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Bladder cancer (BLCA) is the most common urinary tract tumor and is the 11th most malignant cancer worldwide. With the
development of in-depth multisystem sequencing, an increasing number of prognostic molecular markers have been identified.
In this study, we focused on the role of protein-coding gene methylation in the prognosis of BLCA. We downloaded BLCA
clinical and methylation data from The Cancer Genome Atlas (TCGA) database and used this information to identify
differentially methylated genes and construct a survival model using lasso regression. We assessed 365 cases, with complete
information regarding survival status, survival time longer than 30 days, age, gender, and tumor characteristics (grade, stage, T,
M, N), in our study. We identified 353 differentially methylated genes, including 50 hypomethylated genes and 303
hypermethylated genes. After annotation, a total of 227 genes were differentially expressed. Of these, 165 were protein-coding
genes. Three genes (zinc finger protein 382 (ZNF382), galanin receptor 1 (GALR1), and structural maintenance of chromosomes
flexible hinge domain containing 1 (SMCHD1)) were selected for the final risk model. Patients with higher-risk scores represent
poorer survival than patients with lower-risk scores in the training set (HR = 2:37, 95% CI 1.43-3.94, p = 0:001), in the testing
group (HR = 1:85, 95% CI 1.16-2.94, p = 0:01), and in the total cohort (HR = 2:06, 95% CI 1.46-2.90, p < 0:001). Further
univariate and multivariate analyses using the Cox regression method were conducted in these three groups, respectively. All the
results indicated that risk score was an independent risk factor for BLCA. Our study screened the different methylation protein-
coding genes in the BLCA tissues and constructed a robust risk model for predicting the outcome of BLCA patients. Moreover,
these three genes may function in the mechanism of development and progression of BLCA, which should be fully clarified in
the future.

1. Introduction

Bladder cancer (BLCA) is the most common urinary tract
tumor and the 11th most malignant tumor worldwide. It is
estimated that 80,470 new cases and 17,670 new deaths
occurred in America in 2019 [1]. Muscle invasive bladder
cancer (MIBC) is a more aggressive form of the disease, with
a 5-year survival rate of approximately 60% in patients with
local disease and less than 5% in patients with distant metas-
tasis [2]. The classical factors that are closely associated with
the prognosis of BLCA include tumor clinical stage, tumor
grade, carcinoma in situ, and distant metastasis. In the past

decade, the study of molecular markers to predict the prog-
nosis of BLCA has expanded and has focused mainly on
DNA alterations, such as DNA polymorphisms, mutations,
and mRNA and protein expression levels [3]. In recent years,
with the development of in-depth multisystem sequencing,
an increasing number of prognostic molecular markers have
been identified [4]. Molecular biomarkers can effectively
improve the accuracy of prognosis prediction and may also
highlight tumorigenic characteristics that are helpful for the
development of novel therapies, as well as identifying mech-
anisms underpinning the development and progression of
diseases.
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Epigenetic alteration can affect the development and pro-
gression of tumors. The main epigenetic processes and mod-
ifications associated with cancer biology can be divided into
three categories: abnormal DNA methylation, chromatin
remodeling (including histone modification), and regulation
by noncoding RNA [5]. Of these biological processes, DNA
methylation is the most studied epigenetic alteration in
BLCA. DNA hypermethylation occurs in approximately 50-
90% of BLCAs. The hypermethylated genes can be further
clustered into tumor suppressor genes, DNA repair genes,
cell cycle control genes, and cell invasion protein-coding
genes (e.g., RNA-binding fox-1 homolog 1 (RBFOX1), telo-
merase reverse transcriptase (TERT), neuronal pentraxin 2
(NPTX2), SRY-box transcription factor 11 (SOX11), and
homeobox A9 (HOXA9)). Changes in the methylation status
of these genes may promote the development or progression
of BLCA. In addition, DNA hypomethylation is also seen in
BLCA, but its effect is still unclear [5].

Based on the above evidence, investigations into the
prognosis of BLCA have now extended into other forms of
epigenetic regulation. For example, miRNA, lncRNA, other
noncoding RNAs, and DNA methylation are also used to
predict the prognosis of BLCA.

