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Abstract

The 24-nucleotides (nt) phased secondary small interfering RNA (phasiRNA) is a unique class

of plant small RNAs abundantly expressed in monocot anthers at early meiosis. Previously, 44

intergenic regions were identified as the loci for longer precursor RNAs of 24-nt phasiRNAs

(24-PHASs) in the rice genome. However, the regulatory mechanism that determines spatio-

temporal expression of these RNAs has remained elusive. ETERNAL TAPETUM1 (EAT1) is a

basic-helix-loop-helix (bHLH) transcription factor indispensable for induction of programmed

cell death (PCD) in postmeiotic anther tapetum, the somatic nursery for pollen production. In

this study, EAT1-dependent non-cell-autonomous regulation of male meiosis was evidenced

from microscopic observation of the eat1 mutant, in which meiosis with aberrantly decon-

densed chromosomes was retarded but accomplished somehow, eventually resulting in abor-

tive microspores due to an aberrant tapetal PCD. EAT1 protein accumulated in tapetal-cell

nuclei at early meiosis and postmeiotic microspore stages. Meiotic EAT1 promoted transcrip-

tion of 24-PHAS RNAs at 101 loci, and importantly, also activated DICER-LIKE5 (DCL5, previ-

ous DCL3b in rice) mRNA transcription that is required for processing of double-stranded 24-

PHASs into 24-nt lengths. From the results of the chromatin-immunoprecipitation and transient

expression analyses, another tapetum-expressing bHLH protein, TDR INTERACTING PRO-

TEIN2 (TIP2), was suggested to be involved in meiotic small-RNA biogenesis. The transient

assay also demonstrated that UNDEVELOPED TAPETUM1 (UDT1)/bHLH164 is a potential

interacting partner of both EAT1 and TIP2 during early meiosis. This study indicates that EAT1

is one of key regulators triggering meiotic phasiRNA biogenesis in anther tapetum, and that

other bHLH proteins, TIP2 and UDT1, also play some important roles in this process. Spatio-

temporal expression control of these bHLH proteins is a clue to orchestrate precise meiosis

progression and subsequent pollen production non-cell-autonomously.
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Author summary

Meiotic crossover formation shuffles homologous genes between parental genomes, and

enables transmission of new gene sets to the offspring. Frequency and positions of cross-

overs are determined by numerous genetic and epigenetic factors, and low nucleosome-

density regions are associated with crossover hot spots in yeasts and Arabidopsis. The epige-

netic chromosome landscape is shaped by unevenly distributed modifications of nucleo-

some components, histones and DNAs. Recently, we found that MEL1 (ARGONAUTE5)

promotes large-scale remodeling of meiotic chromosomes with dramatic increases of his-

tone H3 lysine 9 dimethylation, and that loss of MEL1 resulted in early meiotic arrest with

few crossovers present. In rice anthers, MEL1-associating small interfering RNAs (masiR-

NAs) were composed of large amounts of premeiotic 21-nt phasiRNAs, plus low levels of

both 24-nt repeat-associated siRNA and meiotic 24-nt phasiRNAs. Production of 24-nt

phasiRNA during the meiotic stage was largely EAT1-dependent. Collectively, our findings

suggest a possibility that unknown small RNA-mediated signaling regulates male meiosis

non-cell-autonomously, probably a downstream output involves large-scale chromosome

remodeling promoted by Argonaute proteins, while a possibility of EAT1-dependent, but

small RNA-independent signaling cannot be excluded. In any cases, the studies on MEL1

and tapetal bHLH proteins will be a clue to reveal small RNA-mediated processes deter-

mining meiotic epigenetic landscape.

Introduction

Small noncoding RNAs are 20–30 nucleotides (nt) long and associate with Argonaute family

proteins to serve as guide molecules for RNA silencing in various biological processes, such as

cell type specification, cell proliferation, cell death, metabolic control, transposon silencing

and antiviral defense [1]. Plant genomes encode precursors of microRNA (miRNA) and small

interfering RNA (siRNA), as do animal genomes [2]. miRNA is produced from a hairpin

structure of a single precursor RNA molecule, and siRNA is derived from a precursor RNA

that is either naturally double-stranded or is formed by RNA-dependent RNA polymerases.

The third class of animal small RNAs is Piwi-interacting RNA (piRNA). The piRNA is

abundantly expressed in the germline and acts in silencing of transposable elements (TEs) [3],

massive elimination of paternally derived mRNAs [4], systemic recognition of self and non-

self mRNAs [5, 6], and so on. piRNA associates with Piwi family proteins, a distinct subgroup

of Argonaute proteins. In contrast, plants have no Piwi family Argonautes [7, 8], and conse-

quently lack piRNA species. In place of piRNA, trans-acting siRNA (tasiRNA) and phased sec-

ondary siRNA (phasiRNA) are identified as plant-specific small RNA subgroups. In monocot

model plants, rice and maize, phasiRNAs are abundantly expressed in the male reproductive

organs, and in this study, the term "phasiRNA" will be used for monocot reproductive phasiR-

NAs derived from protein-noncoding regions. Both tasiRNA and phasiRNA are produced via

miRNA-dependent primary processing, and characterized by phased alignment on both sense

and antisense strands in genomic regions. However, they are distinct in several points. First,

phasiRNAs are abundantly expressed in developing reproductive organs [9–13], while 21-nt

tasiRNAs are expressed in both vegetative and reproductive phases [14]. Second, phasiRNAs

are transcribed from hundreds or thousands of unique, namely nonrepetitive, intergenic

regions [9, 11–13], while a few tasiRNA-producing (TAS) loci are conserved in the plant

genome [15–17]. Finally, no phasiRNA targetting a protein-coding gene has been identified,
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whereas tasiRNAs are complementary to particular genes important for defense and develop-

mental events [14]. In plant reproduction, 24-nt unphased siRNAs or 21-nt epigenetically acti-

vated siRNAs (easiRNAs) are thought to maintain genome integrity by programmed DNA

methylation of TEs [18–20]. The roles of phasiRNAs during plant reproduction largely remain

elusive.

In rice, a single-stranded PHAS precursor RNA is primarily processed with 22-nt miRNA

triggers; miR2118 for 21-PHASs and miR2275 for 24-PHASs [10]. PHAS and TAS RNA mem-

bers each have one or two conserved complementary sequences to miRNAs, and are cleaved

via the one-hit or two-hit processing pathway; the one-hit mode is mediated by the AGO1-

miRNA complex for 5’-end cleavage of precursor RNAs [15] to generate the 3’ fragment that

becomes double-stranded, and the two-hit mode depends on AGO1- or AGO7-miRNA,

which potentially associates with both ends and cleaves either end or both [14]. The processed

RNA is made double-stranded by RNA DEPENDENT RNA POLYMERASE6 (RDR6) [21],

and chopped into 21- and 24-nt lengths by DICER-LIKE4 (DCL4) and DCL5 (previous

DCL3b in rice), respectively [10].

The anther is a four-lobed male reproductive organ in angiosperms. Each anther lobe is

composed of central sporogenous cells and four concentric somatic layers; the epidermis,

endothecium, middle layer and tapetum, from outward to inward (Fig 1A) [22–24]. Sporoge-

nous cells undergo several rounds of mitosis and mature into pollen mother cells (PMCs) to

prepare for meiosis [22–24]. Maize OUTER CELL LAYER4 (OCL4), an HD-ZIP IV transcrip-

tion factor (TF), expressed in the anther epidermis and MALE STERILE23 (MS23), a basic

helix-loop-helix (bHLH) TF expressed in the tapetum are required for 21 and 24-nt phasiRNA

Fig 1. Bimodal expression of EAT1 protein at both early meiosis and postmeiosis in anther tapetum. (A) Anther

lobe architecture around meiosis in rice. (B) Diagram of the EAT1pro-EAT1-GFP transcriptional fusion construct.

Closed and grey boxes indicate protein coding and untranslated regions, respectively. (C) eat1-4/eat1-4 flowers of T0

plants carrying EAT1pro-EAT1-GFP (#1, #2) and an empty vector. Bars, 1 mm. Flower images were taken after

removal of lemmas. (D) EAT1-GFP signals (green) in developing anther sections from ST.1 to ST.5. In a transgenic

plant harboring the EAT1pro-EAT1-GFP. The EAT1-GFP signals were restricted to tapetal nuclei in ST.2, ST. 3 and

ST.5 anthers, and not detected in the ST.2 anther from the negative control (n.c., right most panel). About the meiotic

events and anther lengths corresponding to the respective stages. See Table 1 and S7 Table. Bars, 20 μm.

https://doi.org/10.1371/journal.pgen.1007238.g001
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biogenesis, respectively [12, 25]. Small RNA-mediated intercellular signaling is proposed in

various steps of plant reproduction, for example, between sperm and vegetative cells in the pol-

len [19, 26] and between megaspore mother cells and somatic nucellar cells in the ovule [18].

The intercellular movement of reproductive phasiRNAs has been proposed in maize [12, 13],

while there is yet no decisive evidence. The underlying mechanism to determine the spatio-

temporal expression of reproductive phasiRNAs in anthers has largely remained elusive.

In this study, we focused on the rice bHLH TFs, because they are key transcriptional regula-

tors for differentiation and development of anther somatic layers. TDR INTERACTING PRO-

TEIN2 (TIP2)/bHLH142 is expressed in several undifferentiated cell layers to form the middle

layer and tapetum [27, 28]. TAPETUM DEGENERATION RETARDATION (TDR)/bHLH5

makes a heterodimer with TIP2 to promote tapetal differentiation [29]. ETERNAL TAPE-

TUM1 (EAT1)/bHLH141, 41% similar to TIP2, also dimerizes with TDR, and activates tran-

scription of aspartic protease-encoding genes to promote programmed cell death (PCD) of

postmeiotic tapetal cells [30, 31]. UNDEVELOPED TAPETUM1 (UDT1)/bHLH164 [32] is

expected to function upstream of the regulatory cascade for anther wall development. How-

ever, downstream targets of these bHLH TFs are largely unknown.

