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Mathematical modeling plays an important and often indispensable role in synthetic biology because it serves as a crucial link
between the concept and realization of a biological circuit. We review mathematical modeling concepts and methodologies as
relevant to synthetic biology, including assumptions that underlie a model, types of modeling frameworks (deterministic and
stochastic), and the importance of parameter estimation and optimization in modeling. Additionally we expound mathematical
techniques used to analyze a model such as sensitivity analysis and bifurcation analysis, which enable the identification of the
conditions that cause a synthetic circuit to behave in a desired manner. We also discuss the role of modeling in phenotype analysis
such as metabolic and transcription network analysis and point out some available modeling standards and software. Following
this, we present three case studies—a metabolic oscillator, a synthetic counter, and a bottom-up gene regulatory network—which
have incorporated mathematical modeling as a central component of synthetic circuit design.

1. Introduction

Synthetic biology aims to design novel biological circuits for
desired applications, implemented through the assembly of
biological parts including natural components of cells and
artificial molecules that emulate biological behavior [1, 2].
Because of its parts-to-whole approach, synthetic biology has
a significant engineering component. Engineering endeavors
typically involve the three classical engineering strategies:
standardization (ensuring that components of a system
are compatible and exchangeable), decoupling (dissecting a
system into less complicated subsystems), and abstraction
(streamlining a problem to focus only on the pertinent
facets) [3–5]. It may appear that it should be possible
to apply these strategies toward constructing a synthetic
biological circuit in a manner similar to constructing an
electric or electronic circuit. The attainment of this ideal goal
is, however, impeded by the overwhelming complexity of
biological systems with their myriad biomolecules and inter-
connections as well as sparse databases of gene function [3].
Consequently it is challenging to convert design concepts to
predicted results.

This stumbling block in synthetic biology can be allevi-
ated by the use of computer-aided mathematical modeling.
Modeling is a powerful and often indispensable link between
design and realization in engineering. It can predict the
dynamics of a network under several different conditions and
combinations thereof. Due to this, a user can search large
parameter spaces in silico to identify the small regions of
parameter space that produce the desired behavior or the
most effective design or, alternatively, avoid parameter values
that result in undesired responses. Modeling also provides
the capability of using knowledge about the constituent
parts of a system to predict the behavior of a system as
a whole. Therefore, mathematical modeling serves as a
bridge connecting a conceptual design idea to its biological
realization (Figure 1).

In this review we present mathematical modeling con-
cepts as relevant to synthetic biology and illustrate their
application through the discussion of three case studies
[6–8]. While the role of modeling in synthetic biology
has been expertly reviewed before (e.g., [4, 9, 10]), this
review aims to build upon the previous reviews by collecting
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Figure 1: The role of mathematical modeling in synthetic biology. Computer-aided mathematical modeling bridges a design concept to
realization in synthetic biology. Solid lines depict typical steps that have to be performed while developing a model; dashed lines depict
unusual scenarios or conditions under which the steps shown by the corresponding solid lines are trivial or can be bypassed. A concept or
ideas for designing a circuit for a particular function may be inspired by data from experiments or the literature. A mathematical model
is then formulated on the basis of certain assumptions. The framework of a model could be deterministic or stochastic. The development
of a model generally begins with the estimation of parameters that govern the model; this is a process that involves sensitivity analysis,
bifurcation analysis, and, under certain circumstances, metabolic and transcription (regulatory) network analysis. The dashed line from
design concepts to deterministic model indicates that, in some cases, parameter estimation is trivial or can be bypassed for this type of model.
A stochastic model is developed by employing statistical functions to mimic system dynamics and considering fluctuations in the data. The
dashed line from parameter estimation to stochastic model indicates that in some cases, parameter estimation may offer information in
choosing statistical functions when constructing a stochastic model. Optimization is required for both models and is complete when the
model exhibits an agreement (goodness of fit) with experimental data. A good agreement enables reliable prediction of system behavior and
further biological realization, whereas unsatisfactory agreement requires the revision of the initial assumptions and the beginning of the next
modeling cycle. See text and Figure 2 for explanations of terms.

several modeling methodologies into a single article and
exemplifying them with in-depth case studies.

Figure 1 summarizes the important role played by math-
ematical modeling in synthetic biology and the key steps in
the modeling process. Briefly, a model is formulated on the
basis of certain assumptions about the system. Two broad
types of modeling frameworks are available: deterministic
modeling and stochastic modeling. Depending on the model
type and the system, the estimation of parameters in the
model could be a crucial step in obtaining a satisfactory
model, and optimization may play a major role in this
process. The predictions of a completed model are used,
in conjunction with sensitivity analysis, bifurcation analysis,
or, in certain cases, metabolic and regulatory network
analyses to obtain insights toward an effective design. Below,
we present a detailed discussion of the steps involved in
modeling.

2. Assumptions Underlying a Model

Biological systems are difficult to model and simulate
despite a wealth of data on the structure and function of
biomolecules and on cellular mechanisms. This is because
biological systems exhibit complexity on several scales.
Firstly metabolites, metabolic fluxes, proteins, RNA, and
genes network in a highly complex manner; furthermore,
their interconnections could constitute feedback or feed-
forward loops that respond at various time scales [11].
Secondly, living systems can be highly sensitive to time-
variant environmental conditions such as light, humidity,
and supply of nutrients. These and other unknown causes
of uncertainty result in “biological errors”, which are distinct
and usually greater in magnitude than instrumentation or
measurement errors. Therefore, it is difficult to exactly
predict the output of a biological system as compared to
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Mathematical modeling definitions and techniques

Agreement. See goodness of fit.

Assumption. A presupposition that forms the basis of a

model and trims down the complexity of the model.

Examples are spatial or cell population homogeneity, lack

of intracellular compartmentation or the existence of

equilibrium, steady state or quasi-steady state.

Bifurcation analysis. An analysis that identifies the

boundaries between the regions in parameter space that

result in drastically different system dynamics, e.g. stable

versus oscillatory. Two popular methods of bifurcation

analysis are saddle node bifurcation and Hopf bifurcation.

Deterministic model. A model that endeavors to mimic a
real system with analytical equations (usually ODEs or PDEs)

that include numerical parameters. The output of such a

model is predictable and reproducible (see Example, right).

Goodness of fit. A criterion used to judge the conformity

between experimental data points and simulated points,

using which parameter values can be accurately estimated.

A chi-squared statistic is commonly used as a goodness of fit

criterion. Agreement assessment involves statistical

methods such as t tests and confidence interval estimation.
Metabolic flux analysis. Quantification of carbon flow

through a network of metabolic pathways using

stoichiometry, carbon atom rearrangements and

isotopomer data from nuclear magnetic resonance and
mass spectrometry.

Noise. Unpredictable fluctuation in the variables that

describe the state of the system. Deterministic models

usually do not consider noise, where as it is a significant

component of stochastic models.

Optimization. A method to locate the minimum or

maximum of an objective function. Local optimization

searches for the optimum within a local neighborhood

where as global optimization searches for the best optimum

in the constrained parameter space.

Sensitivity analysis. The study of how the variations of

certain parameters in a constrained domain will affect the

response of a model; it enables the identification of

parameters that are crucial to the model.