For instance, abnormal expression of lncRNAs such as
HOX transcript antisense RNA (HOTAIR) and growth arrest
specific 5 (GAS5) is associated with disease-free survival and
disease-specific survival of patients with BLCA [6]. It has also
been reported that abnormal DNA methylation of different
genes such as aldehyde dehydrogenase 1 family member A3
(ALDH1A3), protocadherin 8 (PCDH8), Ras association
domain family member 1 (RASSF1), and RUNX family tran-
scription factor 3 (RUNX3) is independently associated with
the prognosis of BLCA [7]. Indeed, prognosis-predicting
models based on gene methylation have been developed in
recent years. Six genes, namely, Rho GDP dissociation
inhibitor beta (ARHGDIB), long intergenic non-protein-
coding RNA 526 (LINC00526), isocitrate dehydrogenase
(NADP(+)) 2 (IDH2), ADP ribosylation factor like GTPase
14 (ARL14), glutathione S-transferase mu 2 (GSTM2), and
leucine-rich adaptor protein 1 (LURAP1), have been identi-
fied for the development of risk models to predict BLCA
prognosis. However, this methylation risk model includes
LINC00526, which is a noncoding RNA, and the role of
lncRNA gene methylation in cancer has not been well
studied [8].

Therefore, our study is focused on the role of protein-
coding gene methylation in the prognosis of BLCA. We
describe a new risk model including protein-coding gene
methylation which may not only improve the methods of
predicting BLCA prognosis but can also screen genes
with clear biological effects, which will help in identifying
the mechanisms involved in BLCA development and
progression.

2. Materials and Methods

2.1. BLCA Clinical and Methylation Data Acquisition. BLCA
clinical data and methylation data from the HumanMethyla-
tion450 BeadChip were downloaded from The Cancer

Genome Atlas (TCGA) database according to the publication
guidelines (https://portal.gdc.cancer.gov/). Patients whose
data fulfilled the enrollment criteria were included in our
study. The enrollment criteria were as follows: survival status,
age, gender, and clear information regarding tumor charac-
teristics (tumor grade, clinical stage, and Tumor/Node/Me-
tastasis (TNM) stage), with a survival time of longer than
one month. All the datasets used throughout this study were
publicly available (https://portal.gdc.cancer.gov/).

2.2. Differential Methylation Analysis and Construction of
Survival Model. TheWilcox test was used to compare the dif-
ferential methylation status of genes in tumor and normal tis-
sues, and genes with p < 0:05 and log fold change > 1 were
considered to be differentially methylated. These genes were
annotated using an annotation program obtained from
GENCODE (https://www.gencodegenes.org/). Total tumor
samples were randomly divided into training and testing sets

Table 1: Bladder cancer (BLCA) patients’ demographics and
clinical characteristics.

Variable Training set Testing set p value Total set

Sample (n) 182 183 365

Age (range)
0.419

70 (34-87) 68 (43-89) 69 (34-89)

Gender 0.572

Male 137 (75.3%) 133 (72.7%) 270 (74.0%)

Female 45 (24.7%) 50 (27.3%) 95 (26.0%)

Grade 0.08

High grade 170 (93.4%) 178 (97.3%) 348 (95.3%)

Low grade 12 (6.6%) 5 (3.7%) 17 (4.7%)

Clinical stage 0.657

Stage I 1 (0.5%) 1 (0.5%) 2 (0.5%)

Stage II 54 (29.7%) 45 (24.6%) 99 (27.1%)

Stage III 69 (37.9%) 69 (37.7%) 138 (37.8%)

Stage IV 58 (31.9%) 68 (37.2%) 126 (34.5%)

Tumor stage 0.850

T0+T1 3 (1.6%) 1 (0.5%) 4 (1.1%)

T2 56 (30.8%) 56 (30.6%) 112 (30.7%)

T3 95 (52.2%) 97 (53.0%) 192 (52.6%)

T4 28 (15.4%) 29 (15.8%) 57 (15.6%)