In addition to its role in tapetal PCD, we found that EAT1 is required earlier in tapetal

development to support meiosis, while the loss of EAT1 function has little impact on the tape-

tum morphology. EAT1 shows a bimodal expression at both early meiosis and postmeiosis.

Interestingly, EAT1 expressed during early meiosis promoted both transcription and process-

ing of 24-PHAS precursor RNAs to produce 24-nt phasiRNAs in tapetum. This study demon-

strates that EAT1 is one of key regulators triggering meiotic phasiRNA biogenesis in anther

tapetum, and that other bHLH proteins, TIP2 and UDT1, also play important roles in this

process.

Results

EAT1 is expressed in anther tapetum during early meiosis

To determine the impact of bHLH proteins in communication between somatic tapetal cells

and PMCs in rice anthers, we first performed quantitative reverse-transcription PCR

(qRT-PCR) of four bHLH genes: UDT1, TDR, TIP2 and EAT1, all of which are involved in

tapetal cell-fate decision [27–32]. In this study, we separated anther developmental processes

into six stages to characterize spatiotemporal expression of these genes (ST.1 to ST.6; Table 1).

qRT-PCR of meiotic anthers demonstrated that UDT1, TDR and TIP2were expressed as

expected from previous reports (S1 Fig, S1 Data). However, EAT1 expression was bimodal,

both at early meiosis (ST.2) and postmeiosis (ST.5), whereas it was previously thought to func-

tion only in postmeiotic tapetal PCD [30, 31].

Table 1. Developmental stages of rice anthers defined in this study.

Stages Corresponding germ cell stage a Corresponding anther wall stage a

ST.1 Premeiotic mitosis Transition from three- to four-layered

ST.2 Leptotene and zygotene Undifferentiated tapetum and middle layer

ST.3 Pachytene and diplotene Tapetum–middle layer differentiation

ST.4 Meiotic division, tetrad Differentiation completed

ST.5 Microspore Tapetum PCD initiated

ST.6 Bicellular pollen stage Tapetum degradation

a Developmental events of wild-type anthers.

PCD: programmed cell death.

https://doi.org/10.1371/journal.pgen.1007238.t001
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To investigate EAT1 expression during early meiosis, an EAT1pro-EAT1-GFP transcrip-

tional fusion construct (Fig 1B) was introduced into male-sterile eat1-4 plants homozygous for

a putative null allele with a Tos17-retrotransposon insertion (S2A–S2F Fig). The transgenic

plants recovered male fertility (Fig 1C), indicating that the EAT1-GFP protein is functional in
planta. EAT1-GFP expression was bimodal at ST.2 and ST.5, as was mRNA expression, and

the two expression peaks were clearly separated by the silent ST.4 (Fig 1D). Transcription of

AP25, an aspartic protease gene required for tapetal PCD initiation [30], was fully dependent

on EAT1 at ST.5 (S3 Fig, S1 Data), while no AP25 transcript was detected at ST.2 or ST.3.

These results confirm that the role of meiotic EAT1 is distinct from its postmeiotic role in

tapetal PCD and further suggest that the EAT1 bHLH TF has distinct bHLH partners at these

two developmental stages.

Delayed and asynchronous male meiosis in the eat1-4mutant

In wild-type anthers, three concentric layers of somatic-wall cells at ST.1 become four layered

at ST.2, and PMCs undergo meiosis at ST.3 and ST.4 (Fig 2A and S4A–S4C Fig). During

ST.3-ST.4, the middle layer disappears, and during ST.5-ST.6, the tapetal layer degenerates by

PCD (S4D and S4E Fig).

The eat1-4 mutant phenotype was remarkable in postmeiotic ST.5 and ST.6 anthers, in

which tapetal cells were unusually degenerated at ST.5, concurrent with abortive microspores

Fig 2. The eat1-4mutation affects meiotic chromosome condensation non-cell-autonomously. (A) Cross sections

of anthers at late meiosis (ST.4). Tapetum and PMC formation of the eat1-4mutant was almost comparable to that of

the wild-type (WT). Bars, 20 μm. (B) Accumulation (ST.2) and degeneration (ST.3) of β-1,4 glucan (green) at tapetal-

cell and PMC walls. Nuclei were counterstained with propidium iodide (magenta). Bars, 20 μm. (C) Typical PMCs

observed in respective meiotic stages in wild-type (top) and eat1-4 anthers (bottom). Meiotic chromosomes, stained

with 4’,6-diamidino-2-phenylindole (DAPI), were decondensed frequently in the eat1-4 PMCs. An arrow indicates

lagging chromosomes. Bars, 20 μm.

https://doi.org/10.1371/journal.pgen.1007238.g002
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and male sterility (S4I and S4J Fig). On the other hand, no morphological phenotype was

found in earlier stages, ST.1 to ST.4 by light microscopy (Fig 2A and S4F–S4H Fig). Degrada-

tion of beta-1,4-glucan on cell walls of tapetal cells and PMCs occurred normally in eat1-4
anthers at ST.2-ST.3 stages (Fig 2B). These observations were largely consistent with previous

results [30].

We detected an unreported defect in male meiosis of eat1-4 mutants: PMCs harbor aber-

rantly decondensed bivalent chromosomes frequently, 74.2% at diakinesis (n = 70) and 69.4%

at metaphase I (n = 36) (Fig 2C). In addition, two out of 27 eat1-4 PMCs at anaphase I har-

bored lagging chromosomes or chromosomal bridges, which were not found in the wild-type

(n = 42) (Fig 2C). Another 5.5% eat1-4 PMCs exhibited interphase-like nuclei with fully

decondensed chromosomes (n = 163), in contrast to wild-type PMCs (n = 192, Fig 2C). In

addition, meiotic division timing was retarded in mutant anthers, with asynchronous progres-

sion within an anther lobe (S5 Fig, S1 Data). Despite these meiotic defects, male meiosis could

complete, but resulting microspores were aborted most likely by the aberrant tapetum, which

normally secretes nutrients and exine components required during post-meiotic pollen devel-

opment (S4J Fig). These results suggest that non-cell-autonomous signaling or some nutrient

delivery between somatic tapetal cells and PMCs is mediated by EAT1 during meiosis, in addi-

tion to post-meiosis.

EAT1 activates transcription of 101 loci encoding 24-PHAS RNAs

To identify genes under the control of meiotically expressed EAT1, we conducted mRNA-seq

experiments using whole anther samples and compared the data between wild-type and eat1-4
plants. The data were obtained from three different meiotic stages: premeiosis (ST.1), early

meiosis (ST.2) and late meiosis (ST.4), each with three biological replicates. 142,048,793 reads

from wild-type and 146,928,874 reads from eat1-4 anthers (S1 Table) in total were mapped to

the rice genome. Of all 38,311 rice genes, 115 genes were defined to exhibit EAT1-dependent

expression, which showed>2-fold greater Fragment per Kilobase per Million (FPKM) values

in ST.2 anthers compared to eat1-4 ST.2 anthers, and also compared to ST.1 and ST.4 anthers

(Fig 3A, S2 Table). The ontology terms for 7 of 115 genes were enriched in lipid metabolism

based on the agriGO algorithm [33] (S3 Table), implying that they function in pollen coat for-

mation [34].

mRNA-seq also identified 6,097 regions generating long intergenic noncoding RNAs

(lincRNAs), and 248 showed ST.2-enriched and EAT1-dependent expression (Fig 3A, S4

Table). Next, we conducted small RNA-seq (sRNA-seq) to ask whether these lincRNAs are

small RNA precursors or not. 52,726,712 reads of total small RNAs extracted from wild-type

and 62,364,061 from eat1-4 anthers were mapped onto the rice genome (S1 Table). As a result,

the 93 lincRNAs were defined as 24-PHAS RNAs, because a large number of 24-nt small RNAs

were mapped in a 24-nt phasing manner on the lincRNA loci (see below for details). Of 44 24-

PHAS loci previously reported [9, 10], 24 were included in the loci identified in this study.

Another 8 loci, which were left out of our first selection by their length or overlapping coding

genes, generated EAT1-dependent and ST.2-enriched 24-nt phasiRNAs (S4 Table), while the

remaining 12 loci did not. Thus, adding the 8 loci, a total of 101 loci were specified as ST.2-en-

riched and EAT1-dependent 24-PHAS loci and analyzed hereafter.

Median FPKM values of 24-PHAS transcripts detected at the 101 loci in wild-type ST.2

anthers were 688-fold and 24-fold higher than those in ST.1 and ST.4 anthers, respectively. In

addition, the values were 55-fold higher than in eat1-4 anthers at ST.2 (Fig 3B and 3C, S4

Table). This result reconfirmed the EAT1-dependent and early meiosis-enriched nature of 24-

PHAS transcripts. This trend was reproducible in qRT-PCR of five 24-PHASs (Fig 3D, S1

Meiotic small RNA biogenesis in rice anther tapetum
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Fig 3. Identification and characterization of EAT1-dependent and early meiosis-enriched expression of 24-PHAS
precursor transcripts. (A) Scatter plots of FPKM values for transcripts of 38,311 coding genes, 6,097 noncoding genes

and 15,723 TE-like sequences, compared between the wild-type and eat1-4 ST.2 anthers. EAT1-d and EAT1-i indicate

that the transcripts show EAT1-dependent and EAT1-independent expressions, respectively. DCL5 had slightly larger

standard deviation of FPKM values in wild-type ST.2 (mandarin in left plot). In all plots, dark and faint gray spots

represent transcripts whose FPKM values were�2-fold different between wild-type and eat1-4 anthers, respectively.