Stochastic model. A model that endeavors to mimic a real
system with equations and parameters that vary

stochastically. Such a model incorporates fluctuations

inherent in real systems.

Transcription network analysis. An analysis of the

relationships between genes and their regulators (usually

transcription factors). Such an analysis aims to identify

regulatory motifs underlying observed phenotypes.

Example of a deterministic model

Consider the development of a deterministic model for the

following simple network.

B

A

C
A CB

k12

k21

k23

k32

Di,out

Di,in

Cytosol

Extracellular
medium

Assumptions:
·Homogeneous

·Not compartmented

·1st order reactions

Parameters
i, j = 1, 2, 3

ki j : reaction rate constants

Di: the rate of transport of

each metabolite in/out of the
cell

Di = Xi,in − Xi,out

Model equations

dA

dt
= 0 · A + k12B + 0 · C + D1

dB

dt
= k21A + 0 · B + k23C + D2

dC

dt
= 0 · A + k32B + 0 · C + D3

These equations can be written in matrix form:

⎡
⎢⎢⎣

dA
dt
dB
dt
dC
dt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 k12 0
k21 0 k23

0 k23 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
A

B

C

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
D1

D2

D3

⎤
⎥⎥⎦ dX

dt
= F(N , t; θ)

Where Xand N are vectors comprised of concentrations of the
species A,B and C (and are identical in this case), dX/dt is the

rate of change of X , θ is a vector of model parameters.

With Di measurable, this model can be solved for the time
course trajectories of the metabolites A,B and C. The steady
state(s) of the model can be analyzed by setting dX/dt = 0.

Figure 2: Terms used in mathematical modeling and an example of a simple (deterministic) mathematical model.

a mechanical or an electrical system and one has to often
reconcile with an approximate reproduction.

However, a biological system can often be simplified
to a level that permits a user to obtain insights toward
synthetic circuit construction [11]. For example, Ma’ayan
et al. [12] demonstrated how simplifying the dynamics
of single components could lead to valuable information
on a system’s function. Simplification of a model requires
the making of various assumptions. A commonly used
assumption is homogeneity, both within the cell and within a
cell population. Spatially homogeneous time-variant systems
can be modeled by ordinary differential equations (ODEs)
(equation (1), see Figure 2, e.g.). However, time-variant
systems that feature compartmentation [13], spatial segre-
gation, or intracellular gradients [14] may require the use of

partial differential equations (PDEs). Although solving PDEs
(and thereby non-homogenous models) is computationally
much more intensive than solving ODEs, it can pay off
well. For example, effects such as the spatial segregation of
two enzymes that may generate intracellular gradients or
the effect of protein diffusivity on enzyme activity can be
simulated by using nonhomogenous models [14]. Closely
related to spatial homogeneity is the assumption of cell
population homogeneity, which is very frequently employed
in models of biological systems. However, the modeling of
heterogeneous populations in chemical reactors [15] has
found application in the modeling of heterogeneous cell
populations, and stochastic models frequently employ it.
Besides the homogeneity assumption, most models involving
enzyme kinetics or transcriptional regulations also assume
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equilibrium [8], steady state [7], or quasi-steady state [6].
Such an assumption can remove time-dependence from the
model and converts ODEs to simpler algebraic equations.
The task of formulating the assumptions underlying a
model is a fine balancing act between trimming down the
complexity of the system while retaining the features of
the system that are crucial to making reliable predictions
for the application at hand. If a model based on certain
assumptions does not agree with experimentally observed
behavior, then the assumptions have to be revised [9].
This makes mathematical modeling an iterative process
(Figure 1).

3. Types of Model Frameworks

3.1. Deterministic Mathematical Models. Mathematical mod-
els of biological systems can be categorized into two major
types: deterministic and stochastic [4]. A deterministic
model emulates a real system with analytical equations
(usually ODEs or PDEs) that include numerical parameters.
These equations are usually mass balances on cellular species
(Figure 2), and the state of the system that is predicted by
such a model is reproducible [4]. In contrast, a stochastic
model endeavors to represent a real system with randomly
interacting particles or species. The rate of each reaction
between the species follows a probabilistic equation [9];
additionally, the time between the reactions can also vary.
Stochastic models usually incorporate the fluctuations and
noise inherent in real biological systems and examine the
effect of noise on system dynamics [4].

Figure 2 explains the construction of a deterministic
model for a simple network. Deterministic models usually
employ differential equations used to describe interactions
or reactions between biomolecules:

dX

dt
= F(N , t; θ), (1)

where X and N are vectors comprised of species concentra-
tions (and may be identical), dX/dt is the rate of change of X,
θ is a vector of model parameters (see the following section
on model parameters), and F(N , t; θ) is a nonlinear vector
function that relates rates of change to concentrations [4].
Dynamic simulations of a system modeled by equation (1)
are quite straightforward and will reveal the time-dependent
characteristics of the system by generating time series
trajectories of the species concentrations. Furthermore, the
simulations help to analyze the behavior of a network when
feedforward or feedback regulations are integrated into it.
Such analysis has shown that the dynamic properties of
feedforward loops depend on their specific architecture
[16, 17], that positive or double negative feedbacks often
introduce ultrasensitive or bistable switches [18, 19], and that
negative feedbacks may reduce instability of the system [20].
Furthermore, multiple steady states or oscillations may occur
as the result of positive and negative feedbacks [21, 22].

To analyze steady states of a time-dependent biological
system, the time derivatives in (1) are set to zero [4]:

F(N , t; θ) = 0, (2)

which represents the steady state(s) of the system, is usually
combined with bifurcation analysis to obtain the range of
parameters in which the system will exhibit certain desired
behaviors such as oscillations [23] (see Section 5 below).

Numerous deterministic models have been developed for
biological systems, including several for synthetic circuits.
Case studies I and II discussed in this article [6, 7] employ
deterministic models.

3.2. Stochastic Mathematical Models. In deterministic mod-
els, every interaction and every parameter value is certain.
Therefore, such models predict identical system dynamics
for the same set of parameter values and initial conditions.
However, real systems are characterized by unexpected and
irreproducible fluctuations. To capture these fluctuations
and their consequences on the behavior of the system, an
alternative type of model, the stochastic model, is used. Such
models mimic a system as a collection of interacting particles,
with the reaction rates being governed by probabilistic rate
laws [9]. An example of such a rate law is the chemical Master
equation [10]. Stochastic simulation algorithms (SSAs) [10]
such as Gillespie’s algorithm are then used to simulate the
state of the system.

One approach in stochastic modeling is to assume that a
system is comprised of randomly interacting biomolecules,
wherein the reactions between the molecules are modeled
as Poisson processes with a probabilistically determined rate
parameter [9]. Another approach is to perceive a time-
variant system as a discrete time stochastic process. This
approach uses a random variable or a vector Xn to indicate
the discrete state of the system amongst several (finite or
infinite) possible states [24]. The fewer the system states, the
easier it is to construct a stochastic model. Guido et al. [8]
have employed the latter approach with six system states to
develop a stochastic model for a bottom-up gene regulatory
network. In this type of stochastic model, the probability pi
at time n of each system state Si is computed based on certain
assumptions [24]:

pi(n) = P(Xn = i). (3)

System responses or outputs such as the rate of synthesis of
green fluorescent protein (GFP) are then described in terms
of the state probabilities:

γ =
n∑

i=1

gi pi, (4)

where γ is the net output resulting from a combination of n
states and gi is the synthesis rate contributed by each state Si.
The probability of a system state pi(n) could be estimated by
taking into account noises from synthesis and degradation of
mRNA, GFP, or transcription factors and physical properties
of the cell or system [8]. Finally, equation-free stochastic
models have also been developed [25].

