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Abstract: Prominence of concrete is characterized by its high mechanical properties and durability,
combined with multifunctionality and aesthetic appeal. Development of alternative eco-friendly or
multipurpose materials has conditioned improvements in concrete mix design to optimize concrete
production speed and price, as well as carbon footprint. Artificial neural networks represent a new
and efficient tool in achieving optimal concrete mixtures according to its intended function. This
paper addresses concrete mix design and the application of artificial neural networks (ANNs) for
self-sensing concrete. The authors review concrete mix design methods and the development of
ANNs for prediction of properties for various types of concrete. Furthermore, the authors present
developments and applications of ANNs for prediction of compressive strength and flexural strength
of carbon nanotubes/carbon nanofibers (CNT/CNF) reinforced concrete using experimental results
for the learning process. The goal is to bring the ANN approach closer to a variety of concrete
researchers and possibly propose the implementation of ANNs in the civil engineering practice.

Keywords: concrete mix design methods; artificial neural networks; self-sensing concrete; CNT/CNF
reinforced concrete

1. Introduction

Concrete is the most used construction material, primarily because of its high com-
pressive strength and durability, but also for its impermeability and fire and corrosion
resistance. Over the years, engineers have been developing different concretes for var-
ious and multiple purposes, with varieties spanning from ordinary concrete to specific
types such as lightweight, high-performance (self-compacting, high-strength), green, or
nano-reinforced concrete. Since processes of hydration and hardening are irreversible, any
mistake in the design of the mixture may be costly in construction stage and hazardous
in the exploitation stage. Therefore, optimal mix proportions and prediction of concrete
properties have been studied over the past five decades, and many different methods
have been developed to this end. Furthermore, in the past decade, machine learning (ML)
methods emerged as a new tool of ensuring optimal concrete mixtures, and among many
ML methods, artificial neural networks (ANNs) have been fairly successful in ensuring
favorable results.

This paper reviews the development of ANNs for the purposes of concrete mix design
and presents ANN models developed for prediction of compressive strength and flexural
strength of CNT/CNF reinforced concrete. The goal of the authors is to bring the ANN
approach closer to a variety of concrete behavior researchers and possibly propose the
development and implementation of ANNs in mix design of nano-reinforced concrete.

1.1. Concrete Mix Design

Concrete mix design refers only to designed mixtures and does not imply prescribed,
standard, or designated mixtures of concrete. It means that the designer specifies limiting
values of needed key characteristics, assuming their effect on the properties of concrete.
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Design in the strict sense of the word is not possible; materials are variable in several
aspects and many of their properties cannot be assessed quantitatively. Concrete properties
measured in the fresh state are usually workability and slump, and in the hardened
state compressive strength, permeability, and durability. Overall, the 28-day compressive
strength is the critical design parameter for structural concrete. Concrete mix design
implies one mixture for one set of properties, and every production that requires slightly
different parameters comprehends a completely new design. Consequently, the entire
process is relatively long due to trial mixing and testing of every specimen. It is a time-
consuming procedure that not only increases the waste of material but also the cost of
concrete production.

General classification includes analytical, semi-experimental, experimental, and statis-
tical methods of concrete mix design. Analytical methods are used to reduce number of
trial mixes to a minimum, rationalizing initial proportioning procedure into a systematic
process based on detailed information about specific weight of components and formulae
established from previously conducted testing [1]. In general, these methods are relatively
quick and cost-friendly, but the main drawback is the uncertainty of results. Experimental
methods are based on a trial-and-error process, where the biggest challenge is high number
of effect variables affecting the response variables. The “one-factor-at-a-time” method’s
main disadvantage is the lack of consideration of interaction between factors affecting
the final parameters. Experimental methods give the most certainty in results; however,
they are also the most time-consuming and expensive procedures. Statistical methods,
also termed as factorial design methods, represent a step further where a set of trial mixes
within a chosen range of proportions for each component is defined according to some
statistical procedure. Afterward, trial mixes are conducted, test specimens are tested, and
experimental results are analyzed using standard statistical methods. Although statistical
methods require a certain amount of experimental work, their advantage is in the pre-
dictability with a higher level of certainty. However, the main issue remains the incapability
of modeling complex nonlinear nature of the relationships between the mixture and the
properties because underlying relationships are unknown.

Semi-experimental methods are based on combining the experimental models with
various analytical tools such as machine learning (ML) methods. Development of more so-
phisticated non-parametric ML methods and growing availability of experimental datasets
are opening opportunities to forecast compressive strength and other properties with
higher accuracy and wider application range. This type of semi-experimental methods
have shown to be useful in concrete mix design for prediction of various properties of fresh
and hardened concrete.

