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Cholesterol homeostasis is related to multiple diseases in humans, including
cardiovascular disease, cancer, and neurodegenerative and hepatic diseases. The
cholesterol levels in cells are balanced dynamically by uptake, biosynthesis, transport,
distribution, esterification, and export. In this review, we focus on de novo cholesterol
synthesis, cholesterol synthesis regulation, and intracellular cholesterol trafficking. In
addition, the progression of lipid transfer proteins (LTPs) at multiple contact sites
between organelles is considered.
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INTRODUCTION

The endoplasmic reticulum (ER) produces a number of phospholipids and sterols as well as
triglycerides, cholesterol esters, and ceramide. Lipids are exported from the ER to the plasma
membrane (PM) and other organelles that lack the ability to synthesize lipids on their own.
Despite the extensive transport of lipids and other materials between organelles, these structures
exhibit remarkable differences in lipid composition and quantity (Holthuis and Menon, 2014).
Cholesterol is an essential component of PMs; it couples with sphingolipid and
glycosylphosphatidylinositol (GPI)-anchored proteins to form dynamic and nanoscale
domains that are distributed in both inner and outer leaflets of the cell membrane
(Lingwood and Simons, 2010; Raghupathy et al., 2015) and participate in the regulation of
cellular processes. The proportion of cholesterol compared to that of all lipids in the ER is only
5 mol% but reaches 30–40 mol% in the PM (VanMeer et al., 2008). In this review, we discuss how
cholesterol is synthesized in the ER and how the cholesterol is transferred
between organelles, especially LTPs, which responsible for bulk transport of cholesterol, and
are involved.

Cholesterol Synthesis
Cholesterol levels in cells are regulated dynamically by de novo biosynthesis, exogenous uptake,
storage, and exportation. Approximately 700–900 mg of cholesterol per day is produced through
de novo synthesis in humans, while 300–500 mg is taken up from the diet. Approximately 50% of
the total synthesized cholesterol comes from the liver. Endogenous and exogenous cholesterol
are metabolized into bile acids at approximately 400 mg/day and into steroid hormones at
approximately 50 mg/day; the rest is excreted in feces and by the skin (Russell, 1992). The
process of cholesterol synthesis is described in the following. In brief, two molecules of acetyl-
coenzyme A (CoA) form acetoacetyl-CoA, and the addition of a third molecule to form 3-
hydroxy-3-methylglutaryl CoA (HMG-CoA) is catalyzed by HMG-CoA synthase. HMG-CoA is
reduced to mevalonate by HMG-CoA reductase, and this reaction is highly regulated at the
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transcriptional and posttranslational levels by metabolic
intermediates. Mevalonate undergoes extensive
phosphorylation and decarboxylation to form isopentenyl
pyrophosphate (IPP), and IPP continues to be polymerized
to form farnesyl pyrophosphate (FPP) (Figure 1). FPP
formation is followed by one of three key steps:
condensation of two FPP molecules to form squalene, which
is processed to cholesterol; combination of a series of
condensed IPPs with one molecule of FPP to form a long
trans polyprenyl derivative, which is a side chain of
ubiquinone, and sequential addition of IPP to FPP to form
dolichols (Rudney and Sexton, 1986; Russell, 1992).
Cholesterol synthesis is completed in the ER membrane,
and cholesterol homeostasis is tightly regulated. We briefly
review the key players in the regulation of de novo cholesterol
synthesis.

Regulation of Cholesterol Synthesis
Cholesterol levels are regulated dynamically, and there are three
key factors in cholesterol synthesis: sterol regulatory element-
binding protein 2 (SREBP2), 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR), and squalene
monooxygenase (SM). The regulation occurs in three
dimensions: transcriptional, translational, and posttranslational
(Table 1).

