 
histogram shows the expression of Thyl.2 (solid lines, center column). The 
dotted line in the upper panel shows Thyl.2 expression in unstained con- 
trol spleen cells. The tumors were negative for macrophage (Mac-l) and 
B-cell (13220) markers, as well as for expression of TCR.-y/8. In all tu- 
mors, the majority of cells expressed TCR.-ot/~ and low levels of CD3. 

forms of  TAN1 at high levels relative to the levels o f  en- 
dogenous murine TAN1 (Notch1) in normal BALB/cByJ 
thymus, spleen, and liver, and the T cell line A K R  (Figs. 5 
a and 5 b, and data not shown). BALB/c  thymus contained 
a protein o f ~ 1 2 0  kD (p120) (Fig. 5 a) that is derived from 
full-length TAN1 by proteolytic cleavage at a site just ex- 
ternal to the transmembrane domain (Aster, J., et al., 
manuscript submitted for publication), p120 is closely re- 
lated in primary structure to both the t(7;9)-specific poly- 
peptides and the AECT-encoded  polypeptides. It is also 
overexpressed by tissue culture cells transduced by a retro- 
virus carrying a full-length T A N 1  cDNA,  indicating that 
full-length TAN1 serves as a precursor molecule for p120 
(19, Aster, J. et al., submitted). Despite its structural resem- 
blance to oncogenic forms of  truncated TAN1,  p120 does 
not appear to be oncogenic, since none of  10 mice receiv- 
ing bone marrow infected with a retrovirus expressing full- 
length TAN1 developed TANl-expressing tumors over the 
course o f  1 yr (Pear, W., andJ. Aster, unpublished data). 

Both Cytoplasmic and Nuclear Forms of T A N 1  Are Onco- 
genic. Microscopic examination o f  pathologically enlarged 
spleen, liver, and LNs showed infiltration by leukemic 
blasts (Fig. 6 a, and data not shown). Immunohistochemis- 
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try performed on these tissue sections showed a high level 
o f  TAN1 expression in tumor  cells relative to levels in sur- 
rounding normal tissue (Fig. 6 b, and data not  shown). Sub- 
cellular localization o f  TAN1 was further investigated in 
disaggregated tumor  and cell lines. Tumors  induced with 
either AECT construct showed prominent  cytoplasmic 
staining with TANl- spec i f i c  antibodies (Fig. 6 c, and data 
not  shown). This staining colocalized with  that observed 
using antibodies against calnexin, a protein previously shown 
to localize to the endoplasmic ret iculum (20). This suggests 
that most AECT-p roduced  TAN1 is present in the endo-  
plasmic ret iculum and contiguous portions of  the nuclear 
membrane.  In contrast, tumors induced by the I C T  con-  
struct showed strong nuclear staining (Fig. 6 d, and data not  
shown). 

Discuss ion  

These studies show that truncated forms of  TAN1 can 
induce T cell tumors in mice, strongly suggesting that 
Notch homologues  can function as human oncogenes. T w o  
findings support a direct role for truncated TAN1 in the 
pathogenesis o f  the murine T cell neoplasms. First, high 
level expression o f  the proteins encoded by retrovirally 
transmitted T A N 1  cDNAs occurred in all analyzable tu-  
mors. Second, a single integrated provirus was detected in 
most o f  the tumors, which were readily passaged in synge- 
neic recipients. 

The  current data, together  with our  previous experience 
using the bone marrow transplant assay, argue against other  
explanations for the high frequency o f  T cell malignancies 
observed in these animals. First, insertional mutagenesis by 
repl icat ion-competent  helper virus seems unlikely, as the 
M o M L V  envelope gene was absent from the malignant 
cells (Pear, W. ,  unpublished data). Second, activation of  
leukemogenic  endogenous retroviruses by the marrow 
transfer procedure itself is quite rare. Using bone marrow 
infected with retroviruses that carry different oncogenic 
and nononcogenic c D N A  inserts, we have transplanted over 
200 BALB/c  mice. O f  these animals, which have been fol- 
lowed for more  than 1 yr after transplant, only one has de-  
veloped a T cell malignancy (Pear W. ,  and M. Scott, un-  
published data). 

The T cell specificity o f  transformation by TAN1 is 
striking and probably results from the properties o f  the 

Figure 3. Analysis of TANI proviral integration and TCR-~ chain re- 
arrangement in dIECT tumors. (A) Southern blot of XbaI-digested ge- 
nomic DNA hybridized with TAN1 cDNA. XbaI cleaves once in each 
LTR (Fig. 1), generating a 6-kb fragment after hybridization to a TAN1 
probe. The 4.4-kb fragment is the endogenous Notch1 fragment. Lanes: 
T6E cell line, T6 thymus, T7 thymus, BALB/c liver, T1 salivary gland, 
T3 spleen, T4 spleen, T7 spleen, T8 thigh mass, T14 spleen. (B) Southern 
blot of EcoRI-digested genomic DNA hybridized with TANI cDNA. 