(B) Heatmaps representing the expression level of 113 loci encoding 24-PHAS precursor transcrips (left), and of 24-nt

siRNAs (right) derived from the corresponding 24-PHAS loci (left). Each experiment includes three biological

replicates. The leftmost dendrogram indicates the result of clustering of 24-PHAS expression patterns by R package,

gplots. Asterisks indicate that the loci were silent through ST.1 to ST.4 stages (black) or showed EAT1-independent

expression (grey). (C) Box plots representing 24-PHAS RNA density per locus (left) and 24-nt phasiRNA density per

locus (right) in ST.1, ST.2 and ST.4 anthers of wild-type (green boxes) and eat1-4 (brown boxes). ��� indicate that

difference is significant at P = 0.001 in Student’s t-test. (D) qRT-PCR results of five 24-PHAS transcripts (chr5-20, chr6-
97, chr10-100, chr10-101 and chr12-83) in wild-type (black lines) and eat1-4 anthers (gray lines). The bottom numbers

correspond to anther developmental stages in Table 1. Relative expression values and standard errors were calculated

by using three biological replicates.

https://doi.org/10.1371/journal.pgen.1007238.g003
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Data). In contrast, most 24-nt RNAs from the corresponding PHAS loci were abundant not

only in ST.2, but also in ST.4 anthers (Fig 3B and 3C, S4 Table), implying slower turnover of

small RNAs than precursor transcripts.

The 101 PHAS loci were unevenly distributed in the genome as reported previously [9],

except for chromosomes 1 and 9, and many loci formed several clusters on each chromosome

(Fig 4A, S4 Table). Sequence comparison by the MEME program [35] demonstrated that 93

Fig 4. Characterization of 24-PHAS loci on rice genome. (A) A genome-wide distribution of 24-PHAS loci. From top to bottom, the numbers of 24-PHAS loci

(101 green triangles correspond to 24-PHAS loci showing an EAT1-dependent and ST.2-enriched expression, 9 gray triangles are previously reported 24-PHAS
loci silent through ST.1 to ST.4 and 3 blue triangles are those showing EAT1-independent expression), the amounts of 24-nt sRNA-seq (red), mRNA-seq reads

(blue) rated by subtraction of eat1-4 values from wild-type values (see Methods), and frequencies of repetitive sequences including TEs (gray charts). The

horizontal length of each box corresponds to the physical distance of respective rice chromosomes. (B) A conserved sequence logo found in upstream of ninety-

three 24-PHAS loci detected by MEME program [35], which are potentially targeted by miR2275. The arrow indicates the predicted cleaved position by DCL1

and miR2275 complex [10]. (C) Frequency of repetitive sequence (grey), gene coding region (blue) and miR2275 targeted site (red) around 24-PHAS loci. The

data was examined in 93 24-PHAS transcripts with conserved miR2275 targeted sites. The reason why a small peak of miR2275 target site appeared at the 3’ end

of 24-PHAS is that some 24-PHAS loci were relatively small in length (~ 500 bp). (D) Characterization of three 24-PHAS loci. From the top to the bottom, the

graphs indicate the mapping results of mRNA-seq and 24-nt sRNA-seq reads (gray histograms), the 24-nt phasing pattern (green and orange charts), and the

plot of read counts from the degradome-seq using young panicles of indica variety, 93–11 [38]. The degradome analysis revealed that the cleavage of three 24-

PHAS transcripts frequently occurs at the position shown in (B), within the predicted miR2275 sites (red dots), while few degradome-seq reads were mapped

onto both sense and antisense strands of other regions (gray dots). Reads were depicted by IGV [78]. (E) An example of distribution of EAT1-dependent 24-

PHAS-loci cluster (green boxes) on the long arm of chromosome 12, with the context of surrounding genes (blue) and repetitive sequences (black).

https://doi.org/10.1371/journal.pgen.1007238.g004
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out of 101 24-PHAS loci conserved 22-mer sequence complementary to mature miR2275 (Fig

4B and 4C, S4 Table). The miR2275 sites were conserved at the 5’-region in 92 loci (Fig 4C, S4

Table), consistent with previous results that 22-mer miRNA triggers one-hit processing [36,

37]. The phased pattern tended to start at the 13th position in the 22-mer miR2275 site in most

of 24-PHAS loci (Fig 4D). This position corresponded to the cleavage site of the AGO1/

miR2275 complex reported previously [10]. Consistent with this, the degradome data from the

indica rice variety [38] demonstrated that the cleavage actually occurred at the same position

relative to the miR2275 complementarity in 62 of 93 24-PHAS loci (Fig 4B and 4D, S4 Table),

and that almost of lincRNAs detected here were the unprocessed, primary 24-PHAS RNAs.

Of 24-nt small RNAs mapped on 93 24-PHAS loci, the 77.1% reads from wild-type ST.2

and ST.4 anthers showed a 24-nt phased pattern which starts from putative AGO1/miR2275

cleavage site (S6 Fig, S1 Data), indicating that 24-nt small RNAs produced from these loci

were processed by DCL5.

Most 24-PHAS loci were mapped to unique or low copy regions (Fig 4C and 4E, S1 Data).

Only 7 of the so-far reported 15,723 TEs showed ST.2-enriched and EAT1-dependent expres-

sion (Fig 3A right, S2 Table). We concluded that meiotic 24-nt phasiRNAs originate from 101

intergenic 24-PHAS loci and that they have a role distinct from TE silencing.

EAT1 binds 24-PHAS andDCL5 promoters in meiotic tapetum

Chromatin-immunoprecipitation (ChIP)-qPCR analysis was performed to examine EAT1-

binding to the upstream cis sequences of two 24-PHAS loci (chr5-20 and chr6-97) using

EAT1-GFP-expressing plants. Both sequences included E-box motifs, short CANNTG

sequences potentially targeted by bHLH proteins [39] (Fig 5A). The chr5-20-Ebox1 was

enriched 5.4-fold and the chr6-97-Ebox2 was enriched 6.1-fold in ChIP of EAT1-GFP-express-

ing anthers (Fig 5B, S1 Data), suggesting that EAT1 has a potential to target 24-PHAS loci.

The above results prompted the idea that EAT1 activates genes including 24-nt phasiRNA

biogenesis-related (24-PBR) genes. Indeed, DCL5was 2.1-fold downregulated in eat1-4 ST.2

anthers in mRNA-seq analysis (Fig 3A, S2 Table, S1 Data), and this reduction was confirmed

by qRT-PCR (Fig 5C, S1 Data). ChIP using EAT1-GFP-expressing anthers and anti-GFP anti-

body displayed enrichment of the Ebox2 and Ebox3 upstream of DCL5 by 6.5- and 2.7-fold,

respectively (Fig 5D and 5E, S1 Data). In contrast, no EAT1 binding was detectable in two

other DCL family genes, DCL3a, responsible for long miRNA production required for cytosine

DNA methylation and TE-associating 24-nt siRNA synthesis [40, 41], and DCL4, involved in

21-nt phasiRNA production [10] (S7A and S7B Fig, S1 Data), despite the presence of E-

box motifs. A substantial abundance ofDCL5 transcripts still in eat1-4 anthers (Fig 5C) implies

a possibility that other TFs participate in this process.

The expression of 24-PBR genes other than DCL5was examined. DCL1 and RDR6 are

respectively required for processing of miR2275 precursors and RNA double-strand formation

[10, 21]. DCL1 and RDR6 transcripts were abundant in ST.2 anthers; however, both were also

abundant in ST.1 and ST.4 anthers and were unaffected by the eat1-4 mutation (S8A Fig, S1

Data), indicating that expression of DCL1 and RDR6 is EAT1 independent and not restricted

to meiotic stages. Transcripts of pri-miR2275a/b, the precursors of mature miR2275, were

enriched in ST.2 anthers. In contrast to 24-PHASs and DCL5, the amount of pri-miR2275 tran-

scripts was elevated in the eat1-4mutant (S8A Fig, S1 Data). pri-miR2275b promoter sequences

were not enriched in ChIP of EAT1-GFP-expressing anthers, despite containing E-box motifs

(S8C and S8D Fig, S1 Data).

To investigate the EAT1 ability to promote the transcription of 24-PHAS andDCL5 loci, we

performed the transient expression assay. The bHLH proteins have homo- and heterodimerization

Meiotic small RNA biogenesis in rice anther tapetum
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ability [42]. Thus, the effector construct encoding any two of EAT1, TIP2, UDT1 and TDR was

cotransfected with the 24-PHAS orDCL5promoter (pPHAS, pDCL5)-Luciferase fusion reporter

into rice protoplasts (S10A Fig), and the promoter activity was measured. The activity of two

pPHASs was significantly 4.46 (chr5-20) and 3.99-fold (chr6-97) elevated in EAT1-UDT1 cotrans-

fection, compared to the no effector control (Fig 6A). However, contrary to expectations, the same

combination displayed insignificant effects on the pDCL5 (Fig 6A). Little effect on pPHASs nor

pDCL5 was observed in the transfection of EAT1 alone and EAT1-TIP2, while the EAT1-TDR

cotransfection slightly affected the activity of pPHASs (1.85 and 2.17 fold) and pDCL5 (1.95 fold)

(Fig 6A). Interestingly, EAT1-UDT1 cotransfection induced the pEAT1 activity by greater 7.61

fold (S10B Fig), while it was slightly upregulated by the EAT1-TDR cotransfection (1.58 fold).