Sterol Regulatory Element-Binding Protein 2
SREBP2 is an isoform of the SREBP transcription factor family
and a master regulator of lipid homeostasis that specializes in
cholesterol synthesis (Brown and Goldstein, 1997). SREBP2 is
synthesized as an inactive precursor that binds to the ER

membrane and is composed of three domains: an N-terminal
transactivation domain for DNA binding and dimerization; a
hydrophobic transmembrane domain separated by a lumen
facing, 30 aa short loop; and a C-terminal regulatory domain
responsible for interaction with SREBP cleavage activating
protein (SCAP) (Goldstein et al., 2006). To become an active
form from a precursor, SREBP2 translocates to the Golgi
apparatus from the ER. In the Golgi apparatus, there are two
proteases, the site 1 and site 2 proteases (S1P and S2P), that cleave
the SREBP2 precursor sequentially to liberate the N-terminus,
which enter the nucleus as a homodimer to bind sterol regulatory
element (SRE) sequences in the promoter to activate target genes
(Brown et al., 2018).

At the transcriptional level, the SREBP2 gene promoter has a
10-bp SRE, 6-bp Sp1 (Sp1 transcription factor), and NF-Y
(nuclear transcription factor Y) binding sites, which coincide
with other SREBP2-targeted cholesterol synthesis genes. The
existence of an SRE binding site means that it is regulated by
its activated form nSREBP2 (Sato et al., 1996). SREBP2
transcription is also epigenetically regulated (Tao et al., 2013).
There is a FoxO3 (forkhead box O3) binding sequence and
insulin response element (IRE) in the promoter. FoxO3
recruits Sirt6 (sirtuin 6), and Sirt6 deacetylates histone H3 and
inhibits SREBP2 transcription.

The process of maturation of SREBP2 is triggered by the
cholesterol concentration in the ER (Figure 2). When the ER
cholesterol level is below 5 mol% of all ER lipids, SCAP, an escort
of SREBP2, exerts conformational changes to dissociate from
insulin-induced gene (Insig)-1, which is complexed with SCAP-
SREBP2 in sterol abundance, and binds to COPII coat proteins to
transport SREBP2 to the Golgi apparatus via vesicles (Nohturfft
et al., 2000; Shimano and Sato, 2017). If Insig-1 levels are elevated,
the cholesterol concentration that triggers SCAP transport of
SREBP2 is lowered to 3 mol% (Radhakrishnan et al., 2008, 2009).
After separation with the SCAP-SREBP2 complex under
depletion of cholesterol, Insig-1 is ubiquitinated and degraded
with a half-life within 30 min (Goldstein et al., 2006). Nuclear
SREBP2 targets corresponding genes, including Insig-1, and
newly synthesized Insig-1 is degraded continually until the
cholesterol level is above 5 mol% in the ER. Stabilized Insig-1
halts the SCAP-SREBP2 complex in the ER membrane, inhibits
SREBP2 maturation, and stops cholesterol synthesis. Again, if the
ER cholesterol level is below 5 mol% of all ER lipids, feedback
regulation is triggered. Insig-2 has similar functions to Insig-1,
but it is expressed constitutively at low levels and is not regulated
by SREBP2 (Goldstein et al., 2006).

Additional proteins participate in the process of SREBP2
maturation in the ER and Golgi apparatus. Erlins localized to

FIGURE 1 | Major pathway of cholesterol synthesis in cells. Two
molecules of acetyl-CoA condense and form HMG-CoA with the addition of a
third acetyl-CoA molecule. The process to form cholesterol involves nearly 30
reaction steps. There are two rate-limiting steps catalyzed by HMGCR
and SM.

TABLE 1 | Molecules implicated in SREBP2, HMGCR, and SM regulation.