EcoRI cleaves once in the pGD AECT vectors (see Fig. 1). Lanes: T6E 
cell line, T6 thymus, T7 thymus, BALB/c liver, T1 spleen, T3 spleen, T4 
spleen, T7 spleen, T8 thigh mass, T14 spleen. The TAN1 hybridization 
probe in both A and B was a 561-bp fragment that was derived by PCR 
from a region of the cDNA 3' of the ankyrin repeats (base pairs 6832- 
7393). (C) TCR I~ rearrangement in AECT tumors. DNA was digested 
with HindlIl. The hybridization probe is the 2,2-kb EcoRI TCR-JJ32- 
specific DNA fragment (37) that hybridizes to a 5-kb HindlII fragment in 
unrearranged DNA. Lanes: BALB/c liver, T1 spleen, T3 spleen, T4 
spleen, T7 spleen, T8 thigh mass, T14 spleen, T6E cell hne. 5-10 ~g of 
DNA was loaded in each lane except T6 thymus, where 2 ~g was loaded. 
Size markers, in kilobases, are to the left. 
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Figure 4. Analysis of TAN1 proviral integration and TCR-13 chain rearrangement in ICT tumors. (A) Southern blot ofXbal-digested genomic DNA 
hybridized with TAN1 cDNA.  XbaI cleaves once in each LTP, (see Fig. 1), generating a 5.8-kb fragment after hybridization to a TAN1 probe. The 4.4- 
kb fragment is the endogenous Notch1 fragment. The smaller bands in I21 spleen (lane 5) and I22 spleen and cell line (lanes 6 and 7) are the result of de- 
letions occurring outside of  the TAN1 cDNA in the integrated provirus (Fig. 1). Lanes: I, BALB/c liver; 2, I8 cell line; 3, I8 spleen; 4, I9 spleen; 5, 121 
spleen; 6, I22 spleen; 7, I22 cell line; 8, I46 spleen. (B) Southern blot of HindlII-digested genomic DNA hybridized with T A N I  cDNA. HindlII cleaves 
outside of the pGD ICT vector. The 3-kb and ~ bands are endogenous murine Notch sequences. Lanes: 1, BALB/c liver; 2, I22 spleen; 3, 146 
spleen. The TAN1 hybridization probe in A and B was a 561-bp fragment that was derived by PCP- from a region of the cDNA 3'  of the ankyrin repeats 
(base pairs 6832-7393). (C-') TCR-~8 rearrangement in ICT tumors. DNA was digested with EcoP, l. The hybridization probe is the 2.2-kb EcoRI TCR- 
//B2-specific DNA fragment (37) that hybridizes to a 2.2-kb EcoPd fragment in cells that have not undergone rearrangement of this locus. Lanes: 1, 
BALB/c liver; 2, I8 spleen; 3, I9 spleen; 4, 121 spleen; 5, I22 spleen; 6, I46 spleen. 5-10 Ixg of DNA was loaded in each lane. Size markers, in kilobases, 
are to the left. 

T A N 1  g e n e  p r o d u c t  i t s e l f  a n d  n o t  f r o m  its r o u t e  o f  i n t r o -  

d u c t i o n .  T h e  M o M L V  L T R  i n  t h e  p G D  v e c t o r  d i r ec t s  

h i g h  l eve l  t r a n s c r i p t i o n  i n  a w i d e  v a r i e t y  o f  h e m a t o p o i e t i c  
cel l  types .  I n f e c t i o n  o f  w h o l e  b o n e  m a r r o w  ta rge ts  all d i -  

v i d i n g  ceils, n o t  j u s t  T cel l  p r o g e n i t o r s  (21).  I n  p r e v i o u s  

t r an sp l an t s  u s i n g  s in t i l a r  p r o t o c o l s ,  b u t  d i f f e r e n t  t r a n s f o r m -  

i n g  genes ,  t u m o r s  o f  p r e - B  cell,  g r a n u l o c y t e ,  m a c r o p h a g e ,  

a n d  mast cell origin o c c u r r e d  (9, 2 2 - 2 4 ) .  T h e  T cell  o n c o -  

t r o p i s m  o f  T A N 1  d i s t i n g u i s h e s  i t  f r o m  t h e  p r o d u c t  o f  int3,  

a d i s t an t l y  r e l a t ed  m e m b e r  o f  t h e  N o t c h  fami ly .  T h i s  g e n e  
is a s soc ia t ed  w i t h  m u r i n e  sa l ivary  a n d  m a m m a r y  t u m o r s ,  

a p p a r e n t l y  o w i n g  to  t h e  spec i f i c i ty  o f  t h e  m o u s e  m a m m a r y  

t u m o r  v i ru s  p r o m o t e r ,  w h i c h  c o n t r o l s  t r a n s c r i p t i o n  o f  t h e  

g e n e  (25).  