Metastasis stage 0.171

M0 91 (50.0%) 82 (44.8%) 173 (47.4%)

M1 6 (3.3%) 2 (1.1%) 8 (2.2%)

Mx 85 (46.7%) 99 (54.1%) 184 (50.4%)

Node stage 0.070

N0 109 (59.9%) 107 (58.5%) 216 (59.2%)

N1+N2+N3 55 (30.2%) 68 (37.2%) 123 (33.7%)

Nx 18 (9.9%) 8 (4.4%) 26 (7.1%)

Survival status 0.300

Alive 116 (63.7%) 119 (64.0%) 223 (61.1%)

Died 66 (36.3%) 67 (36.0%) 142 (38.9%)
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using the set seed method. Then, lasso (least absolute shrink-
age and selection operator) regression was used to identify
the eligible protein-coding genes for construction of a BLCA
prognostic signature using the screened methylation protein-
coding genes, which generated corresponding coefficients for
each sample [9]. Lasso regression analysis was conducted
using the “glmnet” package in the R software suite [10].
And the optimal value of the penalty parameter λ was
determined by tenfold cross-validations. The best λ value
(lambda.min) was used to identify the proper genes and their

coefficients to construct the gene risk model. In the training
set, the risk score for each patient was calculated and the data
were divided into high-risk and low-risk groups according to
the median risk score. In the testing set and the total set, the
same procedure was performed to validate the model.

2.3. Statistical Analyses. Overall survival was assessed using
the Kaplan-Meier method and the log-rank test. The hazard
ratio (HR) was calculated using a Cox regression model,
and the result was provided as HR value with a 95%
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Figure 1: Screening the prognostic genes in BLCA patients using the lasso regression method. (a) The plot displays the cross-validation error
according to the log of lambda. (b) The coefficients of each gene in lasso regression.
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confidence interval. Variables with p values of less than 0.05
were subjected to univariate Cox regression, in a multivariate
Cox regression test using a backward conditional approach
which eliminated the variables with a p value of >0.05.

Statistical tests were conducted using R software and
SPSS 19.0 software (SPSS, Inc., Chicago, IL, USA). A p value
of <0.05 was considered to be statistically significant.

3. Results

3.1. Characteristics of BLCA Clinical Data. Four hundred and
twelve cases of clinical data from patients with BLCA were
downloaded from TGCA database. Of these, 365 cases ful-
filled the enrollment criteria and were included in our study.
The demographic and clinical characteristics of these
patients with BLCA are shown in Table 1. The median age
of BLCA patients was 69 years (34-89 years). Male patients
were in the majority, accounting for 74.0% (270/365) of the
cases. There were 348 cases with high-grade tumors
(95.3%) and 38.9% (142/365) died during follow-up. The
total samples were randomly divided into the discovery

group and the verification group, and no significant statistical
difference was observed between the clinical data (Table 1).

3.2. BLCA Differentially Methylated Genes. The Human-
Methylation450 BeadChip data of 440 cases in the BLCA
dataset, including 21 normal and 419 cancer samples, were
downloaded. Differential methylation analysis identified
353 differentially methylated genes, which included 50 hypo-
methylated and 303 hypermethylated genes (Supplementary
Figure 1). We annotated a total of 227 differentially
expressed genes, of which 165 genes were protein-coding
genes.