Regulation SREBP2 HMGCR SM

Transcription Sp1, NF-Y, nSREBP2, FoxO3, SIRT6, SIRT1, MARCH6 SREBP1, nSREBP2, NF-kB, c-Fos, c-Jun, HSP-
70, HO-1

NF-1, Sp1, YY1, c-Myc, IRF-1,
Mir-133b

Post-
translation

Erlins, RNF145, RNF5, TRC8, PCK1, Brg1, POST1, Fbw7,
SIRT1, p300, CBP

Gp78, TRC8, RNF145, USP20, UBIAD1 MARCH6, UBE2G2, UBE2J2,
Squalene
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the ER lumen with heteromultimeric complexes are cholesterol-
binding proteins that interact with Insig-SCAP-SREBP2 to
restrict SREBP2 activation in the presence of cholesterol
(Huber et al., 2013). RNF145 and RNF5 are ER-anchored E3
ubiquitin ligases; RNF145 ubiquitinates lysine residues of SCAP
(K454, K466) and damages binding with COPII protein and
Golgi transport (Jiang et al., 2018), and RNF5 binds to the
transmembrane domain and ubiquitinates SCAP at K305,
regulating the process of SREBP2 maturation (Kuan et al.,
2020). TRC8 is also a ubiquitin ligase that binds to the SCAP-
SREBP2 complex, and the TRC8-SCAP-SREBP2 complex
hinders the interaction of SCAP with COPII proteins
independent of its ubiquitin ligase activity (Irisawa et al.,
2009). Phosphoenolpyruvate carboxykinase 1 (PCK1), a rate-
limiting enzyme in gluconeogenesis, is phosphorylated by AKT in
hepatocellular carcinoma (HCC) patients, and phosphorylated
PCK1 translocates to the ER and acts as protein kinase to
phosphorylates Insig-1 and Insig-2 in the ER (Xu et al., 2020).
Phosphorylated Insigs have weak binding ability with sterols and
disrupt the SCAP-SREBP2 complex, promoting the translocation
of SCAP-SREBP2 to the Golgi from the ER. Although the
relationship between phosphorylated PCK1 mediating SREBP2
activation and sterol levels is unknown, more attention needs to
be paid to this relationship, especially in nonphysiological
conditions. In 2021, Brahma-related gene 1 (Brg1) and partner

of site-1 protease (POST1) were identified as cofactors involved in
SREBP2 regulation. Brg1, a chromatin remodeling protein,
interacts with Sp1 at the promoter of SCAP, activates the
transcription of SCAP, and promotes the maturation of
SREBP2 (Kong et al., 2021). On the other hand, Brg1 is
recruited to the promoters of cholesterogenic genes by
SREBP2. In turn, Brg1 recruits the H3K9 methyltransferase
KDM3A to promote the transcription of related genes, and
deficiency of Brg1 in the liver reduces cholesterol levels in
mice (Fan et al., 2020). POST1 was discovered by a genome-
wide CRISPR/Cas9 knockout screen; it controls S1P maturation,
and ablation of POST1 decreases nuclear SREBP2 and the
corresponding target gene expression (Xiao et al., 2021).

After maturation, the activated form of nSREBP2 can be
phosphorylated by GSK-3 at T426 and S430, the surrounding
sequence called phosphodegron. Fbw7, which is a substrate
receptor of SCF ubiquitin ligase, interacted with the
phosphodegron to degrade it and decrease the expression of
SREBP2 target genes (Sundqvist et al., 2005). Simultaneously,
p300 and CBP acetylate, the N-terminus of SREBP2, is stabilized
and enhances the expression of SREBP2 target genes
(Giandomenico et al., 2003). Accordingly, the acetylation of
SREBP2 by SIRT1 inhibition also increases SREBP2 stability and
transcriptional activity. Moreover, SREBP2 can be phosphorylated
by ERK, MAPK, AMPK, and mTORC1 and SUMOylated to