1.2. Artificial Neural Networks

Machine learning belongs to the field of artificial intelligence, and it is used for
prediction, i.e., classification that represents the prediction of the categorical value, or
regression, which is the prediction of the numerical value [2]. Certain studies in concrete
mix design that used ML were focused on modeling mixtures with particular ingredients,
generating models that are predicting the compressive strength. Methods used in concrete
mix design are artificial neural network (ANN), support vector machine (SVM), adaptive
neuro-fuzzy inference system (ANFIS), random forest (RF), decision tree (DT), and more.
Many investigations tend to make comparisons between ANNs and other ML methods to
establish which is more efficient, as summarized in Table 1.
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Table 1. Investigations which compare ANNs to other methods for prediction of concrete behavior.

Prediction Method Reference

MLR–Multiple linear regression [3–13]

SVM–Support vector machine [2,6,13–18]

ANFIS–Adaptive neuro-fuzzy inference system [5,10,11,18–20]

FL–Fuzzy logic [2,21,22]

RF–Random forest [2,17,23]

DT–Decision tree [2,15,23]

GP–genetic programming [18,24,25]

M5PMT–M5P Model tree [9,26,27]

Salp swarm algorithm [27,28]

CART–Classification and regression tree [12]

Artificial neural networks are computational structures that are trained to learn pat-
terns from examples. The development of ANNs is inspired by the human brain, a
biological neural network functioning based on communication between neurons. The
theory of connectionism was first proposed in the 1940s to simulate processing of the
human brain; however, at first, the idea was abandoned for many years until contribution
of several researchers led a new interest in this subject. ANNs are used in a wide variety of
problems such as recalling data, classifying patterns, performing general mapping from
input to output patterns, grouping similar patterns, or solving constrained optimization
problems [29]. Neural networks learn from parallel examples of input and output pairs and
make generalizations [29–31], i.e., identifies causality between the input and the output
through iterative training and using it to conduct forecast [4]. The ability to give correct
or nearly correct responses to incomplete tasks and noisy or poor data makes ANNs a
powerful tool for solving many civil engineering problems [5,32]. Additional advantages
are unrestricted number of inputs and outputs [6,29], fast implementation [33], and user-
friendliness [29]. Disadvantages are sensitivity to dataset, iterative process of determining
the optimal structure, and hardware dependence [29]. ANNs are used in concrete mix
design to predict optimal mix proportions or properties such as compressive and tensile
strength [25,34–37], modulus of elasticity [38], slump [2,39–41], drying shrinkage [42], etc.

Feed-forward network topology represents dataflow from input to output units,
where data processing can extend over multiple layers, but no feedback connections are
present [43]. Mathematical functions that define behavior of every neuron are summation
and activation function [44]. In general, obtaining a working ANN model is set in two
stages: training and testing. The entire process of training can be simply described as
follows. One input neuron represents one input variable. Each input is multiplied by
corresponding weight after what the product is summed and applied to a transfer function
to form output [45]. This scheme is mathematically, as follows:

uk = ∑(wkm ∗ xm) (1)

yk = f (uk + bk) (2)

where x1, x2, . . . , xm are the inputs, wk1, wk2, . . . , wkm are the synaptic weights of the
neuron k, bk is the bias for the neuron k, function f is an activation function, and yk is the
output [30].

This process fits the architecture of a back-propagation algorithm. The “backpropa-
gation learning rule” was established in 1985 as a solution to problems that were occur-
ring with single layer or bilayer networks. It is considered a generalization of the delta
rule [30,43,46] for multilayer networks, and the idea is to back-propagate the error of the
outputs. After the training phase, testing of the network is necessary to determine efficiency
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and precision of the results. Validation is the intermittent procedure that is occasionally
used to measure generalization and to halt training when generalization ceases to improve,
indicating that testing has no further effect on training [7].

1.3. ANNs for Prediction of Concrete Material Behavior

The topic of ANNs in concrete mix design was primarily centered toward predictions
of optimal mix proportions rather than predictions of the properties of concrete. Oh
et al. [47] first discussed this topic, developing a predictive model for proportioning of
concrete mixes However, as shown in [31], this approach, although somewhat useful,
still implies development of a new model for every change of a constituent material.
Investigations now focus on developing ANNs for prediction of the compressive strength
of high-performance, green, ordinary, or other types of concrete. Table 2 gives an overview
on the mixtures, showing blends used for compressive strength tests. Several works
focused on the technical problems such as determination of the optimal algorithm for
compressive strength predictions, and others focused on factors that may influence the
quality of results of both experimental tests and predictive models.

Lee [48] showed an extensive study on the efficacy of ANNs in prediction of concrete
strength, where five independent models were developed with a staggering 73 input vari-
ables and as many as seven outputs. Chopra et al. [23,24,49] developed ANN models for
compressive strength prediction, focusing on execution of the model itself. The authors
in [49] used seven different algorithms to determine the optimal one for their dataset. Fur-
thermore, they observed efficacy of the ANN model compared to genetic programming [24],
decision tree, and random forest models [23]. Golafshani et al. [27] compared the results of
the ANN and ANFIS models and continued further by optimizing the models with Grey
Wolf Optimizer to establish prediction models for plain and high-performance concrete.