Several stochastic models have been developed for
synthetic biological circuits and related simple biological
systems [8, 25–29]. In case study III of this article, we discuss
a stochastic model for a bottom-up gene regulatory network
reported in Guido et al. [8].
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4. Parameters in a Model

Any model contains several variables that do not represent
the system state, but whose values govern the dynamics of
the equations in the model. Such variables include reaction
rate constants, equilibrium constants, diffusivities, and other
physical properties. These are termed “parameters” of the
model, as opposed to “state variables” such as species
concentrations that represent the state of the system. To make
useful predictions from a model, the parameters in the model
have to be accurately estimated.

Mechanistic models, which are based on physical and
chemical laws, include parameters that carry physical, chem-
ical, or biological meaning. However, there could be many
instances where not much information is available about a
system, and constructing a “black box” model is the only
option available. The parameters of such a model do not
carry physical or biological meaning, but their estimation
is nevertheless indispensable to the success of the model.
Occasionally, information about a system could be so meager
that even a black box model cannot be constructed. In such
cases, a reverse engineering approach is employed to translate
observable information to not only parameters but also
model equations. This approach involves searching through
(discrete) topological space instead of (continuous) numer-
ical parameter space. Sometimes, combining the topological
and numerical parameters for a system and simultaneously
searching for both types of parameters has many advantages
in understanding systems that are sparsely known [30].
Sometimes, parameter estimation can be largely bypassed.
Recently, Tran et al. [31] described an approach called
ensemble modeling, suited to modeling metabolic networks.
This technique bypasses the requirement of obtaining accu-
rate parameter values by reducing an initial set of models.
The final set of models so obtained is capable of describing
phenotypes of enzyme perturbations. Such approaches offer
versatile ways to attack parameter problems in modeling.

4.1. Parameter Estimation. Parameter estimation is known
as the “inverse problem” or “model calibration” and is
both a key step and a limiting step of model construction
[32, 33]. Parameter estimation typically leads to a first
working model. If this initial model exhibits significant
departures from experimental data (a frequent occurrence),
further experiments may need to be performed to refine
the parameter values. This process is repeated iteratively
until a satisfactory model is constructed [34, 35]. Model
parameters can occasionally be found from the literature or
estimated manually, although this is usually feasible for small
parameter spaces and simple systems. In general, param-
eter estimation from experimental observations requires
sophisticated techniques such as described below. Amongst
these, (global) optimization, a computationally intensive but
powerful and robust method, is widely used.

4.2. Optimization. Parameter estimation is generally an
optimization problem that involves locating the optimum
(minimum or maximum) of an objective function that

represents how well the model simulations agree with
experimental data. This can be expressed as

min
θ
Φ(θ). (5)

The function Φ(θ), which represents the goodness of fit
between experiment and simulation, is a scalar function
of the parameter vector θ. Its optimum is determined
by iteratively adjusting the values of the components of
θ and sometimes revising model assumptions [4]. The
function Φ(θ) is most frequently a weighted sum-of-squares
error (a chi-squared statistic) between the experimental
data points and the corresponding simulated points [36].
Other objective functions such as the Bayesian estimator
and the maximum likelihood estimator also work well [33].
The process of adjusting and refining parameter values
to reach the optimum of this objective function can be
performed manually for linear or piecewise linear models
[37]. However, many biological processes are not only
nonlinear but also random, thus necessitating nonlinear
models, stochastic models, or both [37–39]. In such cases,
several general methods of parameter estimation are avail-
able, including some that are particularly suited to nonlinear
dynamic systems typical in biology [40–43]. Even while using
sophisticated algorithms, parameter estimation can involve
unexpected complications such as the inability of a given
optimization algorithm to effectively search a parameter
space. In such cases, an exhaustive searching of parameter
space can sometimes be accomplished well by stochastic
Monte Carlo algorithms [44]. However, the computation
involved in such exhaustive searching may often become
prohibitively expensive when the number of parameters
runs into hundreds or thousands. Additionally, unobserved
or unknown interactions that were not accounted for in
the formulation of the model can result in unsuccessful
parameter searches and will require the model assumptions
to be revisited.

The calculation of the first and second partial derivatives
of the objective function is sometimes useful in optimization.
Gradient search optimization algorithms depend on the
partial derivatives of the objective function (or the partial
derivative matrix, the Jacobian) for their success [4]. The
Jacobian J is defined as

J = ∂Φ

∂θ
. (6)

Occasionally it is also useful to analyze how the combination
of two parameters may affect the system dynamics; this is
accomplished through the Hessian matrix H:

H = ∂2Φ

∂θ∂θT
, (7)

which is a matrix containing the second partial derivatives of
the objective function with respect to pairs of parameters.

In gradient search methods it is not always possible
to reach the global optimum of the objective function,
especially for nonlinear objective functions that may have
several local optima far away from the global optimum.
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Therefore, it may become necessary to sacrifice the speed
of the gradient search methods for the exhaustive searching
abilities of probabilistic methods [45]. Such methods avoid
the inferior solutions often found by gradient search meth-
ods [46]. Examples of probabilistic optimization methods are
simulated annealing, genetic, and evolutionary algorithms
[47, 48] or scatter searches [49]. Conversely, a local min-
imum may sometimes be sufficient to generate parameter
values that are practical. In some particularly difficult
combinatorial optimization problems the local minimum
found near the global minimum may turn out to be a better
choice [50]. On some rare occasions, perhaps many of the
optima could be useful for the researcher.

5. Model Analysis Techniques

After a satisfactory model is constructed, the analysis of
the model and its predictions provides crucial input toward
designing synthetic circuits that exhibit a given behavior.
Here, we discuss two analysis techniques: sensitivity analysis
and bifurcation analysis.

5.1. Sensitivity Analysis. Sensitivity analysis, which analyzes
how sensitive a system is with respect to changes in parameter
values [51], is useful in quantifying the significance of a
parameter or parameters on system performance [4]. Local
sensitivity analysis analyzes the effects of small perturbations
whereas global sensitivity analysis is used to analyze the
effects of perturbing parameter values over the entire param-
eter ranges. Caution should be exercised while extrapolating
the results of sensitivity analyses to an operating point far
away in parameter space, as this may not accurately predict
system behavior at the operating point.

For local sensitivity analysis a sensitivity s is defined as

s = ∂G(N)
∂θ

, (8)

where N is a vector comprised of species concentrations,
G(N) represents a system state or output, and θ is a vector
of parameters. The magnitudes of the elements of the
vector s are proportional to the effect of the corresponding
parameters [4]. In global sensitivity analysis, the parameter
space (constrained by physical limitations, mass fraction
summations, etc.) is explored by methodologies such as
random sampling-high dimensional model representation
[52], multiparametric sensitivity analysis, or Monte Carlo
simulation [53].