FIGURE 2 | Regulation of cholesterol synthesis. The central transcription factor of cholesterol synthesis in cells is SREBP2, which is regulated in multiple layers and
controls the synthesis of key enzymes in cholesterol synthesis. SREBP2 binds to SCAP in the ER.When the cholesterol level is less than 5% of the ER, SCAP binds to the
COPII protein and escorts SREBP2 from the ER to the Golgi and anchors via adipoQ receptor 3 (PAQR3) in the Golgi, where site 1 and site 2 proteases (S1P, S2P) cleave
the luminal loop of SREBP2 to release the N-terminal domain that enters the nucleus. In the nucleus, SREBP2 activates multiple cholesterol synthesis genes by
binding to the SRE. Additionally, the INSIG proteins dissociate from SCAP, and HMGCR and SM are less bound and ubiquitylated by E3 ubiquitin ligase and degraded by
the proteasome. When the cholesterol level is more than 5% of the ER, the INSIGs are recruited by SCAP to form the SCAP–SREBP2–INSIG complex, and the complex
holds in the ER further by ERLINs and TRC8. Additionally, cholesterol induces the E3 ligase complex to ubiquitylate HMGCR and SM.
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regulate stability, transcriptional activity, and trafficking (Arito
et al., 2008; Mohamed et al., 2018; Liu et al., 2020).

3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase
HMGCR is a membrane protein located in the ER that contains a
transmembrane domain in the N-terminus and a hydrophilic
C-terminus facing the cytosol. The cytosol-facing C-terminal
domain is responsible for mevalonate formation, and the
transmembrane domain includes an SSD, like SCAP, that
senses sterol levels in the ER. HMGCR transcription is
stimulated by nSREBP2, similar to other cholesterol-related
genes. To date, HMGCR posttranslational regulation,
including ubiquitination and phosphorylation, has been
extensively studied.

HMGCR can be ubiquitylated by the intermediates ofmevalonate
and cholesterol derivatives, such as lanosterol, 24, 25-
dihydrolanosterol, and 25- and 27-hydroxycholesterol (Song
et al., 2005; Chen et al., 2019). However, cholesterol itself has a
minor degradation effect. In addition to the cholesterol pathway, γ-
and δ-tocotrienols also mimic sterols but not nonsterol isoprenoids,
promoting the degradation of HMGCR (Song and DeBose-Boyd,
2006).

HMGCR ubiquitination and degradation induced by sterol
requires Insig binding. The second transmembrane helix of
HMGCR contains a YIYF sequence, which also exists in the SSD
of SCAP and is responsible for Insig binding and ubiquitination.
Mutation of tetrapeptide YIYF abolishes Insig binding of HMGCR,
as in SCAP, and destroys sterol-induced endoplasmic reticulum-
associated degradation (ERAD) (Jiang et al., 2018). Substitution of
lysine 248 with arginine in HMGCR abolishes ubiquitination and
delays degradation but does not affect Insig binding (Sever et al.,
2003). Another substitution at lysine 89 further delays degradation in
the absence of lysine 248 but has little effect on its own. Lysine 248 is
near the C-terminal catalytic domain and localizes to the
juxtamembrane; this position may facilitate ubiquitin transfer to
HMGCR by membrane-bound ubiquitin transferase and
subsequent ERAD.

The ubiquitination of HMGCR is mediated by membrane-
bound E3 ubiquitin ligase. At least three E3 ligases have been
reported to be related to Insigs. Gp78, known as AMFR, is an ER
membrane-anchored ubiquitin ligase that mediates HMGCR
ubiquitination by interacting with Insigs. When cholesterol is
abundant, gp78 is transferred to the HMGCR-Insig complex,
causing the ubiquitination of HMGCR and degradation and
suppressing cholesterol synthesis; when cholesterol is depleted,
HMGCR is free from the Insig-gp78 complex and stabilized,
increasing cholesterol synthesis (Jo et al., 2011b; Liu et al., 2012).
Another ubiquitin ligase is TRC8, known as RNF139. Insig
binding to HMGCR recruits Trc8 to facilitate its
ubiquitination. Either gp78 or TRC8 knockdown in cells
inhibits sterol-induced degradation by approximately
50%–60%, and combined knockdown of the two E3 ubiquitin
ligases inhibits the degradation of HMGCR by up to 90% (Jo et al.,
2011a). RNF145 is an E3 ubiquitin ligase that interacts with Insigs
to ubiquitinate HMGCR. Knockdown of both RNF145 and gp78
abrogates HMGCR degradation, but RNF145 itself has little effect
on HMGCR stability (Menzies et al., 2018). RNF145 also contains

a YIYF sequence in the SSD, which is essential for its binding with
Insigs, and in the RING finger domain, the Cys537 residue is
responsible for RNF145 activity (Jiang et al., 2018). Why multiple
E3 ubiquitin ligases are involved in HMGCR degradation and
which ligases are responsible for HMGCR ubiquitination under
certain conditions need further investigation. In contrast to
ubiquitination, HMGCR is deubiquitinated by mTORC1-
phosphorylated USP20, which preferentially hydrolyzes K48
and K63 linkages, and stabilized HMGCR increases cholesterol
synthesis in the feeding state (Lu et al., 2020).