Table 2. Various types of concrete mixtures investigated using ANNs.

Aggregate Type/
Binder Type Plain Cement Silica Fume Blast Furnace

Slag Fly Ash Micro and
Nano-Silica Metakaolin

Standardized
Fine/Coarse
Aggregate

[8,15,16,19,23,28,
29,33,47,49–52]

[11,12,21,32,41,
53,54]

[6–9,12,14,15,17,
20,27,55–59]

[6–9,12,14,15,17,20,
24,31,41,53–57] [25,56,60] [32,44]

Recycled Concrete
Aggregate [3,5,26,30,37,61] [62,63]

Recycled Rubber
Aggregate [22,64] [18]

Basalt Powder [64] [38]

Limestone
Crushed/

Sand
[2,65,66] [10]

Rice Husk Ash [37] [10,67] [67] [67] [67]

Artificial
Aggregate [38,68] [10] [69] [69] [69]

Conversely, research work such as that of Dantas et al. [30] focused on the impact
of various constituent materials, in this case, construction and demolition waste. An
investigation by Yaman et al. [31] focused on highly flowable self-compacting concrete
and developed ANN models with two datasets, where the first model comprised all six
outputs and the second was in the form of a multi-input-single-output model. Regarding
an environmentally friendly approach, Elevado et al. [62] presented completely green
concrete, replacing Portland cement with fly ash and coarse aggregate with waste ceramic
tiles. ANNs were used for compressive strength predictions, and the results showed this is
a possible alternative for traditional concrete.
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Several investigations were conducted from building sites to make ANN models more
pragmatic and useful in realistic conditions. In situ works imply a lack of controllability
of environmental conditions, which influence concrete in both a fresh and hardened state.
Therefore, testing of field concrete is a more challenging task compared to laboratory, but
the dataset is far more extensive and insightful. Namyong et al. [52] presented statistical
investigation of field concrete based on 1442 results from 59 different mixtures. The
authors [52] used relatively large dataset to establish regression equations for predictions
of compressive strength. DeRousseau et al. [50] evaluated the efficacy of ANNs and other
ML methods for prediction of compressive strength of field-placed concrete using two
datasets from both field and laboratory. This work confirmed that the accurate prediction of
compressive strength of field concrete is achieved with ML models trained on field concrete
data, and that by using hybrid training data predictive performance of laboratory concrete
models might be significantly improved. Furthermore, the work of Young et al. [15]
included probably the most extensive dataset ever used in this type of investigation. ANN
models were based on more than 10,000 data tuples obtained from building sites and the
laboratory testing.

Although most research work is focused on predicting the compressive strength, there
are notable works handling other properties of concrete. Predictions of mechanical proper-
ties of hardened concrete such as flexural strength [34] for modified zeolite additive mortar,
or [36] for hybrid composites, elastic modulus of recycled aggregate concrete [70], Poisson’s
ratio of lightweight concrete [71], fatigue strength [72], freeze-thaw durability [73], and
electrical property prediction [74], showed to be useful. There have also been investiga-
tions focused on the properties of fresh concrete such as drying shrinkage [42], structural
properties such as chloride permeability [75,76] and diffusivity [77], air void content [78],
as well as the dependency of compressive strength on the concrete microstructure [79].

Finally, reviewing the application of ANNs for prediction of concrete properties may
provide conclusions. A number of hidden layers should be kept low. More hidden layers
prolong the learning process and often cause false positive result. Algorithms, usually
Levenberg–Marquardt, resilient BP, BFGS quasi-Newton, and Polak–Ribiere conjugate
gradient, are chosen according to the nature of the data and type of the output. Size of the
dataset influences the algorithm performance and thus the total error. It has been repeatedly
shown that the Levenberg–Marquardt algorithm corresponds best with a medium-sized
dataset containing a few hundred data tuples. Activation functions are by default non-
linear, mostly sigmoid (logistic) and hyperbolic tangent since these functions coincide with
material behavior of concrete. Testing tuples must be diverse to give the best evaluation of
the model, but at the same time kept within a realistic confidence interval.

2. Prediction of Properties of Self-Sensing Concrete Using ANNs

This work attempts to establish a working ANN model for prediction of compres-
sive strength and flexural strength of ordinary concrete reinforced by carbon nanotubes
(CNTs) or carbon nanofibers (CNFs). All models are developed, trained, and tested using
Matlab Neural Fitting tool. Following, we describe the procedure of establishing optimal
parameters of the ANN models for each concrete property separately and combined. The
workflow follows typical schematic of extracting and collecting of the data from literature,
preprocessing, and finally application of the dataset as an input for the ANN [80], and it is
described in detail in the following.