5.2. Bifurcation Analysis. Bifurcation analysis is crucial to
understanding and analyzing steady states, oscillations, and
other dynamic features of a system and has found use in
numerous modeling studies [6, 54, 55]. In many nonlinear
models, the parameter space can be divided into regions
that lead to a stable system, an unstable system, or a
periodic (oscillatory) system. Identifying the boundaries of
these regions will enable the design of a synthetic circuit
that exhibits desired behavior. Two popular methods of
bifurcation analysis are saddle node bifurcation analysis and

Hopf bifurcation analysis. Saddle node analysis endeavors
to investigate the threshold where a system functions as a
biological switch and thus separates the region of the param-
eter space that confers monostability [56]. Hopf bifurcation
analysis is predominantly used to analyze oscillators and
can characterize the critical parameter values that enable a
system to transition from a stable steady-state solution to
a periodic solution [57, 58]. In Hopf bifurcation analysis
the eigenvalues of the Jacobian matrix, equation (6), are
used to obtain the threshold parameter values at which the
system’s behavior changes drastically. A phase diagram is
then constructed by identifying the points where the real
parts of a pair of complex conjugate eigenvalues crosses
zero while all other eigenvalues have negative real parts (see
[6], e.g.; this paper is discussed in case study I below).
While there are numerous examples of bifurcation analysis
of deterministic models, one work [27] has comprehensively
treated the applications of bifurcation analysis to a stochastic
model of an oscillatory system.

6. Modeling as a Part of Phenotype Analysis

Synthetic biology can also benefit from metabolic flux and
transcription network analyses, which combine high-throu-
ghput experimental observations (such as metabolome,
isotopomer, and gene expression profiles) with mathematical
modeling to quantitatively describe the phenotype of a
biological system. This type of analysis could be particularly
useful for highly complex systems. For example, Noirel et
al. [59] presented a probabilistic metabolic model that was
useful in analyzing the systemic metabolic effects of inserting
synthetic circuits into a cell. Of specific relevance to synthetic
biology is an elegant work [60] that used optimization to
identify how regulation could be superposed on a metabolic
network to optimize the network.

6.1. Metabolic Pathway Analysis. Isotope-assisted [61–63]
metabolic flux analysis is a powerful tool to evaluate carbon
flow in metabolic networks and could be relevant in synthetic
biology. In this method, material balance models for cellular
species are used together with measurements of extracellular
metabolites or isotopomers (from nuclear magnetic reso-
nance or mass spectrometry) to obtain metabolic flux maps
of a system. While the mathematical modeling approaches
discussed above are generally still valid in flux analysis, these
models can be enormously complex due to the vast numbers
of reactions, myriad carbon atom rearrangements, reaction
reversibilities, and variations of intracellular fluxes in real
time. This complexity is significantly reduced through the
use of compartmental matrix techniques such as cumulative
isotopomers (cumomers) [64], bond isomers (bondomers)
[65, 66], or elementary metabolite units [63]. Despite this
reduction in complexity, metabolic flux analysis of com-
partmented [61] or instationary systems [62, 67] requires
tremendous amounts of computation.

Another set of powerful techniques for modeling
metabolic networks includes flux balance analysis (FBA)
[68–70] or genome-scale metabolic modeling [71–73] and
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Table 1: Modeling techniques used in the case studies.

Case study
Model types Modeling techniques

Deterministic Stochastic
Parameter
estimation

Optimization
Sensitivity

analysis
Bifurcation

analysis

Case study I
Fung et al. [6]; designed a
synthetic oscillator in E.
coli.

× × × × ×

Case study II

Friedland et al. [7];
developed synthetic
counters in E. coli that can
count up to two or three
induction events.

× × × ×

Case study III

Guido et al. [8];
constructed regulatory
networks by assembling
simpler building blocks.

× × × × ×

ensemble modeling [31]. In FBA, a metabolic network is
modeled with linear stoichiometric equations, constrained
by factors such as extracellular flux measurements and
reaction irreversibilities. This model is usually solved by
linear optimization and results in a map of steady-state
flux values. Through such a reconstruction of a metabolic
network, FBA can offer important insights towards selecting
gene deletion targets.

Another valuable technique, metabolic control analysis
[74–76], aims to elucidate the interdependence of various
parts of a metabolic network. The outcomes of this technique
are metrics such as flux control coefficients [77], which
represent the amount of control exerted by one system com-
ponent (such as a metabolite) on another system component
(such as an enzyme). This method has much to offer toward
the important problem of linking genome and phenotype
[78].

6.2. Transcription Network Analysis. Determining how genes
are controlled by regulatory motifs is an important problem
in biology. Because synthetic circuits are composed of well-
characterized components, they can be used to investigate
and quantify transcription networks. Such an investigation
would employ a combinatorial technique to construct a
circuit comprised of numerous genes and a smaller number
of regulatory motifs [79]. The high-dimensional output of
such a network is gene expression data and is the end product
of the low-dimensional regulatory signals (transcription
factor activities) and the strengths of the connectivities
between the transcriptional motifs and genes [80]. These
transcription factor activities and connectivities are quan-
tified by analyzing the measured gene expression data,
using one or more of several available methods [81]. These
methods include principal component analysis [82], singular
value decomposition [83, 84], independent component anal-
ysis [85], network component analysis [80], or state-space
models [86]. Network component analysis is a powerful
method that uses a priori knowledge about connectivities
between transcription factors and genes together with gene
expression data to quantitatively infer transcription factor
activities and the strengths of the transcription factor-gene

connectivities. The a priori information is obtained from
databases or experimental techniques such as ChIP-chip
analysis [87].

7. Modeling Standards and Software

Several standards and software are now available to simplify
the process of building mathematical models and thereby
bridge the gap between model description and prediction
of the system’s behavior. System biology markup language
(SBML) [88] and synthetic biology open language (SBOL)
(http://dspace.mit.edu/handle/1721.1/49523) are two exam-
ples of standards. Both are computer-readable formats for
representing models and facilitate the sharing of models
between researchers and between different software plat-
forms. Several modeling software are available to prac-
titioners of synthetic biology. These software, which are
usually written in popular computer languages such as
C++, feature a user interface, relatively simple ways to
input information and graphical output of the modeling
outcomes, thus relieving users of the burden of setting up and
solving mathematical equations. A nonexhaustive listing of
these software includes Athena (http://www.codeplex.com/
athena), BioJade (http://web.mit.edu/jagoler/www/biojade),
Gepasi (http://www.gepasi.org), SynBioSS (http://synbioss
.sourceforge.net/), which reads and writes in SBML, and Tin-
kerCell (http://www.tinkercell.com/Home) which enables
users to incorporate new features through custom programs
written in C or Python.

8. Case Studies

Below we present three case studies that illustrate several
of the previously discussed modeling methodologies. The
case studies feature two deterministic models [6, 7] and
one stochastic model [8]. Table 1 summarizes the principal
modeling techniques used in the case studies.