3.3. Three Methylated Protein-Coding Genes Are Related to
Overall Survival of Patients with BLCA. Based on the training
set, we used a multivariate lasso Cox regression model to
establish a prognosis risk model based on the methylation
status of the 165 protein-coding genes. Throughout the lasso
regression, the minimal λ was 0.07802942 and three genes
(zinc finger protein 382 (ZNF382), galanin receptor 1
(GALR1), and structural maintenance of chromosomes
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Figure 2: The risk score distribution, survival overview, and heat map of three protein-coding genes in these three groups. The first figure in
each group represents the risk score distribution in the two groups. The second figure in each group indicates the overall survival status. The
third figure in each group lists the heat map of three genes’methylation conditions. (a) The training set. (b) The testing set. (c) The total set.
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flexible hinge domain containing 1 (SMCHD1)) were
screened for the final risk model (Figure 1). Utilizing the lasso
Cox regression model, we also calculated the risk score of
each patient based on the methylation values of these three
genes, as follows: Risk score = ð0:2337 ∗ ZNF382Þ + ð0:4722
∗GALR1Þ + ð4:0402 ∗ SMCHD1Þ (Figure 2). Patients with
higher-risk scores presented with poorer survival than
patients with lower-risk scores (HR = 2:37, 95% CI 1.43-
3.94, p = 0:001; Figure 3). To validate these risk models, we
conducted analyses in the testing and the total data sets.
The validation results showed that patients with higher-risk
scores had better survival than patients with a lower-risk
score in the testing group (HR = 1:85, 95% CI 1.16-2.94,
p = 0:01; Figure 3), as well as in the total cohort
(HR = 2:06, 95% CI 1.46-2.90, p < 0:001; Figure 3). Further
univariate and multivariate analyses using the Cox regression
method were conducted in all three groups. All the results
indicated that risk score was an independent risk factor for
BLCA (Table 2). The results developed using the total set
were used to make the forest map and the nomogram
(Figure 4).

4. Discussion

Our study proposes a novel survival model, based on methyl-
ation of protein-coding genes, for predicting prognosis of

patients with BLCA. Three genes (ZNF382, GALR1, and
SMCHD1) were selected for the risk model.

Galanin receptor 1 (GALR1) is a protein-coding gene that
is widely expressed in the brain, spinal cord, around the small
intestine, and heart. Many studies have demonstrated that
GALR1 plays a tumor suppressor role in different types of
cancers. GALR1 has been intensively studied in head and
neck squamous cell carcinoma (HNSCC). These investiga-
tions revealed that the GALR1 promoter was widely hyper-
methylated in HNSCC cell lines and primary tumor
specimens, and its methylation was closely related to reduce
expression of GALR1. In addition, the expression of GALR1
could be recovered by treatment with the histone deacetylase
inhibitor, trichostatin A, and the methyltransferase inhibitor,
5-azacytodine [11]. The status of GALR1methylation may be
an important site-specific biomarker for predicting clinical
outcomes in HNSCC patients, and assessing methylation of
its promoter can play a role in risk stratification for individ-
ualized treatment [12, 13]. GALR1 has also been used in the
formation of a risk model to diagnose non-small-cell lung
cancer (NSCLC) [14]. Furthermore, DNA methylation of
GALR1 is the most frequent epigenetic change in endome-
trial cancer, and the detection of GALR1methylation in vag-
inal swabs can accurately identify female endometriosis and
malignant changes [15]. Our study also suggests that GALR1
gene methylation is involved in the prognosis of BLCA, but
its role in this cancer is still unknown.
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Figure 3: Kaplan-Meier plots and ROC curve for 3-year survival prediction of the training set, testing set, and total set. (a) The training set.
(b) The testing set. (c) The total set.
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Table 2: Univariate and multivariate regression analyses for
predicting overall survival in each BLCA cohort.

(a)