2.1. Training Parameters of ANN Models

Parameters describing the basis of a neural network are architecture, algorithm, and
activation function. Architecture, or topology, of the ANN model refers to the number
of layers and neurons within each layer. The function of a hidden layer is to detect and
establish relationship between inputs and outputs. In this work, all ANN models use
“shallow” architecture, meaning that there is only one hidden layer. Size of the hidden layer
is problem specific and depends on the training patterns. Namely, there is no established
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rule for selecting the number of neurons for each hidden layer. It must be sufficiently low
to ensure generalization of the network, but if it is too low, the network will not be able
to learn the relationships from the data and generalize to new data [4,7,81]. Many studies
have related the number of hidden neurons to the number of input and output variables
(Table 3) and training patterns; however, these rules cannot be generally accepted [7,45,81]
and dogmatically followed. Although trying several architectures and selecting the optimal
one is a relatively long process, it is performed to determine the stability and efficacy of the
network [45].

Table 3. Empirical recommendations for determining number of neurons in the first hidden layer.

2·Ni

Ni+No

0.75·Ni

2Ni+1

Ni

(Ni+No)/2
Ni, number of input nodes; No, number of output nodes.

This research work uses a varied number of neurons, calculated according to Equation (3).
Except for the dependency between the number of input and hidden neurons given by
the literature, additional dependency is investigated to establish if there is an effect to the
performance of the model.

Nh = Ni; 2Ni + 1; 3·Ni (3)

Back-propagation feed-forward multiple layer neural networks are trained with many
different training algorithms, depending on the specific problem as well as the size of the
network and the training dataset. The most used algorithm within a concrete mix design is
the Levenberg–Marquardt algorithm due to its speed and robustness [4], and it is also used
in this work for all ANN models. It is the fastest training algorithm for moderately sized
networks with up to few hundred weights [30,44].

Activation function represents a “mathematical gate”, which data “goes through”
on its way to the next layer of the neural network. In other words, output signal of the
neuron relates to input via the activation function [32]. Choice of the activation function
may strongly influence the complexity and performance of the ANN [44,82,83]. Non-linear
activation functions are used in concrete mix design. The most used is a unipolar sigmoid;
however, certain researchers use bipolar sigmoid or hyperbolic tangent [29,44], although
common practice includes several activation functions between individual layers within
one network.

Learning process for all ANN models in this work is provided by the Levenberg–
Marquardt training algorithm with unipolar sigmoid activation function and linear transfer
function. Other parameters of the model performance are maximum number of epochs
at 1000; training momentum is 109; learning rate is 10−6; and 6 cross-validation checks
during learning.

2.2. Datasets

A prerequisite for successful functioning of an ANN is the use of extensive and reliable
dataset capable of appropriate training [44]. Form, content, and size of the dataset has
great effect to the computation of appropriate outputs. Format of the dataset is important
because the way data is presented to the network affects the training process. Both input
and output variables must be normalized, usually within the range of [0,1] as it is done
in this work, or scaled to the range of (−1,+1) or (0.1,0.9). When preprocessing of data
is finished, the set is divided to subsets for training, validation, and testing. Training
subset contains the highest percentage of the total amount of data, usually from 65–80,
or 90 percent. The rest is then left to be used for testing or is divided between testing
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and validation subsets. Data tuples are shuffled randomly between subsets to avoid any
possible effect on the training algorithm [4]. In this work, datasets are divided into subsets
with ratios 70/20/10; 80/10/10; 80/15/5; and 85/10/5 for training/testing/validation.

More data i.e., bigger batch size, does not necessarily lead to a better network. Al-
though a richer dataset leads to better generalization, if the quality of the data is not at a
high level, batch size itself does not make a difference for network performance.

In this work, datasets represent the collection of experimental data given in the lit-
erature [84–111]. Experimental investigations were chosen according to the content of
the mixture, type of the nanofiller, and fabrication and testing procedures. All samples
fabricated in the given experimental procedures were tested to confirm the proper disper-
sion of the nanofiller. Three datasets with different number of data tuples are used, each
used to train and test twelve ANN models. Datasets are given by the output parameter,
namely, COMP gives compressive strength, FLEX flexural strength, and C+F gives both
compressive and flexural strength of CNT/CNF reinforced concrete mixtures. All mixtures
contain either CNT or CNF additions, and that there are no hybrid nano-reinforcements.
Table 4 gives the outline of each dataset, and Table 5 summarizes input and target output
parameters of each dataset.

Table 4. Outline of each dataset.

Dataset Nomenclature Data Tuples Input Neurons Output
Neurons

1 COMP 329 20 1

2 FLEX 207 16 1

3 C+F 185 11 2

Table 5. Input neurons for each dataset and their minimum/maximum values.