Cotransfection of EAT1 with TIP2, TDR or UDT1 displayed no significant effect on the pDCL3a
(S10B Fig).

Fig 5. EAT1 and TIP2 bind E-box motifs upstream of 24-PHAS loci andDCL5 gene. (A) Schematic illustrations of genomic compositions of the

50 upstream regions of two 24-PHAS loci, chr5-20 and chr6-97, in addition to the coding region of theUbiquitin gene as a negative control. Open

boxes indicate the position of consensus E-box motifs. The number at the top of each motif shows a distance (bp) from the transcription start site

(TSS). Regions underlined were used in the ChIP-qPCR assay. Grey and closed boxes in the Ubiquitin represent untranslated and coding regions,

respectively. (B) ChIP-qPCR results of 24-PHAS promoters using transgenic (TG) plants expressing EAT1-GFP. IgG and non-TG plants were used

as negative controls. n.s.; not significant. � and ��; significant at P = 0.05 and P = 0.01 in Student’s t-test, respectively, less than the leftmost positive

ChIP result in each graph. (C) qRT-PCR results ofDCL5mRNA in wild-type and eat1-4 anthers. Relative expression values and standard errors

were calculated by three biological replicates. The bottom numbers correspond to anther developmental stages in Table 1. (D) Genomic

composition of the 50 upstream region of theDCL5 gene. (E) ChIP-qPCR results of DCL5 promoters using TG plants expressing EAT1-GFP. (F)

ChIP-qPCR results of 24-PHAS promoters using TG plants expressing YFP-TIP2. (G) ChIP-qPCR results of DCL5 promoters using TG plants

expressing YFP-TIP2. In ChIP-qPCR analyses, relative abundance and standard errors were calculated by two or three biological replicates each

subjected to three PCR replications.

https://doi.org/10.1371/journal.pgen.1007238.g005
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To examine the protein-protein interaction between EAT1 and UDT1, we performed the

bimolecular fluorescence complementation analysis (BiFC) in rice protoplasts. EAT1 fused

with the C-terminal split of YFP (EAT1-cYFP and cYFP-EAT1) gave positive BiFC signals

when coexpressed with UDT1-nYFP (Fig 6B, S11A and S11B Fig), while they tended to be

detectable faintly in the nucleus (Fig 6B, S11A Fig arrows) or intensely in the cytoplasm (Fig

6B, S11A Fig arrowhead). In both cases, the positive signals were always more intense com-

pared to negative controls (Fig 6B, S11A–S11C Fig).

The above results demonstrate that the meiotic EAT1 TF promotes the transcription of

24-PHAS precursors and the EAT1 gene itself by interacting with UDT1 at the molecular

level. EAT1 also promotes the DCL5 transcription, but likely with an unknown bHLH

partner.

TIP2 also activates 24-PHAS and 24-PBR gene transcription

Next, we examined the protein function of TIP2, an EAT1 paralog [27, 28, 37]. The tip2-2 loss-

of-function allele newly identified in this study had a T-DNA insertion in the third intron

(S2G–S2L Fig, S1 Data). In transverse sections of developing anthers (S4K–S4X Fig), the wild-

type tapetal and middle layer cells have dense cytoplasm (S4M–S4N Fig), however, in the

mutants the cell layers had sparse cytoplasm at ST.3 and ST.4 (S4T–S4U Fig). The central

PMCs were eventually collapsed probably due to malformed somatic layers (S4V Fig). These

results reconfirmed the previous proposal that TIP2 is essential for differentiation of precursor

cells into middle layer and tapetal cells [27, 28].

When a TIP2pro-YFP-TIP2 transcriptional fusion construct was introduced in the tip2-2
mutant, YFP-TIP2 signals were intensified in tapetal cell nuclei at ST.2 and ST.3, and in addi-

tion, weaker signals were observed in the nuclei of middle layer cells (S9A–S9C Fig). TIP2

protein expression was EAT1 independent, while in contrast, EAT1 expression was TIP2

dependent in transgenic plants (S9D and S9E Fig, S1 Data).

Fig 6. EAT1 and TIP2 activate the promoter activity of 24-PHAS loci and theDCL5 gene in interaction with UDT1. (A) The results of the transient

expression assay. Any one or two effector plasmids encoding EAT1 (E1), TIP2 (T2), UDT1 (U1) and TDR (TD) proteins were cotransfected with the

reporter constructs into rice protoplasts. The reporter carries a 2-kbp promoter region of the 24-PHASs (chr5-20, chr6-97) orDCL5, fused with the firefly

Luciferase. The configuration of all constructs were shown in S10A Fig. The number above each bar is the fold change of the Luciferase activity compared to

the negative control without the promoter (leftmost bars). �, �� and ���; the significant fold changes at P = 0.05, 0.01 and 0.001 in Student’s t-test,

respectively, compared to the negative control. Error bars indicated standard deviation of three biological replicates. The significant>2 fold changes were in

bold. (B) The BiFC results of EAT1-UDT1 an TIP2-UDT1 cotransfections.

https://doi.org/10.1371/journal.pgen.1007238.g006
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qRT-PCR indicated that the levels of 24-PHAS, DCL5, and pri-miR2275a/b transcripts at

ST.2 were severely reduced in tip2-2 anthers (S8B Fig, S1 Data). Using YFP-TIP2-expressing

plants, the region upstream of the 24-PHAS locus (chr5-20-Ebox1) was 4.3-fold enriched in

ChIP of YFP-TIP2 (Fig 5F, S1 Data), and the upstream Ebox2 and Ebox3 sequences of DCL5
also showed 8.1 and 3.4-fold enrichment, respectively (Fig 5G, S1 Data).

In the transient expression assay, TIP2-UDT1 cotransfection resulted in a significant

increase of the pPHAS (8.63 fold on chr5-20 and 2.73 fold on chr6-97) and pDCL5 activities

(4.91 fold) (Fig 6A). TIP2-TDR cotransfection also elevated the pPHAS activity (2.52 and 2.67

fold) (Fig 6A). Both TIP2-UDT1 and TIP2-TDR activated the pEAT1 by 5.72 and 2.35 fold,

respectively (S10B Fig), consistent to TIP2-dependent EAT1-GFP expression in transgenic

plants (S9E and S9F Fig) and to the previous results [27, 28]. The BiFC assay clearly indicated

that TIP2 has a potential to interact with UDT1 (Fig 6B and S11A–S11C Fig).

Collectively, these results suggest that TIP2 has the potential to activate transcription of

both 24-PHASs and DCL5 by interacting with UDT1 at the molecular level in early meiosis.

A subset of 24-nt phasiRNAs is bound by the Argonaute expressed in male

meiocytes

Small RNAs are sorted to confer association with specific Argonaute family proteins [43]. MEL1

is a rice Argonaute protein whose function is well characterized in meiosis, and is abundantly

expressed in male and female meiocytes, but not in surrounding somatic cells [7]. As supporting

this result, the MEL1-GFP expression was limited to premeiotic and meiotic PMCs in transgenic

plants (Fig 7A). Here we used MEL1 Argonaute as an indicator for the 24-nt phasiRNA existence

or absence in male meiocytes, and performed RNA-immunoprecipitation sequencing using anti-

MEL1 antibody (MEL1-RIPseq) in flowers at three stages; ST.1, ST.2 and ST.4.

1,711,113, 1,361,031 and 2,679,034 reads of 24-nt small RNAs from three stages were

obtained from MEL1-RIPseq of wild-type, eat1-4 and mel1-1 flowers, respectively (S1 Table).

After subtraction of mel1-1mutant results and mapping onto the rice genome, 2,110 species

(98,145 reads) were defined as canonical 24-nt MEL1-associating siRNAs (masiRNAs) (S1

Data). Through all three stages, 24-nt masiRNAs originated from repetitive sequences (57.1,

55.0 and 52.7% at ST.1, ST.2 and ST.4, respectively), intergenic regions other than 24-PHAS
loci (32.6, 28.7 and 27.6%) and protein coding regions (10.2, 11.1 and 10.7%) (Fig 7B). In con-

trast, 24-nt masiRNAs from 24-PHAS loci were detected in ST.2 and ST.4 (5.2 and 9.0%), but

hardly detected in ST.1 anthers (<0.1%) (Fig 7B). This result corresponds to the temporal

expression pattern of EAT1-dependent 24-nt phasiRNAs (Fig 3B right). In eat1-4 mutant,

masiRNAs from 24-PHAS loci occupied few portion of masiRNA reads even in ST.2 (< 0.1%)

and ST.4 (<0.5%) in addition to ST.1 (<0.1%) (S12A Fig, S1 Data). MEL1 preferentially

bound 24-PHAS-derived 24-nt masiRNAs with a 5’-terminal cytosine (S12B Fig), consistent

with the 5’-end preference of MEL1 [11]. The mel1mutant anthers displayed only a few 24-nt

RNA reads in MEL1-RIPseq in each stage (S5 Table, S1 Data).

The mapping mode of 24-nt masiRNAs was shown in two 24-PHAS loci for example

(chr12-82 and chr12-85, Fig 7C). On the chr12-82 locus, 165 and 207 reads of only a 24-nt

masiRNA species (masiRNA_u_0815) were mapped at the third phase of the sense strand in

ST.2 and ST.4 anthers, respectively (Fig 7C left). A significant reduction of the masiR-

NA_u_0815 in male-sterile eat1-4 plants (Fig 7C, S5 Table) confirmed their origin in anthers,

not in pistils, although MEL1 is expressed in both male and female cells [7]. A similar tendency

was found in the chr12-85 and masiRNA_u_1708 (Fig 7C right).