After ubiquitination of HMGCR, energy produced from VCP/
p97-mediated hydrolysis of ATP powers ubiquitinated HMGCR
extraction from the ER membrane (Stevenson et al., 2016). The
extracted HMGCR is transferred to the cytosol from the ER
membrane by the 19S regulatory subunit of the proteasome.
Subsequently, it is delivered to the proteolytic core of the 20S
proteasome for degradation. Both VCP and the 19S regulatory
subunit have AAA + ATPase activity (Meyer et al., 2012). The
extraction process is enhanced by geranylgeraniol, which is a
derivative of isoprenoid geranylgeranyl pyrophosphate (GGpp).
In the presence of a substrate of GGpp, UBIAD1, which binds
with HMGCR and blocks its membrane extraction, is transported
to the Golgi and removes the inhibition of HMGCR degradation.
UBIAD1 is a membrane prenyltransferase that can catalyze the
transfer of isoprenyl groups to aromatic acceptors and produce
ubiquinones, hemes, chlorophylls, vitamin E, and vitamin K.
UBIAD1 knockout in mice is embryonic lethal, and the
phenotype can be rescued by knocking in HMGCR, which is a
resistant mutant (Schumacher et al., 2015; Jo et al., 2020).
Therefore, HMGCR levels can be regulated with nonsterol
mevalonate pathway products.

Another posttranslational regulation of HMGCR is
phosphorylation. The Ser872 residue in the C-terminal catalytic
domain of HMGCR is phosphorylated by AMPK, and
phosphorylation at Ser872 disrupts HMGCR activity and restricts
the flux of themevalonate pathway rapidly but does not affect sterol-
induced ubiquitination and subsequent degradation (Clarke and
Hardie, 1990).

Squalene Monooxygenase
SM catalyzes the first oxygenation step in cholesterol synthesis; it
introduces an epoxide group to squalene, converts alkene
squalene into squalene epoxide, and is proposed to be a rate-
limiting step in cholesterol synthesis.

There are three SREs in the SMpromoter: two adjacent SREs near
the initiation site that partially respond to sterol via SREBP2 and a
third SRE that is sterol independent. Other transcriptional cofactors
and factors, includingNF-Y, Sp1, YY1, c-Myc, and IRF-1, participate
in the regulation of SM transcription (Chua et al., 2020). Mir-133b is
reported to promote SM mRNA degradation (Qin et al., 2017).

The focus of SM regulation, similar to that of HMGCR, is
posttranslational. SM can be ubiquitinated and degraded under
cholesterol abundance. The phenomenon of cholesterol-induced
squalene accumulation suggests that SM, similar to HMGCR, is
another flux-controlling enzyme (Gill et al., 2011).

The N-terminal 100 residues of SM contain a cholesterol-
sensitive amphipathic helix and a reentrant loop; the
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amphipathic helix binds membranes with absent cholesterol, the
affinity is reduced upon cholesterol addition, and the released helix
forms a disordered sequence (Chua et al., 2017; Prinz, 2017).
MARCH6, an E3 ligase that physically interacts with
conformationally changed SM (Zelcer et al., 2014), combines
with two E2 enzymes, UBE2G2 and UBE2J2, for ubiquitination
and subsequent degradation in the presence of cholesterol. In
contrast to cholesterol-induced SM degradation, the
accumulated substrate squalene binds to the N-terminal 100
residues of SM, altering the recognition of MARCH6, and
stabilizing SM on the ER membrane (Yoshioka et al., 2020). In
addition to ubiquitination, MARCH6 can regulate SREBP2 at the
transcriptional level; thus, HMGCR and SM are controlled. During
ERAD, SM is truncated by N-terminal degradation, which results
in defects in sterol sensing. Truncated SM has similar abundance
and is constitutively active. The distinction of SM and truncated
SM function needs further investigation in detail.