COMP FLEX C+F

# Neuron Min/Max # Neuron Min/Max # Neuron Min/Max

1 CEM 317.61/1875 kg/m3 1 CEM 317.61/1578.95 kg/m3 1 CEM 317.61/1578.95 kg/m3

2 WAT 121.6/789.48 kg/m3 2 WAT 142/789.48 kg/m3 2 WAT 142/789.48 kg/m3

3 FA 0/1994.4 kg/m3 3 FA 0/1994.4 kg/m3 3 FA 0/1994.4 kg/m3

4 CA 0/1284 kg/m3 4 CA 0/1284 kg/m3 4 CA 0/1284 kg/m3

5 SPL 0/27.27 kg/m3 5 SPL 0/27.27 kg/m3 5 SPL 0/27.27 kg/m3

6 CNT 0/2 wt% 6 CNT 0/0.5 wt% 6 CNT 0/0.5 wt%

7 CNF 0/2.5 wt% 7 CNF 0/2 wt% 7 CNF 0/2 wt%

8 CEM-CLASS 42.5/52.5 8 CEM-CLASS 42.5/52.5 8 CEM-CLASS 42.5/52.5

9 FUNCT 0/1 (no/yes) 9 FUNCT 0/1 (no/yes) 9 FUNCT 0/1 (no/yes)

10 C_S-A 0/1 (no/yes) 10 C_S-A 0/1 (no/yes) 10 DEM-AGE 24/48 h

11 C_S-B 0/1 (no/yes) 11 C_S-B 0/1 (no/yes) 11 AGE 3/120 days

12 C_S-C 0/1 (no/yes) 12 C_S-C 0/1 (no/yes) 1 OUTPUT 1 19.8/97.2 MPa

13 C_S-D 0/1 (no/yes) 13 C_S-D 0/1 (no/yes) 2 OUTPUT 2 2.18/16.4 MPa

14 C_S-E 0/1 (no/yes) 14 C_S-E 0/1 (no/yes)

15 C_S-F 0/1 (no/yes) 15 DEM-AGE 18/48 h

16 C_S-G 0/1 (no/yes) 16 AGE 3/120 days

17 C_S-H 0/1 (no/yes) 1 OUTPUT 2.18/16.4 MPa

18 C_S-I 0/1 (no/yes)

19 DEM-AGE 24/48 h

20 AGE 3/120 days

1 OUTPUT 4.4/152 MPa
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2.3. ANN Models

ANN models are developed and divided by their respective dataset, since the number
of hidden neurons depends on the number of input neurons, which varies by the dataset.
For each dataset, 12 ANN models are developed and divided into four subgroups accord-
ing to the subset ratio, and each subgroup includes three ANN models with different
number of hidden neurons, according to Equation (3). There are 36 ANN models in total,
which are summarized in Table 6. The nomenclature of the models is given in the form
X_NNtr_val_tes-Nh, where X is the name of the dataset, tr is training subset percentage,
val is validation subset percentage, tes is testing subset percentage, and Nh is the number
of hidden neurons. For example, COMP_NN70_10_20-20 represents a neural network (NN)
model with dataset COMP, with subset ratio 70/10/20 for training/validation/testing, and
with 20 hidden neurons in the one hidden layer.

Table 6. Summary of models, their architecture, and subset division.

# Model Dataset Input
Neurons

Hidden
Neurons

Output
Neurons

Training %
(#)

Validation %
(#)

Testing %
(#)

1 COMP_NN70_10_20-
20 COMP 20 20 1 70% (230) 10% (33) 20% (66)

2 COMP_NN70_10_20-
41 COMP 20 41 1 70% (230) 10% (33) 20% (66)

3 COMP_NN70_10_20-
60 COMP 20 60 1 70% (230) 10% (33) 20% (66)

4 COMP_NN80_10_10-
20 COMP 20 20 1 80% (263) 10% (33) 10% (33)

5 COMP_NN80_10_10-
41 COMP 20 41 1 80% (263) 10% (33) 10% (33)

6 COMP_NN80_10_10-
60 COMP 20 60 1 80% (263) 10% (33) 10% (33)

7 COMP_NN80_5_15-
20 COMP 20 20 1 80% (264) 5% (16) 15% (49)

8 COMP_NN80_5_15-
41 COMP 20 41 1 80% (264) 5% (16) 15% (49)

9 COMP_NN80_5_15-
60 COMP 20 60 1 80% (264) 5% (16) 15% (49)

10 COMP_NN85_5_10-
20 COMP 20 20 1 85% (280) 5% (16) 10% (33)

11 COMP_NN85_5_10-
41 COMP 20 41 1 85% (280) 5% (16) 10% (33)

12 COMP_NN85_5_10-
60 COMP 20 60 1 85% (280) 5% (16) 10% (33)

13 FLEX_NN70_10_20-
16 FLEX 16 16 1 70% (145) 10% (21) 20% (41)

14 FLEX_NN70_10_20-
33 FLEX 16 22 1 70% (145) 10% (21) 20% (41)

15 FLEX_NN70_10_20-
48 FLEX 16 48 1 70% (145) 10% (21) 20% (41)

16 FLEX_NN80_10_10-
16 FLEX 16 16 1 80% (165) 10% (21) 10% (21)
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Table 6. Cont.