Collectively, above results indicate that a subset of EAT1-dependent 24-nt phasiRNAs, at

least the versions retaining 5’-terminal cytosine, was bound by MEL1.
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Discussion

EAT1 and TIP2 triggers meiotic 24-nt phasiRNA biogenesis

Previous studies unveil the complicated interaction of four bHLH proteins, UDT1, TIP2,

EAT1 and TDR, in aliphatic metabolism and PCD in tapetal cells for rice pollen development.

In post-meiosis, the TIP2/TDR heterodimer directly activates the EAT1 transcription, and the

EAT1 competes for the TIP2/TDR activity [28], because EAT1 also dimerizes with TDR [30].

EAT1 activates transcription of AP25 and AP37, both required for tapetal PCD [30].

This study gave new insights in the relationship of tapetal bHLH proteins during early mei-

osis. First, the EAT1 expression is bimodal, not only in post-meiosis, but also in early meiosis

Fig 7. The MEL1 Argonaute protein associates with EAT1-dependent 24-nt phasiRNAs in male meiocytes. (A)

MEL1-GFP was specifically expressed in the male germline in ST.2 anthers inMEL1pro-MEL1-GFP transgenic plants.

Bars, 10 μm. (B) Pie-charts representing the ratios of 24-nt MEL1-associating siRNAs (masiRNAs) originated from 24-

PHAS loci, protein-coding genes, intergenic regions except for 24-PHAS loci and repetitive regions, in wild-type

samples through ST.1, ST.2 and ST.4 stages. The numbers with parentheses indicate the read counts of 24-nt

masiRNAs extracted from MEL1-IPseq results. (C) The mapping mode of 24-nt masiRNAs on two 24-PHAS loci, for

example. Tandem arrays of open box-arrows (top) represent the 24-nt phased interval pattern on both strands of each

PHAS locus. Green box-arrows are 24-nt masiRNAs exactly fitting to the interval. Red arrowheads indicate conserved

miR2275 targeted sites. Each bar graph (bottom) indicates RPM values of the 24-nt masiRNA (masiRNA_u_0815 or

_1708) in wild-type (WT),mel1-1 and eat1-4 anthers. The numbers at the top of bars represent a total read counts of

24-nt masiRNAs with two biological replicates.

https://doi.org/10.1371/journal.pgen.1007238.g007
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(Fig 1). Second, the transient expression assay suggests a possibility that the transcription of

EAT1 gene during early meiosis is activated by the TIP2/UDT1 heterodimer, and reinforced

by the EAT1/UDT1 (Fig 6, S10 Fig). Third, both EAT1 and TIP2 can activate transcription of

24-PHAS lincRNAs and the DCL5 gene in tapetum during early meiosis (Figs 3, 5 and 6A,

S10B Fig). The activation by EAT1 is thought to be independent of that by TIP2, because of no

interaction between two proteins as previously reported [27, 28] and shown in this study (Fig

6A, S10 Fig). In these two pathways, UDT1 is a strong candidate for the dimerization partner

of EAT1 and TIP2 (Fig 6B, S11 Fig), while dimerization of unknown bHLH proteins with

EAT1 is supposed in the DCL5 transcription (Fig 6A). In the udt1mutant, the tapetum is aber-

rantly vacuolated and the tetrads are degenerated during meiosis [32]. This observation is con-

sistent to the idea that UDT1 acts with TIP2 and EAT1 in 24-nt phasiRNA biogenesis in rice

anther tapetum during meiosis. The temporal replacement of binding partners from UDT1 to

TDR may enable EAT1 and TIP2 to switch downstream targets from meiotic phasiRNA pro-

duction to postmeiotic tapetal PCD induction.

In this study, we performed mRNA-seq and sRNA-seq to estimate 24-nt phasiRNA produc-

tion only in the eat1-4 (Fig 3), but not in the tip2-2. This is because in the tip2mutant, tapetum

is replaced by undifferentiated cell layers [27, 28] (S4U–S4X Fig), and the absence of 24-PHAS
and DCL5 transcripts is possibly a by-product of the missing tapetum. However, the results

that at least two 24-PHAS transcripts enriched at ST.2 were transcribed EAT1-independently

(green spots in Figs 3A and 5C), and that non-negligible amounts of 24-PHAS and DCL5 tran-

scripts are expressed still in eat1-4 anthers at ST.2 (Fig 3B left, Fig 5C). Taken together with the

results of ChIP-qPCR and transient expression assay, it is obvious that TIP2 has an indispens-

able role in 24-nt phasiRNA production.

The maize (Zm) bHLH122, the EAT1 ortholog, also shows bimodal expression [25], and

MALE STERILE23 (MS23), the TIP2 ortholog, promotes the expression of bHLH122/

ZmEAT1, DCL5, 24-PHAS transcripts and meiotic 24-nt phasiRNAs [12, 25]. A positive inter-

action in the yeast two hybrid analysis (Y2H) is reported between MS32/ZmUDT1 and

bHLH122/ZmEAT1, consistent to the results of this study (Fig 6, S10 and S11 Figs). Thus, the

bHLH TF-mediated mechanism underlying specification and development of tapetum is well

conserved in rice and maize, and commonly coupled with meiotic small RNA production. A

contradiction between maize and rice is in the relationship of TIP2 and UDT1. In maize, a

negative Y2H interaction of MS23/ZmTIP2 and MS32/ZmUDT1 is reported [25], whereas

rice TIP2 and UDT1 interact with each other at the molecular level (Fig 6B) and promote the

activity of pPHASs, pDCL5 and pEAT1 (Fig 6A, S10B Fig). Further analyses will be necessary

for conservation and differentiation of tapetal bHLH protein functions in these monocot

model plants.

A possibility of intercellular mobilization of EAT1-dependent phasiRNAs

in anthers

The observation that a subset of tapetum-originating phasiRNAs was sorted to MEL1 Argo-

naute, which is abundantly expressed in PMCs but not in tapetal cells (Fig 7). Though the pos-

sibility that 24-nt phasiRNA functions mainly in tapetum cannot be excluded, the result of this

study suggests another possibility that the 24-nt phasiRNA is mobile between somatic and

reproductive cells in rice anthers. This idea is attractive and proposed previously [12, 13], but

should be considered carefully. It is difficult to exclude the possibility that 24-nt phasiRNAs

are produced cell-autonomously in PMCs by EAT1 and/or TIP2-independent pathways, for

example, DNA double-strand break (DSB)-induced small RNAs [44, 45]. However, we think

this unlikely, because mel1mutant anthers with few meiotic DSBs in male meiocytes [46]
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produce a robust level of 24-nt phasiRNAs (S1 and S4 Tables). In addition, few amounts of

24-nt phasiRNAs are detectable in eat1-4 anthers (Fig 3C, S3 Table). A recent study unveiled

that 24-nt phasiRNA and miR2275 expression is depleted in two rice mutants, multiple sporo-
cytes1 (msp1) and tpd1-like gene in rice1a (tdl1a), in which a subset of inner anther-wall cells

turn into PMCs [24, 47]. In maize, the ms23 anther lacking the tapetum fails to produce 24-nt

phasiRNAs, but the ocl4 anther developing the tapetum succeeds [12]. These results suggest

that 24-nt phasiRNA production occurs exclusively in tapetum, consistent to the conclusion of

this study.

An alternative possibility is that precursor PHAS transcripts or their processed intermedi-

ates are transferred from tapetum, and processed into mature 24-nt phasiRNAs by 24-PBR

components in PMCs. TIP2 and EAT1 are detectable in somatic companions, but hardly in

PMCs (Fig 2D, S9C Fig), implicating that most of DCL5-mediated 24-PHAS processing is

completed in anther tapetum. However, to answer the above question, further analyses for tis-

sue-specific expression of precursor transcripts and 24-PBR components are required.

Another question for the intercellular small-RNA movement is whether the undetectable

level of MEL1 proteins accumulates in tapetal cells during meiosis and associates with tape-

tum-expressing 24-nt phasiRNAs. However, MEL1mRNA expression is ranked at the top 1.7

percentile (the 629th highest) of all protein-coding transcripts expressed in ST.2 anthers (S13

Fig), and as reflecting the higher mRNA level, the MEL1-GFP signal in male meiocytes made a

striking contrast to undetectable signals in somatic anther cells in transgenic plants (Fig 7A).

Thus, small RNAs immunoprecipitated with somatic MEL1 are, if any, hard to be detected in

the RIPseq analysis of anther samples, that is, the MEL1 RIPseq data of this study largely

comes from the masiRNA population derived from male meiocytes. In any case, rigorous veri-

fication requires some breakthrough technologies for live-imaging of small RNAs or sequester-

ing them into the particular cell type, such as tapetal cells.

Molecular transport in plants occur either symplastically through plasmodesmata, or apo-

plastically across the cell membrane, cell walls and intercellular space [48]. Tapetal cells and

PMCs are connected with plasmodesmata and form symplastic continuity by the onset of mei-

otic leptotene (ST.2 in this study) [49, 50], when EAT1-dependent meiotic 24-nt phasiRNAs

are produced in tapetal cells (Fig 3). This interconnection is broken by callose accumulation

[49]. Callose is the highly impermeable polysaccharide distinct from cellulose [50], and can be

a barrier for apoplastic molecular movement. However, in ST.2 anthers, cellulosic components

still remain between tapetum and PMCs (Fig 2B), in turn, callose accumulation is absent or

less. Thus, both symplastic and apoplastic movements are currently possible mechanisms

underlying meiotic phasiRNA movement in anthers.

Taking previous findings into consideration, we propose that considerable amounts of

24-nt meiotic phasiRNAs are imported from tapetum to PMCs during early meiosis in rice. If

it is true, not only the phasiRNAs with the 5’-teminal cytosine (C-terminal phasiRNAs), but

also non-C-terminal ones are supposed to move together in the intercellular movement,

because the enrichment of C-terminal phasiRNAs in MEL1-RIPseq in this study is simply due

to the selectivity of MEL1 [11]. The analysis of other Argonautes expressed in PMCs will be

beneficial to trace tapetum-originating non-C-terminal phasiRNAs.