Univariate Cox regression analysis

Training set

HR (95% CI) p value

Age 1.036 (1.008-1.065) 0.012∗

Gender 1.018 (0.585-1.771) 0.95

Grade

Low grade Reference

High grade 22.430 (0.076-6621.401) 0.284

Stage

Stage I+stage II Reference

Stage III+stage IV 4.818 (2.194-10.578) <0.001∗
Tumor stage

T0+T1+T2 Reference <0.001∗
T3 3.202 (1.555-6.591) 0.002

T4 6.707 (2.914-15.438) <0.001
Metastasis stage

M0+Mx Reference

M1 2.428 (0.880-6.701) 0.087

Node stage

N0+Nx Reference

N1+N2+N3 2.514 (1.546-4.090) <0.001∗
Risk score group

Low-risk group Reference

High-risk group 2.368 (1.425-3.935) 0.001∗

Testing set

HR (95% CI) p value

Age 1.037 (1.013-1.061) 0.002∗

Gender 0.771 (0.475-1.252) 0.293

Grade

Low grade Reference

High grade 21.095 (0.006-73263.326) 0.464

Stage

Stage I+stage II Reference

Stage III+stage IV 2.358 (1.212-4.588) 0.012∗

Tumor stage

T0+T1+T2 Reference 0.044∗

T3 1.993 (1.129-3.519) 0.017

T4 2.119 (1.017-4.417) 0.045

Metastasis stage

M0+Mx Reference

M1 2.033 (0.281-14.705) 0.482

Node stage

N0+Nx Reference

N1+N2+N3 2.410 (1.528-3.803) <0.001∗
Risk score group

Low-risk group Reference

Table 2: Continued.

Univariate Cox regression analysis

High-risk group 1.845 (1.157-2.942) 0.010∗

Total set

HR (95% CI) p value

Age 1.035 (1.017-1.054) <0.001∗
Gender 0.884 (0.614-1.271) 0.505

Grade

Low grade Reference

High grade 21.730 (0.229-2065.53) 0.185

Stage

Stage I+stage II Reference

Stage III+stage IV 3.286 (1.978-5.458) 0.002∗

Tumor stage

T0+T1+T2 Reference <0.001∗
T3 2.403 (1.540-3.748) <0.001∗
T4 3.469 (2.018-5.962) <0.001∗

Metastasis stage

M0+Mx Reference

M1 2.213 (0.904-5.415) 0.082

Node stage

N0+Nx Reference

N1+N2+N3 2.422 (1.741-3.370) <0.001∗
Risk score group

Low-risk group Reference

High-risk group 2.060 (1.463-2.900) <0.001∗

(b)

Multivariate Cox regression analysis

Training set

HR (95% CI) p value

Age 1.032 (1.001-1.064) 0.052

Stage

Stage I+stage II Reference

Stage III+stage IV 10.176 (2.318-46.455)

Tumor stage

T0+T1+T2 Reference 0.002∗

T3 0.342 (0.087-1.342) 0.016∗

T4 0.768 (0.186-3.180)

Node stage

N0+Nx Reference 0.124

N1+N2+N3 1.494 (0.883-2.529) 0.716

Risk score group

Low-risk group Reference 0.134

High-risk group 2.163 (1.280-3.656) 0.004∗

Testing set

HR (95% CI) p value

Age 1.036 (1.012-1.060) 0003∗
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The zinc finger protein 382 (ZNF382) gene encodes the
KRAB domain zinc finger transcription factor (KZNF).
KZNF is widely involved in development and tumorigenesis.
It plays a key role in the regulation of various cellular pro-
cesses, including differentiation, proliferation, and apoptosis.
It acts as a tumor suppressor and is often methylated in many
cancers. ZNF382 is frequently downregulated by promoter
methylation in HBV-associated hepatocellular carcinoma
(HCC), and decreased expression of ZNF382 is closely linked
to poor survival in patients with early HCC. ZNF382 is an
effective tumor suppressor in HCC cells. Functional studies
have shown that it inhibits cell proliferation, colony forma-
tion, migration, invasion, and tumorigenic potential in nude
mice and induces apoptosis [16]. ZNF382 is also methylated
and exhibits reduced expression in gastric cancer (GC) tis-
sues. Pei et al. showed that ZNF382 can reverse the process
of epithelial to mesenchymal transition in GC cells through
NOTCH signaling, further supporting its role as a tumor
suppressor [17]. In esophageal squamous cell carcinoma
(ESCC), the expression of ZNF382 was inhibited due to aber-

rant promoter methylation and ZNF382 methylation corre-
lated with the level of ESCC differentiation. ZNF382 also
inhibited the proliferation and metastasis of ESCC cells by
inhibiting the Wnt/beta-catenin signaling pathway. These
data suggest that ZNF382 plays a role in inhibiting the for-
mation of ESCCs [18]. ZNF382 is also methylated in a range
of primary tumors (nasopharyngeal, esophageal, colon,
stomach, and breast). Ectopic expression of ZNF382 in
silenced tumor cells significantly inhibited their cloning
and proliferation and induced apoptosis. Cheng et al.
showed that ZNF382 can inhibit nuclear factor kappa-B
and AP-1 signaling and that it downregulates the expression
of several oncogenes [19]. However, the role of ZNF382 in
BLCA has not been well established and is worthy of further
investigation.