# Model Dataset Input
Neurons

Hidden
Neurons

Output
Neurons

Training %
(#)

Validation %
(#)

Testing %
(#)

17 FLEX_NN80_10_10-
33 FLEX 16 22 1 80% (165) 10% (21) 10% (21)

18 FLEX_NN80_10_10-
48 FLEX 16 48 1 80% (165) 10% (21) 10% (21)

19 FLEX_NN80_5_15-
16 FLEX 16 16 1 80% (166) 5% (10) 15% (31)

20 FLEX_NN80_5_15-
33 FLEX 16 22 1 80% (166) 5% (10) 15% (31)

21 FLEX_NN80_5_15-
48 FLEX 16 48 1 80% (166) 5% (10) 15% (31)

22 FLEX_NN85_5_10-
16 FLEX 16 16 1 85% (176) 5% (10) 10% (21)

23 FLEX_NN85_5_10-
33 FLEX 16 22 1 85% (176) 5% (10) 10% (21)

24 FLEX_NN85_5_10-
48 FLEX 16 48 1 85% (176) 5% (10) 10% (21)

25 C+F_NN70_10_20-
11 C+F 11 11 2 70% (129) 10% (19) 20% (37)

26 C+F_NN70_10_20-
23 C+F 11 23 2 70% (129) 10% (19) 20% (37)

27 C+F_NN70_10_20-
33 C+F 11 33 2 70% (129) 10% (19) 20% (37)

28 C+F_NN80_10_10-
11 C+F 11 11 2 80% (147) 10% (19) 10% (19)

29 C+F_NN80_10_10-
23 C+F 11 23 2 80% (147) 10% (19) 10% (19)

30 C+F_NN80_10_10-
33 C+F 11 33 2 80% (147) 10% (19) 10% (19)

31 C+F_NN80_5_15-
11 C+F 11 11 2 80% (147) 5% (9) 15% (28)

32 C+F_NN80_5_15-
23 C+F 11 23 2 80% (147) 5% (9) 15% (28)

33 C+F_NN80_5_15-
33 C+F 11 33 2 80% (147) 5% (9) 15% (28)

34 C+F_NN85_5_10-
11 C+F 11 11 2 85% (157) 5% (9) 10% (19)

35 C+F_NN85_5_10-
23 C+F 11 23 2 85% (157) 5% (9) 10% (19)

36 C+F_NN85_5_10-
33 C+F 11 33 2 85% (157) 5% (9) 10% (19)

2.4. Results

The ultimate goal of any training procedure is to minimize the mean square error
(MSE) and mean absolute error (MAE) and maximize the coefficient of regression R. The
iterations run until no improvement in MSE and MAE is found. Accuracy of the results is
usually presented by the value of R, meaning that in case of a perfect fit between output
and target value, this value would be equal to 1. In general, every phase of the network
development demands a trial-and-error procedure to check suitability and stability of the
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network. After the initial training of the ANN models, response values R and MSE indicate
the efficiency of the model. Response values for all ANN models are given in Table 7,
where the best results are bolded and used in further analysis. Table 7 gives the results
of total values of regression coefficient R, as generated by Matlab tool. There is also the
number of epochs, showing how fast a generalization has been achieved. This number
may imply the possibility of false positive results if it is too low to be considered that the
network made enough iterations and was able to learn and establish the final values of
weights and bias.

Table 7. Response values of ANN models.