Intracellular Cholesterol Transport
Cholesterol is distributed unevenly in cellular membranes. The PM
is the membrane most enriched with cholesterol and accounts for
approximately 30–40mol% of total cholesterol in cells; cholesterol
is also abundant in the endocytic recycling compartment and
trans-Golgi facing side (Lange, 1991; Pomorski et al., 2001;
Ikonen, 2008). The ER, mitochondria, and lysosomes are
characterized by small amounts of cholesterol (Maxfield and
Wüstner, 2002). To achieve compositional heterogeneity,
cholesterol needs to be transported in cells in a dedicated manner.

The synthesized cholesterol in the ER is transported to organelles
immediately, and this cholesterol transport is primarily coupled
with the transport and metabolism of phosphoinositide,
phosphatidylserine (PtdSer), and sphingolipids (Holthuis and
Menon, 2014). Cholesterol trafficking is mediated by vesicular
and nonvesicular trafficking systems (Prinz, 2010; Luo et al.,
2019). Vesicular transport plays an important role in the
response to trafficking of proteins in extracellular and endocytic
pathways, and along with protein transport, cholesterol can traffic
between organelles in the secretory pathway continuously (Holthuis
andMenon, 2014). However, a number of lines of evidence support
that there is an alternative nonvesicular transport response for rapid
and bulk cholesterol exchanges in the secretory pathway that do not
receive vesicular trafficking.

The nonvesicular transport system includes cholesterol
traveling spontaneously between membranes at a low rate of
desorption and movement, horizontal movement in
continuous membranes, and movement in two leaflets of the
membranes. In vitro investigations have demonstrated that the
spontaneous exchange of cholesterol is related to aqueous-
phase solubility and membrane curvature. Cholesterol
exchanges rapidly from donors of small vesicles that have
higher membrane curvature than large vesicles (Lev, 2010).
However, cholesterol interacts with sphingolipid and GPI-
anchored proteins to form condensed complexes in the
bilayer, and the nanostructure decreases the desorption of
cholesterol from membranes. Lipid transfer proteins (LTPs)
have been identified to accelerate the transport of lipids,
including cholesterol (Wong et al., 2019).

The contacts of the ER with the PM, mitochondria,
endosomes, peroxisomes, Golgi, and lipid droplets are
mediated by membrane contact sites (MCSs), which are
membrane microdomains formed between two organelles close
to each other (~10–30 nm) (Wang and Dehesh, 2018; Martello
et al., 2020). Many LTPs are localized to MCSs and undergo
conformational changes from open bridges to closed tubes to
facilitate the transfer of lipids (Figure 3). To date, at least 27
protein families have been found in lipid trafficking.