Figure 5. TAN1 protein expression in AECT and 
ICT tumors. (A) Western blot showing TAN1 expres- 
sion in tumors from AECT transplants. The AECT 
TAN1 specific product is present at ~120  kD. The 
band at ~350  kl) in the T6E lane corresponds in size 
to the product of murine Notch1 (38). A faint band in 
the identical position was observed in all other AECT 
tumor extracts upon longer exposure (not shown). 
Lanes: Jurkat, a human T-ALL with apparently nomaal 
TAN1 alleles, SUPTI,  a human T-ALL cell line with 
two copies of the t(7;9) and no normal T A N I  allele, 
BALB/cByJ thymus, T1 spleen, T3B2 spleen (second- 
ary transplant recipient of cells from T3 spleen), T4 
spleen, T6 thymus, T6E cell line, T8 thigh mass, 
TI4A1 spleen (secondary transplant recipient of cells 
from TI4 spleen). (B) Western blot showing TAN1 
expression in tumors from ICT transplants. The ICT 
TANI specific product is present at ~110  kD. A simi- 
lar band was present in 146 spleen (Aster, J., unpub- 
lished data). The HI 10-kD band was not detectable in 
19 spleen owing to the small amount of tumor present 
in the liver and spleen of this animal. The band at 

~'350 kD in the I22 cell line (lane 5) corresponds in size to the product of murine Notchl (38). A faint band in the identical position was observed in all 
other ICT tumor extracts upon longer exposure. The ~120-kD TANl-specific band corresponding to the proteolytic cleavage product is present in 
BALB/c thymus upon longer exposure. Lanes: 1, BALB/c spleen; 2, BALB/c  thymus; 3, I2I liver; 4, I22 spleen; 5, I22 cell line; 6, I8 liver; 7, 18 spleen; 
8, I9, spleen. 10 I*g of protein was loaded in each lane. The size markers, in kD, are to the left. 
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Figure 6. Immunohistochemical local- 
ization of  AECT and ICT proteins in tu- 
mors and cell lines. (A) Microscopic ap- 
pearance of  a representative AECT tumor. 
A portion of  the enlarged spleen of  animal 
T7 was paraffin-embedded and sectioned. 
The slides were stained with hematoxylin 
and eosin. Normal splenic architecture is 
replaced by a monomorphous population 
of  blasts. (B} Immunoperoxidase staimng 
showing TAN1 expression in leukemic 
blasts infiltrating the liver of  animal T7 (he- 
matoxylin counterstain). (C) Immunoflu- 
orescent localization of TAN1 in T6E cells. 
(D) Immunoperoxidase staining of  TAN1 
in I22 cells (without counterstaining). 
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Unlike several other genes implicated in the pathogene- 
sis o f  T-ALL, including TALI,  RBTN2,  and HOX11, 
which are not normally expressed in thymocytes (26-29), 
Notch 1~TAN1 is expressed at high levels in normal thymus 
(1) and is also expressed in CD34 + stem cells within the 
bone marrow (30). The  highest levels o f  TAN1 expression 
in routine and human thymus occur in cortical thymocytes 
(3a), and all o f  the TANl-associa ted tumors described in 
this report have immunophenotypes  resembling those of  
normal cortical thymocytes. The  normal function of  TAN1 
in T cells and marrow progenitor cells is unknown.  H o w -  
ever, recent developmental studies in flies, frogs, and cul- 
tured routine cells have shown that truncated forms of  
Notch-related proteins inhibit certain programs of  differen- 
tiation (2). For example, truncated Notch1 inhibits neuro-  
genesis and myogenesis o f  routine embryonal carcinoma 
cells (31, 32). These and other observations support the 
idea that Notch  expression maintains various cell types in a 
less differentiated state (3, 33). Our  studies suggest that 
truncated TAN1 might act in a similar fashion within T 
cell progenitors by preventing their terminal differentiation 
and predisposing them to malignant transformation. 

The  apparent ability of  truncated TAN1 to transform re- 
gardless ofsubcellular localization is puzzling, Although it is 
possible that a small amount of  nuclear protein in the AECT 
tumors is responsible for transforming activity (or that a 

small amount  of  cytoplasmic protein is culpable in I C T  tu- 
mors), it is noteworthy that functional equivalence o f  cyto- 
plasmic and nuclear forms of  truncated Notch  has also been 
observed in a number  of  other systems, particularly those 
assessing effects on eye, wing, and bristle development in 
the fly (7, 8). AECT-l ike  polypeptides also perturb myo-  
genesis and neurogenesis in developing frogs (34). One  
possible explanation for the functional equivalence of  cyto- 
plasmic and nuclear Notch  proteins would involve interac- 
tion with downstream factors that normally shuttle be-  
tween the nucleus and the cytoplasm. Candidate proteins 
include several transcription factors that are believed to in- 
teract with Notch  on on the basis o f  genetic data (2). The 
subcellular localization of  one molecule, Suppressor of  Hair- 
less (Su(H)), appears to be controlled by activation of  Notch 
through binding ofl igand to the extracellular domain. This 
suggests that Su(H) participates in Notch  signaling in some 
cell types in the fly (35). A mammalian homologue of  Su(H), 
CBFI  (also known as RBP-J  kappa), has been shown to 
activate transcription following interaction with murine 
Notch1 (36). Preliminary results show that Su(H) interacts 
with both the A E C T  and I C T  proteins (Aster, J., unpub-  
lished data), suggesting that this molecule is involved in 
neoplastic signaling in these tumors. Elucidation of  this 
signalling pathway and the activated genes awaits further 
analysis. 
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