8.1. Case Study I: Deterministic Model of a Synthetic Oscil-
lator. Fung et al. [6] reported the mathematical model-
aided design of a gene-metabolic oscillatory circuit called
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Figure 3: Conceptual design and biological implementation of the oscillatory circuit metabolator in Fung et al. [6]. (a) Conceptual design.
The metabolator consists of two interconverting metabolite pools M1 and M2; their interconversions are catalyzed by the enzymes E1

and E2. Dashed lines indicate positive (arrow) and negative (blunt bar) regulation by M2 at the transcriptional or translational level; the
accumulation of M2 represses E1 and induces E2. The circuit functions as follows. Influx into the circuit (from upstream processes) increases
the concentration of M1, which is converted to M2 by E1. Initially the concentration of M1 is high and M2 is low. However, M2 gradually
accumulates causing E1 to be repressed and E2 to be induced, eventually causing a net conversion of M2 to M1, which then starts a new
cycle. (b) Biological implementation. The design of the metabolator was implemented using the acetate pathway in E. coli. The M1 pool
is acetyl-CoA; the M2 pool consists of AcP, OAc−, and HOAc. Pta and Acs correspond to enzymes E1 and E2. Pta converts Acetyl-CoA to
AcP, and AcP is further converted to OAc− by Ack. The protonated form of OAc− (HOAc) is permeable across the cell membrane. AcP is
used as a signaling molecule and functions as follows. When AcP builds up, it will activate promoter glnAp2 through phosphorylation. The
promoter glnAp2 controls the expression of Acs and lac repressor (LacI), and LacI in turn represses the expression of Pta. Ack: acetate kinase;
AcP: acetyl phosphate; Acs: acetyl-CoA synthetase; HOAc: protonated form of acetate; LacI: lac repressor; OAc−: acetate; Pta: phosphate
acetyltransferase (adapted from Fung et al. [6]).

the metabolator. Toward designing an oscillatory circuit
the authors conceived a network with two interconverting
metabolite pools wherein one metabolite differently regulates
the enzymes that interconvert the two pools. Such a network
is theoretically capable of oscillation (see Figure 3(a)). The
circuit was implemented in Escherichia coli using the acetate
pathway (see Figure 3(b)). Under certain circumstances, the
sizes of the pools M1 (Acetyl-CoA) and M2 (lumped pool
of Ack, AcP, OAc–, and HOAc) can oscillate. The readout of
this network was a GFP, located downstream of the network
such that the oscillations of the GFP readout reflect any
oscillations occurring in the network. A mathematical model
was developed to analyze the behavior of the metabolator and
determine the conditions under which oscillations would
occur. The model was deterministic and employed ODEs of
the following form:

dX

dt
= Vin −Vout, (9)

dX

dt
= synthesis rate− degradation rate, (10)

where X represents any pool and Vin, Vout indicate its influx
and outflux, respectively. Equation (9) was used to describe
the metabolite pools M1 and M2 while equation (10) and
Michaelis-Menten rate laws were used to describe the kinetics
of the enzymes driving the M1-M2 interconversions. Using
parameter values or ranges typical for this system, the
authors implemented the model with a fourth-order Runge-

Kutta algorithm. Parameter sensitivity analysis showed that
increasing glycolytic flux increases the oscillatory capability
of the system (Figure 4(a)). This prediction was tested by
experimentally varying the glycolytic flux through the feed-
ing of different carbon sources (glucose, fructose, mannose,
and glycerol), each of which resulted in a different value of
this flux. An explanation for this observation is that there
existed a threshold value of the glycolytic flux beyond which
the system would oscillate. Conversely, high external acetate
was predicted to suppress oscillation (Figure 4(c)), which
was also verified by experiments.

Hopf bifurcation was then used to characterize the
dynamics of the model and determine the transition point
at which the steady state would turn to a periodic state.
Figure 4(b) depicts the phase diagrams constructed by map-
ping the locus of Hopf bifurcation. The oscillations approach
a limit cycle and were stable, as determined through Floquet
analysis. As previously inferred, oscillations occur above a
threshold glycolytic flux value and are not sustained at a
high acetate concentration. Furthermore, by comparing the
modeling simulations with experimental data, the authors
found that the inherent noise in gene expression was an
important determinant of the amplitude of oscillation.

This work represents a universal approach to construct
a synthetic biological circuit with interesting dynamics and
beautifully demonstrates the key role played by mathematical
modeling in realizing a design concept. Modeling offered
valuable insights on the analysis of experiment data and
made nontrivial predictions of the system dynamics. The
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Figure 4: Sensitivity and bifurcation analyses of the metabolator model in Fung et al. [6]. (a) Sensitivity analysis: increase in glycolytic rate
increases the oscillatory capability of the metabolator. The glycolytic rate Vgly is equal to 0.001, 0.01, 0.05, and 0.5 in the top four panels
from left to right. (b) Phase plots obtained by perturbing the steady-state solution at Vgly = 1 show that the oscillatory dynamics is limit
cycle oscillation irrespective of the initial condition. The initial state of the oscillator is depicted with squares. (c) Hopf bifurcation analysis
was used to construct a phase diagram of glycolytic rate versus external acetate concentration. The flux-sensitive nature of the oscillations
is evident here; low glycolytic fluxes lead to a stable steady state with oscillations setting in beyond a threshold value of the glycolytic flux.
(d) Another phase diagram suggests that at Vgly = 10, specific combinations of three protein levels are required to sustain oscillation. The
variable αi represents rate of synthesis of protein i (i: LacI, Pta or Acs) (from Fung et al. [6], with permission).

use of bifurcation analysis was particularly useful as it
facilitated the determination of the points at which the
system transitions between stable and periodic states. We
expect that as oscillator design develops [21], modeling will
become ever more relevant in the design process.

8.2. Case Study II: Deterministic Model of a Synthetic Counter.
Another example of deterministic modeling is that of
Friedland et al. [7], who developed synthetic counters in
E. coli that can count up to two or three induction events.
The first of these, a riboregulated transcriptional cascade
(RTC) two-counter, has two nodes and is able to count up
to two arabinose pulses by expressing a different protein in
response to each pulse. This was extended to the RTC three-
counter (Figure 5) which has three nodes and can count up
to three pulses as follows. The constitutive promoter pLtet0-1

drives transcription of T7 RNA polymerase (T7 RNAP),
whose gene product binds the T7 promoter, which in turn
drives the transcription of T3 RNAP. Similarly the protein
of T3 RNAP binds the T3 promoter and ultimately drives

the transcription of GFP. All genes are further downregulated
and upregulated by cis and trans elements of riboregulators.
A cis repressor (cr) interacts with the downstream ribosome
binding site (RBS) in such a manner as to prevent translation.
The arabinose promoter pBAD drives a transactivating,
noncoding RNA (taRNA) that binds to cr in trans, thus
relieving the inhibition of translation. Due to this design,
protein synthesis at each node requires both transcription
and translation to independently happen. Thus this cascade
is able to count three arabinose pulses by expressing a
different protein in response to each pulse.