# Model Nomenclature Regression Coefficient R Mean Squared Error MSE Epoch

1 COMP_NN70_10_20-20 0.95267 0.00195 11

2 COMP_NN70_10_20-41 0.9688 0.00107 10

3 COMP_NN70_10_20-60 0.96502 0.00151 11

4 COMP_NN80_10_10-20 0.96367 0.000979 12

5 COMP_NN80_10_10-41 0.98091 0.000766 23

6 COMP_NN80_10_10-60 0.9791 0.000415 29

7 COMP_NN80_5_15-20 0.98256 0.000391 32

8 COMP_NN80_5_15-41 0.93784 0.00367 8

9 COMP_NN80_5_15-60 0.96813 0.001488 9

10 COMP_NN85_5_10-20 0.97202 0.001193 27

11 COMP_NN85_5_10-41 0.97858 0.000681 24

12 COMP_NN85_5_10-60 0.97274 0.001157 11

13 FLEX_NN70_10_20-16 0.91543 0.005345 15

14 FLEX_NN70_10_20-33 0.89097 0.007012 9

15 FLEX_NN70_10_20-48 0.92254 0.001995 24

16 FLEX_NN80_10_10-16 0.87775 0.00877 9

17 FLEX_NN80_10_10-33 0.89732 0.00707 9

18 FLEX_NN80_10_10-48 0.90198 0.00396 23

19 FLEX_NN80_5_15-16 0.92508 0.005 20

20 FLEX_NN80_5_15-33 0.86375 0.008407 8

21 FLEX_NN80_5_15-48 0.87383 0.005773 10

22 FLEX_NN85_5_10-16 0.94388 0.00378 32

23 FLEX_NN85_5_10-33 0.93602 0.00461 18

24 FLEX_NN85_5_10-48 0.91121 0.00533 10

25 C+F_NN70_10_20-11 0.86913 0.009495 10

26 C+F_NN70_10_20-23 0.90129 0.0076 12

27 C+F_NN70_10_20-33 0.88072 0.004027 18

28 C+F_NN80_10_10-11 0.93468 0.003361 27

29 C+F_NN80_10_10-23 0.95102 0.003566 21

30 C+F_NN80_10_10-33 0.83489 0.005389 16

31 C+F_NN80_5_15-11 0.94066 0.005587 19
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Table 7. Cont.

# Model Nomenclature Regression Coefficient R Mean Squared Error MSE Epoch

32 C+F_NN80_5_15-23 0.93937 0.00511 16

33 C+F_NN80_5_15-33 0.95118 0.004076 12

34 C+F_NN85_5_10-11 0.83851 0.01363 10

35 C+F_NN85_5_10-23 0.88078 0.008397 10

36 C+F_NN85_5_10-33 0.90683 0.00636 10

As it may be seen in Table 7, ANN models gave satisfactory results with regression
coefficient R values higher than 0.80 and higher than 0.85 for the best models within each
subgroup, as it is shown in Figure 1. Since the differences in regression coefficients within
each group are minute, we will observe other pointers of models’ efficiency. Except for
regression coefficient R, useful indicator of network behavior may be the error histogram
which shows zero-centered Gauss curve at optimal learning trend. Error histograms of the
best models from each subgroup are shown in Figure 2.

Figure 1. Histogram of regression coefficients for ANN models.

Figure 2 gives the distribution of error (x-axis) over instances (y-axis), and it shows
that the most regular distribution of error is obtained for models (a) COMP_NN70_10_20-
41, (g) FLEX_NN80_5_15-16, and (k) C+F_NN80_5_15-11. In other words, subset ratios
with relatively more training data, and equal or relatively close numbers of hidden and
input neurons, present the architecture with most favorable results. Since there was an
investigation of Nh = 3Ni number of hidden neurons, these models showed comparable
behavior and results, and it may imply favorable behavior for a smaller number of input
neurons. It can only be an assumption that it would give better results if the number of
tuples was higher, or if another activation function was used. Results of training, testing,
validation, and total regression coefficients for the optimal ANN models is given in Table 8.

Table 8. Regression coefficients of the models with best performance.

# Model Nomenclature Training Testing Validation Total

1 COMP_NN70_10_20-41 0.9764 0.95837 0.95823 0.9688

2 FLEX_NN80_5_15-16 0.93545 0.90633 0.87768 0.92508

3 C+F_NN80_5_15-11 0.94032 0.93642 0.97165 0.94066
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Figure 2. Cont.
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Figure 2. Error histogram for model: (a) COMP_NN70_10_20-41; (b) COMP_NN80_10_10-60; (c) COMP_NN80_5_15-
20; (d) COMP_NN85_5_10-41; (e) FLEX_NN70_10_20-48; (f) FLEX_NN80_10_10-48; (g) FLEX_NN80_5_15-16;
(h) FLEX_NN85_5_10-16; (i) C+F_NN70_10_20-33; (j) C+F_NN80_10_10-11; (k) C+F_NN80_5_15-11; (l) C+F_NN85_5_10-33.

3. Discussion and Conclusions

Concrete mix design requires extensive knowledge of many expert issues. Inherently,
obtaining concrete with appropriate parameters ensures reliable use during the prescribed
exploitation period. In construction of massive structures, or commercial and residential
buildings, concrete mix design assures that required parameters are achieved while keeping
the costs at the necessary minimum. The ANN approach gives the possibility to freely
adjust and change mix proportions according to exposure to certain materials and needed
type of concrete. The construction speed and quality control may be significantly increased
while decreasing the costs and carbon footprint by using ANNs to determine and predict
properties of fresh and hardened concrete. Additionally, ANNs represent an appealing
tool for modeling complex systems because of features such as efficiency, generalization,
and simplicity.

This paper assesses the predictions of compressive strength and flexural strength of
CNT/CNF reinforced concrete. To this purpose, 36 models were developed using three
different datasets. One dataset uses both target values, compressive and flexural strength,
and the remainder have a singular property as the target value. The models were trained
using Matlab Neural Fitting application. After training, validation, and testing, it may
be concluded that all models show satisfactory behavior with the given topologies. In
addition, all three variants of hidden neurons used here correspond to this type of neural
network in achieving successful training of the network. Moreover, initial research shows
that mechanical properties of CNT/CNF reinforced concrete can be successfully predicted
using the described ANN models. Out of 36 models in total, models COMP_70_10_20-
41, FLEX_80_5_15-16, and C+F_80_5_15-11 exhibited optimal results, most uniform error
distribution, and therefore, overall most favorable behavior. The regression coefficients for
training, testing, and validation stage are high and the scattering of the results is relatively
small for these models. Thus, the results confirmed the correctness of the adopted models
and calculations. It may be concluded that tested network topology, algorithm, and
activation function give satisfactory results in assessing the problems of the mechanical
properties of CNT/CNF reinforced concrete composite material. This research work shows
that further research in this direction may give promising results and can move further
toward developing a novel method of concrete mix design.