Implication of 24-nt phasiRNA function in meiotic chromosome

remodeling

Functions of other Argonaute proteins in plant meiosis still remain to be debated. Rice flowers

highly express many Argonaute proteins in addition to MEL1/AGO5 (AGO1b, AGO1d,

AGO2b, AGO4a, AGO9 and AGO18) [8, 51], whose meiotic roles are largely unknown.
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Arabidopsis AGO4 plays important roles in chromosome condensation and segregation during

the first meiotic division [52], comparable to rice EAT1 function in male meiosis (Fig 2C).

ZmAGO104, orthologous to Arabidopsis AGO9, is also required for meiotic chromosome con-

densation [53]. In either case, the relationship of Argonaute/small RNA complexes to the

nuclear RdDM and histone modification will be one of the most important questions regard-

ing epigenetic regulation of plant meiosis.

Dukowic-Schulze et al. [13] unveiled that both 21- and 24-PHAS precursor loci showed

higher DNA methylation in all cytosine contexts (CG, CHG, CHH, where H represents A,

T or C) in isolated maize PMCs. The highest context was CHH methylation, implying that

reproductive phasiRNAs are involved in RNA-directed DNA methylation (RdDM) in PMCs.

RdDM includes both de novo DNA methylation and histone H3 lysine-9 (H3K9) methylation

in plants [54–59]. Supporting this idea, MEL1 is thought to govern meiosis-specific chromatin

remodeling accompanying dynamic alteration in H3K9 dimethylation [46].

Meiosis is a special type of cell division to transmit new haplotypes to the next generation,

and additionally, to survey incompatibilities in ploidy levels and chromosomal structures

between both parents. This process must be strictly regulated by complicated mechanisms

genetically and epigenetically. Recent genome-wide studies have revealed that small RNA-

mediated and non-cell-autonomous regulation is likely general in reproduction of eukaryotic

species. Further analyses of tapetum-expressing bHLH TFs and meiotic phasiRNAs in anthers

will bring new epigenetic insights into plant reproduction systems.

Materials and methods

Plant materials

The eat1-4mutant is a Tos17 insertion line produced from the rice variety, cv. Nipponbare [60],

NF9876, kindly provided by the Rice Genome Resource Center, Japan. Themel1-1mutant [7],

another Tos17 line with the Nipponbare background, was kindly provided by the National Bior-

esource Project (NBRP) Rice, conducted by the Japan Agency for Medical Research and Devel-

opment (AMED). The tip2-2mutant is a T-DNA tag line with the genetic background of cv.

Dongjin [61, 62], 1B-24309, kindly provided by Dr. G. An (POSTECH, Korea). All plants were

grown in moist chambers, greenhouses, and/or open paddy fields at the National Institute of

Genetics (NIG), Mishima, Japan. Plant genotypes were determined by PCR using GoTaq Green

Master Mix (Promega) and gene-specific and T-DNA/Tos17-internal primers (S6 Table).

Histology

Rice spikelets were fixed in PMEG buffer (50 mM PIPES, 10 mM EGTA, 5 mM MgSO4, and

4% glycerol, pH 6.8) containing 4% paraformaldehyde (PFA) for 3 h and washed six times in

PMEG buffer for 2 hours. After dehydration using ethanol series, they were embedded in

Technovit7100 resin (Heraeus Kulzer), sectioned in 2 μm thick slices using a LM2255 micro-

tome (Leica Microsystems), stained with 0.1% toluidine blue O (Wako Pure Chemicals) and

photographed using a BX50 light microscope (Olympus) and a DP50 camera system (Olym-

pus). Cellulosic cell wall staining was conducted according to the method described previously

[63]. Fluorescent images were captured using a Fluoview FV300 CLSM system (Olympus),

and pseudo-colored and merged using Photoshop CS4 (Adobe Systems Inc.).

Construction and transformation of fluorescent-tagged proteins

EAT1pro-EAT1-GFP (Fig 1D) was constructed as follows. The 5.3 kbp HindIII-XhoI genomic

fragment including the upper half of the EAT1 gene and its promoter region was subcloned
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from a BAC clone, OSJNBa0010K21, into the pBluescriptII (pBSII)-SK(-) vector. The 1.2 kbp

XhoI-EcoRV fragment including the 3’ downstrem region of the EAT1 gene was also subcloned

into another pBSII-SK(-), and from this plasmid, the 2.0 kbp XhoI-EcoRV fragment harboring

a sGFP sequence just in the front of the EAT1 stop codon was constructed using EAT1-specific

primers, bHLH141stop-BamHI/bHLH141XhoI-BamHI and bHLH141stop-NotI/M13-Rev,

and a CaMV35S-sGFP(S65T)-nos30 vector [64], kindly provided by Dr. Y. Niwa (Shizuoka U.,

Japan). The resultant 5.3 kbp and 2.0 kbp fragments were inserted into a pPZP2H-lac binary

vector [65] to assemble EAT1pro-EAT1-GFP.

TIP2pro-YFP-TIP2 (S8A Fig) was constructed as follows. The 6.6 kbp genomic fragment,

including the entire TIP2 gene with 4 kbp upstream and 0.5 kbp downstream sequences, was

cut out from a rice BAC clone OSJNBa0001E17 by digestion with SpeI, and inserted into

pBSII-SK(-) vector. From the 6.6 kbp fragment, the 1.8 kbp HindIII-SalI fragment including

the translational initiation site (TIS) was subcloned into pBSII-SK(-). From this plasmid, the

YFP sequence was inserted just in front of TIS by using TIP2-specific primers bHLH142start-

NcoI/M13-Rev and bHLH142start-BsrGI/T7-EcoRI and a pEYFP vector (a cloning vector

with EYFP sequence in pUC18 backbone). Then, the 1.8 kbp fragment with the YFP sequence

was inserted back into the original 6.6 kbp genomic fragment/pBSII-SK(-) plasmid. The resul-

tant 7.4-kbp insert was digested, blunt-ended, and reinserted into pGWB601 binary vector

[66], kindly provided by Dr. T. Nakagawa (Shimane U., Japan). In case of TIP2pro-TIP2-YFP
(S8D Fig), the TIP2 stop codon in the above 6.6 kbp genomic fragment/pBSII-SK(-) was

replaced by YFP sequence by using TIP2-specific primers, bHLH142stop-NcoI/M13-20 and

bHLH142stop-BsrGI/M13-Rev, and a pEYFP. Finally, the 7.4 kbp of TIP2pro-TIP2-YFP insert

was assembled in the pPZP2H-lac. In above constructions, KOD-FX DNA polymerase

(TOYOBO) was used for PCR.

In MEL1pro-GFP-MEL1 construction, the GFP sequence was inserted just in front of MEL1
TIS in pKN16, a binary vector containing the 18 kbp MEL1 genomic fragment [7]. Two DNA

fragments, corresponding to 50 upstream and 30 downstream regions of MEL1 TIS, were

amplified from pKN16 with primer pairs up_nf/up_nr and up_atgf/up_r, respectively. Linker-

attached sGFP coding sequence was amplified from CaMV35S-sGFP(S65T)-nos30 with ngfp_f/

ngfp_r primers. The PCRs were conducted using a PrimeSTAR Max DNA polymerase

(TaKaRa). The three amplified DNA fragments were mixed with the NruI-AscI-digested

pKN16 and incubated with an In-Fusion HD enzyme premix (TaKaRa) to assemble MEL1-
pro-GFP-MEL1, following manufacturer’s instructions. All the primer sequences for the con-

struction were listed in S6 Table.

The constructs were transformed into rice calli using agrobacterium-mediated transforma-

tion [67], in which Hygromycin B (50 mg/L in media; Wako Pure Chemicals) or glufosinate-

ammonium PESTANAL (5 mg/L in media; Sigma-Aldrich) was used for a positive selection.

Observation of GFP and YFP signals in rice anthers

Anthers embedded in 6% SeaKem GTG agarose (Lonza) were sliced into 50 μm thickness by

MicroSlicer DTK-ZERO1 (D.S.K.), and mounted on slide grasses with VECTASHIELD (Vec-

tor Laboratories) containing DAPI. Fluorescent images were captured using Fluoview FV300

CLSM system (Olympus).

Meiotic chromosome observation

Spikelet (lemma) and anther lengths were measured under SMZ645 stereo microscopy (Nikon).

0.8–1.2 mm anthers were fixed with 4% PFA/PMEG and provided for chromosome observations

as previously described [7]. Fluorescent images of DAPI were taken as described above.
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RNA extraction and quantitative RT-PCR (qRT-PCR)

Anther or spikelet samples were separated by their lengths as corresponding to ST.1-ST.6

stages (S7 Table), immediately frozen with liquid nitrogen in microtubes, and stored at -80˚C

until use. Total RNAs were extracted from the samples using TRIzol reagent as manufacturer’s

recommendation (Life Technologies), and treated with DNase I (TaKaRa). In qRT-PCR, 1 μg

of total RNA was reverse-transcribed by oligo(dT)12-18 primer (Life Technologies) and Super-

scriptIII reverse transcriptase (Life Technologies). The products were 20-fold diluted and sup-

plied for real-time qPCR using gene-specific primers (S6 Table), KAPA SYBR FAST universal

qPCR Kit (KAPA Biosystems) and Thermal Cycler Dice Real Time System (TaKaRa). Rice

Ubiquitine gene was used as an internal standard.

mRNA-seq, sRNA-seq and data analyses

Total RNAs were extracted from ST.1, ST.2 and ST.4 anthers of wild-type and eat1-4 plants,

three biological replicates each. For mRNA-seq, 1 μg of total RNA was subjected to library

construction using KAPA stranded mRNA-seq Kit Illumina Platforms (KAPA biosystems).