The authors constructed and analyzed a mathematical
model for the two- and three-counters. The model used
equations of the form of (10) to describe the dynamics of
the species in the circuit. The degradation terms in these
equations were assumed to be simple exponential decays
with a different rate constant for each species whereas the
synthesis rates were rate laws that reflected how each species
was synthesized. The Hill function was used to describe
arabinose induction and the dynamics of GFP. Arabinose
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Arabinose pulse pBAD taRNA

pLtet0-1 cr RBS T7 RNAP pT7 cr RBS T3 RNAP pT3 cr RBS GFP

Figure 5: Design concepts for the RTC three-counter in Friedland et al. [7]. To count three induction events, the RTC three-counter employs
a transcriptional cascade that has three nodes. The constitutive promoter pLtet0-1 drives transcription of T7 RNA polymerase (T7 RNAP),
whose gene product binds the T7 promoter, which in turn controls the transcription of T3 RNAP. Similarly the protein of T3 RNAP binds
the T3 promoter and ultimately controls the transcription of GFP. All genes are further downregulated and upregulated by cis and trans
elements of riboregulators. A cis repressor (cr) interacts with the downstream ribosome binding site (RBS) in such a manner as to prevent
translation. The arabinose promoter pBAD drives a transactivating, noncoding RNA (taRNA) that binds to cr in trans, thus relieving this
inhibition of translation. Due to this design, protein synthesis at each node requires both transcription and translation to independently
happen. Thus this cascade is able to count three arabinose pulses by expressing a different protein in response to each pulse (adapted from
Friedland et al. [7]).
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Figure 6: Modeling predictions and analysis of the RTC three-counter in Friedland et al. [7]. (a) A model of (a) the RTC two-counter and (b)
the RTC three-counter with fitted parameters was simulated (solid line) and agrees well with experimental data (normalized fluorescence,
solid dots). (c) The output of the RTC three-counter (N pulses) is simulated for a range of pulse lengths and intervals. The predictions
(colored contour lines) match experimental results (solid circles), whose levels are indicated by both color and size. (d) Similar to (c), except
that values shown here are the differences in the output of the three-counter after three (N) pulses and two (N – 1) pulses (from Friedland
et al. [7], with permission).
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Figure 7: Design concept for the repressor-activator system in
Guido et al. [8]. The repressor-activator system was assembled by
combining (a) an unregulated system base with (b) a repressor-
only module and (c) an activator-only module. The unregulated
system consists of an OROlac promoter driving GFP expression. The
rectangular boxes in the promoter are the binding sites for the lacI
and cI proteins. The cross at OR3 indicates a point mutation that
inhibits cI binding at this site. In (b), the repressor-only module,
the promoter pLtet0-1 controls the transcription of lacI, which binds
to the Olac site to repress the OROlac promoter. The extent of this
effect can be tuned by using the lacI inhibitor IPTG, which reduces
the binding of lacI protein to the Olac site. In (c), the activator-
only module, the pBAD promoter controls the transcription of cI,
which can bind to either the OR1 or the OR2 sites, sequentially or
cooperatively, to activate the OROlac promoter. The extent of this
effect can be tuned through arabinose, which activates the pBAD

promoter (adapted from Guido et al. [8]).

pulse dynamics were modeled with two differential equations
as follows. Arabinose consumption from the medium was
modeled as a zero order rate law:

d[ara]
dt

= −kc, (11)

whereas the decay of intracellular arabinose in cells sus-
pended in arabinose-free media was modeled as a first order
rate law:

d[ara]
dt

= −kd · [ara]. (12)

The arabinose pulses were mimicked by alternately using
equation (11) and equation (12). The authors used opti-
mization (implemented by a MATLAB routine lsqcurvefit)
to evaluate (fit) the parameters in the model so as to agree
with experimental data (Figures 6(a) and 6(b)). The model
with fitted parameters was used to examine the effects of
arabinose pulse frequency and length on the performance
of the RTC three-counter (Figures 6(c) and 6(d)). The
simulations indicated the ranges of pulse intervals (10 to 40
minutes) and pulse length (20 to 30 minutes) that would
result in maximal system response (GFP fluorescence); these
predictions were later confirmed by experiments (Figures
6(c) and 6(d)). The simulations indicated that the system
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State4 State6

K25

K13

OLac OLacOR1 OR2 OR1 OR2

OLac OR1 OR2

OLac OR1 OR2 OLac OR1 OR2

OLac OR1 OR2

GFP

K46

K12 K35

K24 K56

Figure 8: The six possible binding states in the repressor-activator
model in Guido et al. [8]. The rectangular boxes represent the three
available operator sites of engineered OROlac promoter. Unbound
sites are depicted with unfilled (white) boxes; filled (pink) boxes
depict sites bound by the appropriate protein (lacI to Olac, cI to OR1
and OR2). Of the eight (23) possible states, two are not feasible. This
is because cI binds sequentially to the OR1 and OR2 sites so that OR2
cannot bind unless OR1 is also bound. The model parameters K12

through K56 are the rate constants for the transitions between each
possible binding state (adapted from Guido et al. [8]).

response increased significantly when two or three pulses
were delivered. Also indicated by the simulations was a small
amount of leakage that occurred in response to partial pulses;
this was also verified experimentally (Figures 6(a) and 6(b)).
The authors further used this approach to construct a DNA
invertase cascade (DIC) counter and discussed extending
this counter with the use of other unique polymerases or
recombinases to record N sequenced events.

The RTC two- and three-counters constitute an elegant
example showing how synthetic circuit elements can be
combined to recognize sequential events. Here too, the
mathematical model was important in investigating the
system dynamics and identifying the pulse length and
interval that yielded the most effective response. Parameter
estimation (and thereby optimization) provided crucial
insights toward improving counter performance. As these
counters are expanded to become capable of counting larger
numbers of events (and thereby increasing in complexity),
the role played by mathematical modeling in design will
become increasingly important.

8.3. Case Study III: Stochastic Model of a Bottom-Up Gene
Regulatory Circuit. Guido et al. [8] constructed regulatory
networks by assembling simpler modules, such that the
behavior of the network was predictable from that of the
components. The authors engineered the OROlac promoter
such that it caused both repression and activation of gene
expression in E. coli. For this, they combined an unregulated
promoter, a repressor-only and an activator-only system
(Figure 7). The unregulated system (Figure 7(a)) consists
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Steps in the model of Guido et al. [8]
Step 1. Calculating the state probability of
each promoter
Using p1 as the reference, the probabilities

for other five states could be described as:

p2 = k12p1

p3 = k13p1

p4 = k12k24p1

p5 = k13k35p1

p6 = k12k24k46p1

Probability constraint:

6∑

i=1

pi = 1

Thermodynamic
equilibrium constraints:

k12k25

k13k35
= 1,

k24k46

k25k56
= 1

From the first constraint, p1, the probability

of the state of the unregulated promoter, is
obtained as:

p1 = 1
1 + k12 + k13 + k12k24 + k13k35 + k12k24k46

Step 2. Estimating parameters
Factors controlling equilibrium constants:

k13, k25 and k46 depend on the concentration
of IPTG
k12, k24, k35 and k56 depend on the
concentration of arabinose

For the repressor-only system:

k12 = k24 = k35 = k56 = 0
For activator-only system:

k13 = k25 = k46 = 0

Step 3. The model response (average mRNA
synthesis rate)
The average synthesis rate is given by:

γm = p1 + g2p2 + g3p3 + g4p4 + g5p5 + g6p6

where gi is a nonlinear function that

represents the mRNA synthesis rate in the
ith promoter state.

Step 4. Extend the model with stochastic
effects
Incorporate cell growth, synthesis and
degradation rates of mRNA and GFP,
multimerization of cI.