Author Contributions: Conceptualization and methodology, S.K. and J.K.; software, validation, and
investigation, S.K.; writing—original draft preparation, S.K.; writing—review and editing, J.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Materials 2021, 14, 5637 14 of 18

Data Availability Statement: The data presented in this study are openly available in reference
number [84–111].

Acknowledgments: This work was supported by the Department of Structural Engineering, Faculty
of Civil Engineering, Silesian University of Technology and “SymIn“–Simulation in Engineering
Interdisciplinary Ph.D. Studies, Silesian University of Technology [project number POWR.03.05.00-
IP.08-00-PZ1/17].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmad, S.; Alghamdi, S.A. A Statistical Approach to Optimizing Concrete Mixture Design. Sci. World J. 2014, 2014,

561539. [CrossRef]
2. Cihan, M.T. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv. Civ. Eng. 2019, 2019,

3069046. [CrossRef]
3. Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response

surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209,
425–436. [CrossRef]

4. Bingöl, A.F.; Tortum, A.; Gül, R. Neural networks analysis of compressive strength of lightweight concrete after high temperatures.
Mater. Des. 2013, 52, 258–264. [CrossRef]

5. Khademi, F.; Jamal, S.M.; Deshpande, N.; Londhe, S. Predicting strength of recycled aggregate concrete using Artificial Neural
Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int. J. Sustain. Built Environ. 2016, 5,
355–369. [CrossRef]

6. Chou, J.-S.; Chiu, C.-K.; Farfoura, M.; Altaharwa, I. Optimizing the Prediction Accuracy of Concrete Compressive Strength Based
on a Comparison of Data-Mining Techniques. J. Comput. Civ. Eng. 2011, 25, 242–253. [CrossRef]

7. Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural
network. Expert Syst. Appl. 2011, 38, 9609–9618. [CrossRef]

8. Özturan, M.; Kutlu, B.; Özturan, T. Comparison of Concrete Strength Prediction Techniques With Artificial Neural Network
Approach. Build. Res. J. 2008, 56, 23–36.

9. Deepa, C.; Kumari, K.S.; Sudha, V.P. Prediction of the Compressive Strength of High Performance Concrete Mix using Tree Based
Modeling. Int. J. Comput. Appl. 2010, 6, 18–24. [CrossRef]

10. Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M. Modeling compressive strength of EPS lightweight concrete using regression, neural
network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [CrossRef]

11. Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the compressive strength of no-slump concrete: A
comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 2010, 24, 709–718. [CrossRef]

12. Anyaoha, U.; Zaji, A.; Liu, Z. Soft computing in estimating the compressive strength for high-performance concrete via concrete
composition appraisal. Constr. Build. Mater. 2020, 257, 119472. [CrossRef]

13. Ashrafian, A.; Shokri, F.; Amiri, M.J.T.; Yaseen, Z.M.; Rezaie-Balf, M. Compressive strength of Foamed Cellular Lightweight
Concrete simulation: New development of hybrid artificial intelligence model. Constr. Build. Mater. 2020, 230, 117048. [CrossRef]

14. Feng, D.-C.; Liu, Z.-T.; Wang, X.-D.; Chen, Y.; Chang, J.-Q.; Wei, D.-F.; Jiang, Z.-M. Machine learning-based compressive strength
prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020, 230, 117000. [CrossRef]

15. Young, B.A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. Can the compressive strength of concrete be estimated from knowledge of
the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 2019, 115,
379–388. [CrossRef]

16. Park, J.Y.; Yoon, Y.G.; Oh, T.K. Prediction of Concrete Strength with P-, S-, R-Wave Velocities by Support Vector Machine (SVM)
and Artificial Neural Network (ANN). Appl. Sci. 2019, 9, 4053. [CrossRef]

17. Vakharia, V.; Gujar, R. Prediction of compressive strength and portland cement composition using cross-validation and feature
ranking techniques. Constr. Build. Mater. 2019, 225, 292–301. [CrossRef]

18. Jalal, M.; Grasley, Z.; Gurganus, C.; Bullard, J.W. RETRACTED: Experimental investigation and comparative machine-learning
prediction of strength behavior of optimized recycled rubber concrete. Constr. Build. Mater. 2020, 256, 119478. [CrossRef]

19. Madandoust, R.; Bungey, J.H.; Ghavidel, R. Prediction of the concrete compressive strength by means of core testing using
GMDH-type neural network and ANFIS models. Comput. Mater. Sci. 2012, 51, 261–272. [CrossRef]

20. Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H. Prediction of bond strength of spliced steel bars in concrete using artificial
neural network and fuzzy logic. Constr. Build. Mater. 2012, 36, 411–418. [CrossRef]
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