Eighteen libraries differentially indexed by FastGene Adapter kit (Nippon Genetics) were mul-

tiplexed (9 per lane) and sequenced by HiSeq2500 (Illumina) with SR50 (single ended).

Adapter sequences were removed in silico using R package QuasR [68].

mRNA-seq reads were mapped on the rice genome IRGSP1.0 using Tophat (v2.0.14) [69].

Differential expression analysis of annotated genes were conducted using Cuffdiff2 program

[70]. The genes fulfilling all of the following conditions were regarded as EAT1-dependent and

ST.2-enriched genes; (1) genes showing >2-fold higher FPKM values in wild-type ST.2 anthers

than the values in wild-type ST.1 and ST.4 anthers, (2) genes showing >2-fold higher FPKM

values in wild-type ST.2 anthers than the values in eat1-4 ST.2 anthers, and (3) genes with each

standard deviation less than a half of the FPKM mean value of three replicates in wild-type

ST.2 anthers. The lincRNAs were determined by Cuffdiff2 (merged.gtf), in which protein-cod-

ing genes were removed as referring to MSU7.0 annotation, and unannotated but transcribed

genomic regions larger than 200 bp were extracted. FPKM values of lincRNAs were calculated

by BEDtools [71]. Furthermore, EAT1-dependent and ST.2-enriched lincRNAs were extracted

according to the same conditions described above for coding genes.

For sRNA-seq, 1 μg of total RNA was provided for library construction by NEBNext Multi-

plex Small RNA Library Prep Set for Illumina (New England BioLabs). The libraries were

9-plexed per lane and sequenced by HiSeq2500 (illumina) with SR52, a 2-bp extended version

of SR50, for higher-quality sequencing. After trimming by QuasR, 24-nt long sRNA-seq reads

were extracted by ShortRead [72], and mapped to the rice IRGSP1.0 genome using Tophat, in

which reads having>50 multi-hits on rice genome or any mismatches were cut off (-N 0 -g

50). If 24-nt RNAs with>10 FPKM values were mapped on each of EAT1-dependent and

ST.2-enriched lincRNA loci identified above, the loci were defined as 24-PHAS loci. Regional

abundance of mRNA-seq and 24-nt sRNA-seq reads mapped on the rice genome (shown in

Fig 4A) was calculated in a sliding window (window; 50 kbp, step; 25 kbp) by BEDtools.

Conserved motifs were searched in each 24-PHAS locus, in addition to 200 bp regions both

upstream and downstream sequences, by MEME SUITE program [35]. Phased scores were cal-

culated as described by Howell et al. [73].

Degradome-seq data analysis

A degradome-seq dataset from young panicles of indica rice variety, cv. 93–11, was obtained

from Sequence Read Archive of DNA Data Bank of Japan (DDBJ-SRA) under the accession

code SRR034102 [38]. Adaptor sequence and low-quality reads were removed using FASTX-
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toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and the reads retaining 20- or 21-nt length

were mapped onto rice IRGSP1.0 genome using Bowtie 2 [74]. The frequency of 5’-end of

mapped reads were manually examined within and around 24-PHAS loci identified in this

study (S4 Table).

50 RACE

To determine the TSS of two 24-PHASs and a pri-miR2275 (chr5-20, chr6-97 and pri-
miR2275b), the standard 50 rapid amplification cDNA end (50 RACE) method was applied

using a GeneRacer kit (Thermo Fisher Scientific), total RNA from ST.2 wild-type anther, and

gene specific primers (S6 Table). Eight clones from each locus were sequenced using a BigDye

Terminator v3.1 cycle sequencing kit (Applied Biosystems) and a PRISM 3130xl sequencer

(Applied Biosystems) and the end of the longest read(s) was marked as TSS.

Chromatin immunoprecipitation (ChIP)-qPCR

Rice young panicles from transgenic derivatives were fixed, and the anthers at early meiosis

(around 0.5 mm) were supplied for ChIP as described previously [75]. The anti-GFP antibody

No.598 and the normal rabbit IgG (both from MBL International) were used for positive and

negative ChIP experiments, respectively. The extracted DNAs were analyzed by real-time

qPCR using region-specific primers (S6 Table). The 1/10 volume of chromatin-containing

samples without IP treatment was prepared for the input samples.

Transient expression assay in rice protoplast

The 2-kbp upstream sequences from the translational start site of 24-PHAS (chr5-20, chr6-97),

DCL5, EAT1 and DCL3a genes, all originated from the japonica rice cv. Nipponbare, were

inserted in the upstream of the firefly Luciferase CDS and the nopaline synthase (nos) termina-

tor. This reporter construct was cloned into pBSII-SK(-) plasmid (S10A Fig). For the effector

construct, the cauliflower mosaic virus 35S (CaMV35S) promoter was fused with the cDNAs

of EAT1, TIP2, TDR and UDT1 genes, originated from Nipponbare ST.2 anthers, with the nos

terminator. and cloned into pBSII-SK(-) (S10A Fig). For normalization of the firefly Luciferase

activity, the Luciferase cDNA of Renilla reniformis were fused with the CaMV35S promoter

and the nos terminator, inserted into pBSII-SK(-) (S10A Fig), and cotransfected with the effec-

tor and reporter constructs as an internal control in all experiments. All PCR primers for the

above constructions were listed in S6 Table. PrimeSTAR Max DNA polymerase (TaKaRa) was

used for PCR amplification according to the manufacturer’s instruction. Protoplast prepara-

tion from rice seedlings, transfection of plasmids, and protein extraction from protoplasts

were according to the method previously described [76]. The Luciferase activity was detected

using Dual-Luciferase Reporter Assay System (Promega) and Filter MAX F5 multi-mode

microplate reader (Molecular Devices).

Bimolecular fluorescence complementation (BiFC) of bHLHs

A pair of split YFP vectors (pBS-35S-nYFP and pBS-35S-cYFP) were kindly provided by Drs.

D. Tsugama (Hokkaido U., Japan) and T. Takano (The U. of Tokyo, Japan) [77]. Each of

EAT1, TIP2 and UDT1 cDNAs, originated from Nipponbare ST.2 anthers, was inserted into

the either of upstream or downstream of both pBS-35S-nYFP and pBS-35S-cYFP vectors. For

the nuclear marker, the rice Histone 2B (H2B) cDNA were fused with the maize Ubiquitine
promoter and in-frame with the tagRFP gene (Evrogen), cloned into pPZP2H-lac binary vec-

tor [65], and cotransfected with a pair of split YFP constructs in all experiments. All PCR
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primers used here were listed in S6 Table. PrimeSTAR Max DNA polymerase (TaKaRa) was

used for PCR. The protoplast preparation and plasmid transfection were same with the

method described above. Fluorescent images were captured by Fluoview FV300 CLSM system

(Olympus) and processed by Photoshop CS4 (Adobe systems Inc.), under the identical condi-

tions and parameters through all experiments. We tried all sixteen combinations of split YFP

constructs to assess EAT1-UDT1 and TIP2-UDT1 interactions, and thirteen combinations of

negative controls. However, UDT1-cYFP and cYFP-UDT1 gave the intense signal in a single

transfection as negative controls, and excluded from the assay. Then, the total eight combina-

tions of EAT1-UDT1 (EAT1-cYFP/UDT1-nYFP, EAT1-cYFP/nYFP-UDT1, cYFP-EAT1/

UDT1-nYFP, cYFP-EAT1/nYFP-UDT1) and TIP2-UDT1 (TIP2-cYFP/UDT1-nYFP, TIP2-

cYFP/nYFP-UDT1, cYFP-TIP2/UDT1-nYFP, cYFP-TIP2/nYFP-UDT1) were assayed.

RNA immunoprecipitation (RIP)-seq and analysis of masiRNAs

RIP fractions from wild-type, mel1-1 and eat1-4 flowers at ST.1, ST.2 and ST.4, each of which

included two biological replicates, were obtained using anti-MEL1 antibody as described pre-

viously [11]. Library construction, sequencing, adapter trimming, size filtration and mapping

to rice genome were done as well as sRNA-seq methods described above. Reads per million

(RPM) values were calculated in the respective 24-nt RNA sequences and compared among

wild-type, mel1-1 and eat1-4 fractions. In this process, 24-nt masiRNAs were defined in 24-nt

RNA sequences as having�15 RPM detected in wild-type ST.1, ST.2 or ST.4 flowers, and

�RPM 4-fold enriched in wild-type compared to mel1-1.

Gene accession numbers

EAT1; Os04g0599300, TIP2; Os01g0293100, TDR; Os02g0120500, UDT1; Os07g0549600,

MEL1, Os03g0800200, DCL5; Os10g0485600, DCL3a; Os01g0909200, DCL4; Os04g0509300,

DCL1; Os03g0121800, RDR6; Os01g0527600, AP25; Os03g0186900. (Rice Annotation Project

Database (RAP-DB) (http://rapdb.dna.affrc.go.jp)).

Supporting information

S1 Fig. Expression of bHLH genes during anther development. Expression patterns of four

tapetum-related bHLH genes; UDT1, TDR, TIP2 and EAT1, in wild-type (cv. Nipponbare)

anther development. The bottom numbers of the developmental stage correspond to Table 1.

Relative expression values and standard errors were calculated usng three biological replicates.

(TIF)

S2 Fig. Male sterile phenotype of eat1-4 and tip2-2mutants. (A and G) Genomic structure

of EAT1 and Tos17 insertion of eat1-4 (A) and TIP2 and T-DNA insertion of tip2-2 (G).