Regulation of Cholesterol Transport From the
Endoplasmic Reticulum
Most newly synthesized cholesterol is transported to the trans-
Golgi network (TGN), which is a sorting site for lipids, to
maintain a low concentration in the ER. Oxysterol-binding
protein (OSBP), a bridge between the ER and Golgi
membranes, and has been observed to mediate cholesterol
transfer. OSBP contains three conserved domains: the
N-terminal pH domain, the central FFAT motif, and the
C-terminal OSBP-related domain (ORD), which recognize
PI(4)P and small GTPase ADP-ribosylation factor (Arf1) in
the Golgi, target the VAP-A protein in the ER, and bind sterols,
respectively. The architecture of OSBP supports cholesterol
export (Antonny et al., 2018). In detail, first, the membranes
are tethered between Golgi and ER by the pH domain and
FFAT motif of OSBP; second, sterols that bind to the ORD are
transferred to the Golgi; third, at the Golgi, the ORD of OSBP
transfers PI(4)P, which is synthesized by phosphatidylinositol
4-kinase (PI4K) IIIβ, back to the ER; and fourth, PI(4)P is
dephosphorylated to PI via Sac1, which is an ER-localized
phosphatase. The low ratio of PI(4)P to sterols in the ER makes
the phosphorylation and dephosphorylation cycle move
continuously to fuel cholesterol export. The exchange
between cholesterol in the ER and PI(4)P in the Golgi is
maintained by PI4KIIIβ and Sac1 (Antonny et al., 2018).
Intriguingly, Sac1 also acts in trans on 4-phosphatase on
PI(4)P in a manner mediated by FAPP1 when the
concentration of PI(4)P is elevated in the TGN (Venditti
et al., 2019). The two modes of Sac1 activity may coexist in
cells such that when the concentration of PI(4)P reaches a
threshold, the trans-phosphatase activity of Sac1 is enhanced
and coordinated with the in cis phosphatase activity to lower
PI(4)P levels in the TGN. Moreover, the in cis activity of Sac1 is
required for contact sites between the PM and the ER or the
late endosomes (LEs) and the ER (Del Bel and Brill, 2018). A
recent study found that in cholesterol-fed cells, the ER-
anchored cholesterol escort SCAP interacts with the VAP-
OSBP complex via Sac1. Deletion of SCAP inhibits PI(4)P
transport and carriers of the Golgi network to the cell surface
(CARTS) (Wakana et al., 2021). Whether cholesterol
perturbation causes disruption of the cycle between PI(4)P
and cholesterol is unclear.

Mitochondria are important organelles in cells that can synthesize
phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine
but must import phosphatidylcholine, phosphatidylinositol,
PtdSer, and sterols from other organelles to maintain normal
function (Flis and Daum, 2013; Horvath and Daum, 2013). The
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inner mitochondrial membrane (IMM) has abundant proteins and
only 20% lipids, while the outermitochondrial membrane (OMM) is
lipid rich in mammalian cells. The ER and mitochondria are
physically connected at the mitochondria-associated membrane
(MAM). Most cholesterol transfer from the ER to mitochondria
takes place on theMCSs ofMAMs (Giordano, 2018). There are three
families of LTPs conserved in yeast and mammals as tethers, lipid
sensors, or transporters at the MCSs between the ER and
mitochondria. The first is the ORP family; specifically, ORP5 and
ORP8 interact with tyrosine phosphatase-interacting protein 51
(PTPIP51) at the MCSs and mediate ER-mitochondrial contact
as well as at the PM-ER to facilitate sterol transport in
mammalian cells (Chung et al., 2015; Galmes et al., 2016). The
second is the START family, which is responsible for cholesterol
transport from the OMM to the IMM under hormonal stimulation,
after which the cholesterol in the IMM is transformed into
pregnenolone for production of steroids or bile acid in hepatic
cells (Elustondo et al., 2017). The third is the LAM-GRAM
family, which was recently discovered in yeast and includes Lam6
and Lct1, which are ER-anchored proteins located in the ER-
mitochondria MCSs that bind with the mitochondrial import
receptors Tom70 and Tom71 in yeast (Murley et al., 2015). The
conserved orthologs in mammals are GRAMD1A and GRAMD1C,
which are involved in lipid transfer in the PM (Naito et al., 2019;
Ercan et al., 2021; Ikonen and Zhou, 2021), but their localization and
function remain to be elucidated. Thus, we know little about
cholesterol transfer at the ER-mitochondria MCSs in mammals at
present. The discovery of new sterol transfer molecules will further

illustrate the important roles of cholesterol and MCSs in
mitochondria.