Figure 9: Steps in the repressor-activator mathematical model in Guido et al. [8].
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Figure 10: Model predictions and analysis of the repressor-activator system in Guido et al. [8]. (a) Simulations with baseline deterministic
model: dependence of the model response (GFP fluorescence) of the repressor-activator system on arabinose concentration, with IPTG
concentration maintained constant. The model simulation is shown with a blue line and experimental data points are shown with red
circles. (b) Simulations with the extended stochastic model: distribution of GFP fluorescence within the cell population for levels of
arabinose ranging from no arabinose (solid lines toward left) to the maximum possible level of arabinose (dashed lines toward right);
IPTG concentration is maintained constant throughout. Stochastic model simulations are shown with blue lines and experimental data is
shown with red lines (from Guido et al. [8], with permission).

of an OROlac promoter driving GFP expression. In the
repressor-only module (Figure 7(b)), the promoter pLtet0-1

controls the transcription of lacI, which binds to the Olac site
to repress the OROlac promoter. This binding can be tuned by
with the lacI inhibitor isopropyl-b-D-thiogalactopyranoside

(IPTG), which reduces the binding of lacI protein to the
Olac site. In the activator-only module (Figure 7(c)), the pBAD

promoter controls the transcription of cI, which can bind
sequentially or cooperatively to either the OR1 or the OR2
sites of the OROlac promoter to activate it. This effect is
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tunable with arabinose, which activates the pBAD promoter.
The repressor-activator system is constructed by combining
all three of these modules.

The authors first developed a baseline deterministic
model for the repressor-activator system and then extended
it to include stochastic effects. A quasi-equilibrium state
was assumed for the promoter OROlac such that there were
six possible chemical states of the promoter (Figure 8). The
interconversions between the states were modeled with the
equation:

Kij = K
eq
i j [P], (13)

where Kij is the transition rate from promoter state Si to
Sj , K

eq
i j is the equilibrium constant for the interconversion,

and [P], depending on the reaction, is the concentration of
either lacI or cI. The probabilities of each state were functions
of the transition rates Kij and the average GFP synthesis
rate was in turn a function of the state probabilities (see
discussion around equation (4) and Figure 9 for details). The
authors extended the model with stochastic effects so that
it was able to simulate cell growth and the distribution of
GFP within the cell population. For example cell growth was
modeled by treating the cell volume as a random variable
with an exponential distribution. The model assumed that
at every instance of cell division, the volume halves and
the cellular components (mRNA and GFP) are distributed
amongst the daughter cells in a binomial distribution. The
simulations of the deterministic and stochastic parts of the
model are shown in Figure 10. The parameters in this model
were determined by a gradient search local optimization
algorithm and all stochastic modeling was implemented
through the Gillespie Monte Carlo method realized by
BioNetS software. The authors experimentally measured all
mRNA synthesis rates and GFP fluorescence relative to the
unregulated system and chose the parameter values that
best fitted the fluorescence results shown in Figure 10. The
model slightly underestimates the experimentally observed
variability of fluorescence within the cell population which
indicates that effects not considered in the model might be
occurring.

To further verify the predictive power of the model
and test its stochastic aspects, the authors expanded the
circuit to include a positive feedback. This was accomplished
adding the cI gene in front of GFP so that the repressor-
activator system transcribes both cI and GFP simultaneously.
This amounts to positive feedback because the product of
the cI gene activates gene expression in the system. To
effectively model this feedback loop, the model was extended
to include synthesis, degradation, and multimerization of
cI. This model with positive feedback exhibited very good
agreement with experimental data. This agreement validated
the bottom-up approach employed by the authors to study
regulatory systems. Furthermore, the model was used to
make the counterintuitive prediction that cessation of cell
growth and division increases noise in protein expression
levels, which was also verified experimentally.

Although other researchers similarly built larger regula-
tory systems from simple ones (e.g., [89]), the work by Guido

et al. emphasized the important role played by mathematical
modeling in the design and in making counterintuitive
predictions about system dynamics. We expect that in the
future, mathematical modeling along with transcription
network analyses will become indispensable in the design of
more complex regulatory networks.

9. Conclusion and Outlook

Mathematical modeling is an often indispensable tool in
synthetic biology. The mathematical techniques of parameter
estimation as well as sensitivity and bifurcation analyses can
be crucial to the development of a model intended to mimic
a complex system. Modeling also plays an important role
in phenotypic analyses such as metabolic flux analysis or
transcription network analysis.

A mathematical model is akin to a road map that
provides a visualization of a geographical area. Although
the map may not describe every detail of the landscape,
it contains adequate information to enable users to plan
a journey; a mathematical model is similar in scope [4].
A seminal review on mathematical modeling [90] stated
that the purpose of models is to discern which parts and
connections of a system are significant, to unravel new
strategies, or sometimes to correct conventional wisdom.
Examples of these uses abound in synthetic biology, where
models have been employed to identify which regions in
parameter space cause a system to behave in a desired
manner (e.g., [6] and case study I) or what parameter values
result in the most effective design (e.g., [7] and case study II).
Furthermore, models have also been employed to understand
the global dynamics of a system from known behaviors of
its component units and have made counterintuitive predic-
tions that were later verified experimentally (e.g., [8] and
case study III). We anticipate that as experimental advances
in synthetic biology produce increasingly complex circuits,
mathematical modeling will play an ever more important
function as a bridge between concept and realization.

Acknowledgments

This work was funded by the Department of Chemical and
Biomolecular Engineering, University of Maryland (faculty
startup grant to GS), the A. James Clark School of Engineer-
ing, University of Maryland (Minta Martin award to GS),
and Maryland Industrial Partnerships (MIPS) (award no.
4426). Y. Zheng was cofunded by a Jan and Anneke Sengers
fellowship.

References

[1] F. J. Isaacs, D. J. Dwyer, and J. J. Collins, “RNA synthetic
biology,” Nature Biotechnology, vol. 24, no. 5, pp. 545–554,
2006.

[2] M. Heinemann and S. Panke, “Synthetic biology—putting
engineering into biology,” Bioinformatics, vol. 22, no. 22, pp.
2790–2799, 2006.

[3] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss,
“Synthetic biology: new engineering rules for an emerging



14 Journal of Biomedicine and Biotechnology

discipline,” Molecular Systems Biology, vol. 2, Article ID
2006.0028, 2006.

[4] E. L. Haseltine and F. H. Arnold, “Synthetic gene circuits:
design with directed evolution,” Annual Review of Biophysics
and Biomolecular Structure, vol. 36, pp. 1–19, 2007.

[5] D. Endy, “Foundations for engineering biology,” Nature, vol.
438, no. 7067, pp. 449–453, 2005.

[6] E. Fung, W. W. Wong, J. K. Suen, T. Bulter, S.-G. Lee, and J. C.
Liao, “A synthetic gene-metabolic oscillator,” Nature, vol. 435,
no. 7038, pp. 118–122, 2005.

[7] A. E. Friedland, T. K. Lu, X. Wang, D. Shi, G. Church, and J.
J. Collins, “Synthetic gene networks that count,” Science, vol.
324, no. 5931, pp. 1199–1202, 2009.