(B andH) qRT-PCR results of underlined regions of EAT1 transcript in wild-type and eat1-4
flowers (B) and of TIP2 transcript in wild-type and tip2-2 flowers (H). In (B) and (H), total

RNAs from early meiotic flowers (around 2.0 mm) long were used.

(C and I) Flower morphology of eat1-4 (C) and tip2-2 (I). Bars, 1 mm.

(D, E, J and K) I2KI staining of mature pollen in the anther of EAT1 wild type (D), eat1-4
mutant (E), TIP2wild type (J), and tip2-2mutant (K). Bars, 100 μm.

(F and L) EAT1 mRNA expression during anther development in wild type (cv. Nipponbare)

and eat1-4 plants (F) and TIP2mRNA expression in wild type (cv. Dongjin) and tip2-2 anthers

(L). In (F), expression data of EAT1 transcripts in wild-type anthers were identical to those of

S1 Fig.

In qRT-PCR analyses, relative expression values and standard errors were calculated by three
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biological replicates.

(TIF)

S3 Fig. Expression pattern of AP25 function in tapetal PCD. AP25 expression during anther

development in eat1-4 (left), tip2-2 (right) and their respective wild-type siblings. Relative

expression values and standard errors were calculated by three biological replicates.

(TIF)

S4 Fig. Anther morphology of tip2-2 and eat1-4mutants. (A to J) Anther cross-sections of

wild-type (EAT1) (A to E) and eat1-4 (F to J). The cross-sections of ST.4 and their magnified

views are shown in Fig 2A.

(K to X) Anther cross-sections of wild-type (TIP2) (K to Q) and tip2-2 (R to X).

(A, F, K, and R): ST.1; (B, G, L and S): ST.2; (C,H,M, and T): ST.3; (N and U): ST.4; (D, I,O
and V): ST.5; (E, J, P andW): ST.6; (Q and X): magnified view of ST.4.

Bars, 20 μm.

(TIF)

S5 Fig. Retarded and asynchronous male meiosis in eat1-4 anthers. (A) Box plots of spikelet

lengths in each meiosis I stage in wild-type and eat1-4 mutant anthers. Zyg.; early zygotene,

Pac.; pachytene, Dip.; diplotene, Div; the stage including diakinesis, metaphase I, anaphase I,

dyad, and second division. n.s. and ��� indicate no significance and significance at P = 0.001

(Student’s t-test), respectively, between the wild-type and eat1-4. Arrowheads indicate average

values.

(B) Column charts showing the spectrum of meiotic stages in single wild-type and eat1-4
anthers.

(TIF)

S6 Fig. Box plots of 24-nt small RNA reads exhibiting 24-nt phased pattern on 93 24-PHAS
loci. Of 254,163 and 877,203 reads of 24-nt small RNAs from ST.2 and ST. 4 anthers, 329,112

(ST.2) and 1,138,234 reads (ST.4) were defined as in-phase reads for the 24-nt phased interval

that starts from the predicted miR2275 cleavage site (Fig 4B and 4C) on 93 24-PHAS loci iden-

tified in this study. Then, the frequency of in-phase reads to total reads were box-plotted. The

sRNA-seq reads from three replicates were combined in each stage and plotted. The median

values were 0.814 and 0.820 in wild-type ST.2 and ST.4 samples, respectively.

(TIF)

S7 Fig.DCL3a andDCL4were not targeted by EAT1 and TIP2. (A) Structure of 50 upstream

regions of DCL3a and DCL4. The diagrams are equivalent to Fig 5D.

(B and C) ChIP-qPCR results of DCL3a and DCL4 promoter region using transgenic (TG)

plants expressing EAT1-GFP (B) and YFP-TIP2 (C). n.s.; not significant. � and ��; significant

at P = 0.05 and P = 0.01 in Student’s t-test, respectively, less than the leftmost positive ChIP

result in each graph. Relative abundance and standard errors were calculated by two or three

biological replicates each subjected to three PCR replications.

(D) qRT-PCR results of DCL3a and DCL4 during anther development of eat1-4, tip2-2 and

their respective wild-type siblings. Relative expression values and standard errors were calcu-

lated by three biological replicates.

(TIF)

S8 Fig. Expression of 24-nt phasiRNA biogenesis-related genes in eat1-4 and tip2-2
anthers. (A) qRT-PCR results of 24-nt phasiRNA biogenesis-related genes, DCL1,RDR6, and

two pri-miR2275 transcripts in wild-type and eat1-4 anthers.

(B) qRT-PCR results of five 24-PHAS transcripts, DCL5,DCL1,RDR6, and two pri-miR2275
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transcripts in wild-type and tip2-2 anthers. In qRT-PCR analyses, relative expression values

and standard errors were calculated by three biological replicates.

(C) Schematic illustration of genomic compositions of the 50 upstream regions of pri-
miR2275b locus. The diagrams are equivalent to Fig 5A.

(D and E) ChIP-qPCR results of pri-miR2275b promoters using TG plants expressing

EAT1-GFP (E) and YFP-TIP2 (E). In ChIP-qPCR analyses, relative abundance and standard

errors were calculated by two or three biological replicates each subjected to three PCR replica-

tions. n.s.; not significant. � and ��; significant at P = 0.05 and P = 0.01 in Student’s t-test,

respectively, less than the leftmost positive ChIP result in each graph.

(TIF)

S9 Fig. TIP2 expression and localization in anther wall cells at early meiosis. (A) Diagram

of the TIP2pro-YFP-TIP2 transcriptional fusion construct. Closed and grey boxes indicate pro-

tein coding and untranslated regions, respectively.

(B) tip2-2/tip2-2 flowers of T0 plants carrying EAT1pro-EAT1-GFP (#1, #2) and an empty vec-

tor. Bars, 1 mm.

(C) YFP-TIP2 signals (green) in developing anther sections from ST.1 to ST.5. in a transgenic

plant harboring TIP2pro-YFP-TIP2. YFP-TIP2 signals were intensified in tapetal nuclei

(arrowhead) and also detected in middle layer nuclei (arrow) in ST.2 and ST. 3 anthers, and

not detected in the ST.2 anther from the negative control (n.c., right most panel). Bars, 20 μm.

(D and E) TIP2-YFP expression and localization in wild-type and eat1-4 ST.2 anthers (D) and

EAT1-GFP expression and localization in wild-type and tip2-2 ST.2 anthers (E). Bars, 20 μm.

(F and G) Expression pattern of TIP2mRNA in wild-type and eat1-4 anthers (F), and EAT1
mRNA in wild-type and tip2-2 anthers (G). Relative expression values and standard errors

were calculated by three biological replicates.

(TIF)

S10 Fig. The configuration of reporter and effector constructs for the transient expression

assay, and results of the assay for EAT1 andDCL3a promoters. (A) Schematic diagrams of

the reporter, effector and internal control constructs used in the transient expression assay.

The reporter carries a 2-kbp promoter region of the 24-PHASs (chr5-20, chr6-97), DCL5, EAT1
or DCL3a fused with the firefly Luciferase. CaMV35S; cauliflower mosaic virus 35S promoter,

nos; nopaline synthase terminator.

(B) The results of the transient expression assay. Any one or two effector plasmids encoding

EAT1 (E1), TIP2 (T2), UDT1 (U1) and TDR (TD) proteins were cotransfected with the

reporter constructs into rice protoplasts. The number above each bar is the fold change of the

Luciferase activity compared to the negative control without the effector (leftmost bars). �, ��

and ���; the significant fold changes at P = 0.05, 0.01 and 0.001 in Student’s t-test, respectively,

compared to the negative control. Error bars indicated standard deviation of three biological

replicates. The significant >2 fold changes were in bold.

(TIF)

S11 Fig. Positive interaction between EAT1 and UDT1 and between TIP1 and UDT1 in

BiFC. (A) BiFC results of EAT1-cYFP and TIP2-cYFP constructs combined with a nYF-

P-UDT1 sonstruct and those of negative control combinations. (B) BiFC results of cYFP-EAT1

and cYFP-TIP2 constructs combined with a UDT1-nYFP construct and those of negative con-

trol combinations. (C) BiFC results of cYFP-EAT1 and cYFP-TIP2 constructs combined with

a nYFP-UDT1 construct. Some negative control results common in Fig 6B and S11 Fig. were

indicated by empty boxes.

(TIF)
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S12 Fig. MEL1 RIP-seq for eat1-4mutant anthers and the sequence logo of MEL1-associat-

ing 24-nt small RNAs. (A) Pie-charts representing the ratios of 24-nt MEL1-associating siR-

NAs (masiRNAs) originated from 24-PHAS loci, protein-coding genes, intergenic regions

except for 24-PHAS loci and repetitive regions, in eat1-4 anthers at ST.1, ST.2 and ST.4 stages.

The numbers with parentheses indicated the read counts of 24-nt masiRNAs extracted from

MEL1-IPseq results.

(B) The sequence logos generated from 68 species of 24-nt masiRNAs mapped onto 24-PHAS
loci (top), and from all 2,110 species of 24-nt masiRNAs mapped on the rice genome (bottom).

(TIF)

S13 Fig.MEL1 is highly expressed in rice meiotic anthers. A histogram representing the dis-

tribution of FPKM values of all 38,311 rice genes in wild-type ST.2 anthers. The area where

MEL1 included was indicated by an arrowhead.

(TIF)

S1 Data. Data underlying Fig 3, Fig 4, Fig 5, Fig 6, S1 Fig, S2 Fig, S3 Fig, S5 Fig, S6 Fig, S7

Fig, S8 Fig, S9 Fig and S12 Fig.
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