Structural maintenance of chromosomes flexible hinge
domain containing 1 (SMCHD1) is a protein-coding gene.
Mutations in SMCHD1 have been associated with mastoid
microocular syndrome and facial-shoulder-brachial dystro-
phy 2. The SMCHD1 protein is involved in DNA methyl-
ation, and a number of studies have focused on its
contribution to X chromosome inactivation. SMCHD1
plays a role in the normal development of the nose, eyes,
and other structures of the head and face and appears to
be involved in repairing damaged DNA. In response to
DNA damage, SMCHD1 is recruited to sites of DNA
double-strand breakage, where it promotes repair of the
breakage by nonhomologous end joining (NHEJ), while
inhibiting repair by homologous recombination [20, 21].
One study suggested that SMCHD1 may be a candidate
tumor suppressor gene in prostate cancer [22]. However,
there has been comparatively little research into the role
of SMCHD1 in different cancer types, so whether it func-
tions as a tumor suppressor or an oncogene is not yet
clear. In this study, we found that the SMCHD1 gene
was hypomethylated in BLCA tumors. DNA hypomethyla-
tion has been shown to cause the abnormal activation of a
few genes. The mechanistic links between the loss of DNA
methylation and cancer development, including induction
of chromosomal instability, reactivation and transposition
of reversed loci, loss of imprinting, and activation of nor-
mally silenced genes, are directly related to DNA methyla-
tion patterns in mammalian genomes [23]. Future studies
should focus on identifying the role of SMCHD1 in BLCA.

In this study, we construct a three-gene model for pre-
dicting the prognosis of BLCA using TCGA dataset. How-
ever, one limitation of our study is the lack of an
independent dataset for validating our results. In addition,
our study is an observational study, and the gene model
should be verified by prospective studies in the future.

5. Conclusion

Our study screened differentially methylated protein-coding
genes in BLCA tissues and constructed a robust risk model
for predicting the survival of BLCA patients. Moreover, the
three genes which form the basis of our risk model may func-
tion in the development and progression of BLCA and repre-
sent worthwhile avenues for future investigations.

Table 2: Continued.

Multivariate Cox regression analysis

Stage

Stage I+stage II Reference

Stage III+stage IV 0.890 (0.277-2.855)

Tumor stage

T0+T1+T2 Reference 0.844

T3 1.744 (0.993-3.170) 0.084

T4 2.207 (1.022-4.767)

Node stage

N0+Nx Reference 0.053

N1+N2+N3 1.865 (1.160-3.001) 0.044

Risk score group

Low-risk group Reference 0.010∗

High-risk group 1.642 (1.013-2.661) 0.044∗

Total set

HR (95% CI) p value

Age 1.033 (1.014-1.050) <0.001∗
Stage

Stage I+stage II Reference

Stage III+stage IV 1.868 (0.793-4.405) 0.153

Tumor stage <0.001∗
T0+T1+T2 Reference

T3 1.871 (1.184-2.957) 0.007

T4 2.865 (1.624-5.052) <0.001∗
Node stage

N0+Nx Reference

N1+N2+N3 1.834 (1.297-2.592) 0.001∗

Risk score group

Low-risk group Reference

High-risk group 1.848 (1.305-2.618) 0.001∗
∗Statistically significant to predict overall survival rate.
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Figure 4: Forest map and a nomogram for overall survival (OS) prediction in BLCA patients derived from the total set. (a) The variables in
the multivariate Cox regression results for predicting the overall survival of BLCA patients. (b) The composite nomogram consists of the three
protein-coding gene methylation risk score, tumor stage, and age. Each variable can generate a point according to the “Points” line. Add these
three points together and get the total points on the “Total Points” line. Then, draw a vertical line from the “Total Points” line to the three lines
below which correspond to the predicted 1-year, 3-year, and 5-year OS rates by the nomogram.
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