[8] N. J. Guido, X. Wang, D. Adalsteinsson, et al., “A bottom-up
approach to gene regulation,” Nature, vol. 439, no. 7078, pp.
856–860, 2006.

[9] D. Chandran, W. B. Copeland, S. C. Sleight, and H. M.
Sauro, “Mathematical modeling and synthetic biology,” Drug
Discovery Today: Disease Models, vol. 5, no. 4, pp. 299–309,
2008.

[10] Y. N. Kaznessis, “Models for synthetic biology,” BMC Systems
Biology, vol. 1, article 47, 2007.

[11] O. Brandman, J. E. Ferrell Jr., R. Li, and T. Meyer, “Systems
biology: interlinked fast and slow positive feedback loops drive
reliable cell decisions,” Science, vol. 310, no. 5747, pp. 496–498,
2005.

[12] A. Ma’ayan, S. L. Jenkins, S. Neves, et al., “Formation of
regulatory patterns during signal propagation in a mammalian
cellular network,” Science, vol. 309, no. 5737, pp. 1078–1083,
2005.

[13] J. E. Lunn, “Compartmentation in plant metabolism,” Journal
of Experimental Botany, vol. 58, no. 1, pp. 35–47, 2007.

[14] B. N. Kholodenko, “Cell-signalling dynamics in time and
space,” Nature Reviews Molecular Cell Biology, vol. 7, no. 3, pp.
165–176, 2006.

[15] M. J. Hounslow, R. L. Ryall, and V. R. Marshall, “A discretized
population balance for nucleation, growth, and aggregation,”
AIChE Journal, vol. 34, no. 11, pp. 1821–1832, 1988.

[16] A. Ma’ayan, “Insights into the organization of biochemical
regulatory networks using graph theory analyses,” Journal of
Biological Chemistry, vol. 284, no. 9, pp. 5451–5455, 2009.

[17] S. Mangan and U. Alon, “Structure and function of the feed-
forward loop network motif,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100,
no. 21, pp. 11980–11985, 2003.

[18] J. E. Ferrell Jr., “Self-perpetuating states in signal transduction:
positive feedback, double-negative feedback and bistability,”
Current Opinion in Cell Biology, vol. 14, no. 2, pp. 140–148,
2002.

[19] U. S. Bhalla and R. Iyengar, “Emergent properties of networks
of biological signaling pathways,” Science, vol. 283, no. 5400,
pp. 381–387, 1999.

[20] A. Becskei and L. Serrano, “Engineering stability in gene
networks by autoregulation,” Nature, vol. 405, no. 6786, pp.
590–593, 2000.

[21] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S.
Tsimring, and J. Hasty, “A fast, robust and tunable synthetic
gene oscillator,” Nature, vol. 456, no. 7221, pp. 516–519, 2008.

[22] M. B. Elowitz and S. Leibier, “A synthetic oscillatory network
of transcriptional regulators,” Nature, vol. 403, no. 6767, pp.
335–338, 2000.

[23] J. J. Tyson, K. Chen, and B. Novak, “Network dynamics and
cell physiology,” Nature Reviews Molecular Cell Biology, vol. 2,
no. 12, pp. 908–916, 2001.

[24] L. Allen, An Introduction to Stochastic Processess with Applica-
tions to Biology, Pearson Education, Upper Saddle River, NJ,
USA, 2003.

[25] H. Salis and Y. N. Kaznessis, “An equation-free proba-
bilistic steady-state approximation: dynamic application to
the stochastic simulation of biochemical reaction networks,”
Journal of Chemical Physics, vol. 123, no. 21, Article ID 214106,
16 pages, 2005.

[26] H. Salis and Y. Kaznessis, “Accurate hybrid stochastic simula-
tion of a system of coupled chemical or biochemical reactions,”
Journal of Chemical Physics, vol. 122, no. 5, Article ID 054103,
13 pages, 2005.

[27] L. M. Tuttle, H. Salis, J. Tomshine, and Y. N. Kaznessis,
“Model-driven designs of an oscillating gene network,” Bio-
physical Journal, vol. 89, no. 6, pp. 3873–3883, 2005.

[28] B. Zhou, D. Beckwith, L. R. Jarboe, and J. C. Liao, “Markov
chain modeling of pyelonephritis-associated pili expression in
uropathogenic Escherichia coli,” Biophysical Journal, vol. 88,
no. 4, pp. 2541–2553, 2005.

[29] L. R. Jarboe, D. Beckwith, and J. C. Liao, “Stochastic modeling
of the phase-variable pap operon regulation in uropathogenic
Escherichia coli,” Biotechnology and Bioengineering, vol. 88, no.
2, pp. 189–203, 2004.

[30] M. Sugimoto, S. Kikuchi, and M. Tomita, “Reverse engineer-
ing of biochemical equations from time-course data by means
of genetic programming,” BioSystems, vol. 80, no. 2, pp. 155–
164, 2005.

[31] L. M. Tran, M. L. Rizk, and J. C. Liao, “Ensemble modeling of
metabolic networks,” Biophysical Journal, vol. 95, no. 12, pp.
5606–5617, 2008.

[32] E. O. Voit, Computational Analysis of Biochemical Systems,
Cambridge University Press, Cambridge, UK, 2000.

[33] M. Rodriguez-Fernandez, P. Mendes, and J. R. Banga, “A
hybrid approach for efficient and robust parameter estimation
in biochemical pathways,” BioSystems, vol. 83, no. 2-3, pp.
248–265, 2006.

[34] E. Walter and L. Pronzato, Identification of Parameter Models
from Experimental Data, Springer, Berlin, Germany, 1997.

[35] L. Ljung, System Identification: Theory for the User, Prentice
Hall, Englewood Cliffs, NJ, USA, 1999.

[36] W. E. Stewart, M. Caracotsios, and J. P. Sørensen, “Parameter
estimation from multiresponse data,” AIChE Journal, vol. 38,
no. 5, pp. 641–650, 1992.

[37] D. Ropers, H. de Jong, M. Page, D. Schneider, and J.
Geiselmann, “Qualitative simulation of the carbon starvation
response in Escherichia coli,” BioSystems, vol. 84, no. 2, pp.
124–152, 2006.

[38] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A.
van Oudenaarden, “Regulation of noise in the expression of a
single gene,” Nature Genetics, vol. 31, no. 1, pp. 69–73, 2002.

[39] J. Paulsson, “Models of stochastic gene expression,” Physics of
Life Reviews, vol. 2, no. 2, pp. 157–175, 2005.

[40] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain,
“Stochastic gene expression in a single cell,” Science, vol. 297,
no. 5584, pp. 1183–1186, 2002.

[41] I. Swameye, T. G. Müller, J. Timmer, O. Sandra, and U.
Klingmüller, “Identification of nucleocytoplasmic cycling as
a remote sensor in cellular signaling by databased modeling,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 3, pp. 1028–1033, 2003.

[42] J. Timmer, T. G. Müller, I. Swameye, O. Sandra, and U.
Klingmüller, “Modeling the nonlinear dynamics of cellular



Journal of Biomedicine and Biotechnology 15

signal transduction,” International Journal of Bifurcation &
Chaos in Applied Sciences & Engineering, vol. 14, no. 6, pp.
2069–2079, 2004.
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