Endosomes also have abundant contact sites with the ER, and
cholesterol is transferred from the ER to late endosomes (LEs) and
lysosomes (LYs) via MCSs in cells. StAR-related lipid transfer
protein 3 (STARD3), also known as MLN64, contains a conserved
FFAT-like motif that interacts with VAPs in the ER membrane,
mediates MCS formation between the ER and LE and transfers
newly synthesized cholesterol from the ER to endosomes via a
sterol-binding domain (Wilhelm et al., 2016). Similar to another
sterol transfer protein, ORP1L, which responds to cholesterol
transfer from endosomes to the ER, STARD3 binds VAP to
form a tether between the ER and endosome (Ridgway and
Zhao, 2018). Whether these proteins compete with each other
for VAP binding and how themajor molecule that binds with VAP
is regulated needs further investigation.

Regulation of Cholesterol Transport From Late
Endosomes/Lysosomes
Cholesteryl esters (CEs) carried by low-density lipoprotein (LDL) are
absorbed by LDL receptors (LDLRs) at the membrane and
hydrolyzed by acid lipase in LEs. The released free cholesterol is
transferred to other organelles: ER, PM, mitochondria, TGN, and
peroxisomes. This transfer of cholesterol from LEs/LYs is also
mediated by sterol transfer proteins (STPs) at MCSs. ORP1L and
ORP5 respond to cholesterol transfer from LEs/LYs to the ER
(Ridgway and Zhao, 2018). Additionally, ORP5 is responsible for
the cycling of PS in the ER and PI(4)P in the PM tomaintain the low

FIGURE 3 |Major molecules in intracellular cholesterol transport. Between the ER and the TGN, OSBP bridges the two membranes, sterols of the ER that bind to
the ORD are transferred to the TGN, and the ORD of OSBP transfers PI(4)P of the TGN back to the ER. Between the ER and themitochondria, ORP5/ORP8 of the ER and
PTPIP51 of themitochondria tether the two organelles at theMAM, and the ORD of ORP5/8 transfers the sterols of the ER to themitochondria. In yeast, Lam6p located in
the ER facilitates the sterol transfer by interacting with Tom70/71 in the OMM. The conserved mammalian ortholog of Lam6p is GRAMD1A, which is proposed to
interact with the receptor of the mitochondria to transfer sterols.
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level of PI(4,5)P2 in the PM (Ghai et al., 2017). During the
movement of cholesterol from LEs/LYs to mitochondria,
STARD3 also plays an important role by accepting NPC2-bound
LDL-C to directly bypass NPC1 and transfer the LDL-C to the
mitochondrial membrane in vitro (Charman et al., 2010).
Peroxisomes, as sites of lipid metabolism, play an important role
in the cholesterol trafficking pathway. Synaptotagmin VII (Syt7) of
lysosomes and PI(4, 5)P2 of peroxisomes is located at MCSs that
formbetween the two organelles. Either Syt7 or PI(4, 5)P2 is essential
to the formation of the MCSs and to cholesterol export from LYs
(Chu et al., 2015). Syt7 has been reported to be a potential oncogenic
target and to be involved in synaptic transmission as a calcium
sensor (Turecek et al., 2017; Fu et al., 2021). Thus, further side effects
need to be studied intensively when targeting Syt7 to cure disease.

DISCUSSION

Cholesterol is an essential lipid that serves as a precursor of steroid
hormones, bile acids, and oxysterols in special mammalian tissues.
Disturbed cholesterol homeostasis in humans is related to
cardiovascular disease, cancer, neurodegenerative disease, and
congenital disease. Thus, the de novo synthesis of cholesterol in
cells and regulation, coordination between intracellular syntheses,
import of exogenous cholesterol, biological distribution in
organelles, transport of cholesterol in and out of cells, trafficking
of intracellular cholesterol, and how to coordinate all the above
processes precisely need to be researched continuously.

Because of the central role of SREBP2 in cholesterol
homeostasis, numerous dysregulations of the gene in certain
disease phenotypes are connected to cholesterol homeostasis.
Some investigations have revealed that SREBP2 can function
independently in addition to regulating cholesterol synthesis.
For example, in circulating melanoma cells, SREBP2 contributes
to ferroptosis resistance by inducing transcription of the ion carrier
transferrin (TF) (Hong et al., 2021); in coronary artery endothelial
cells, high-mobility group box 1 (HMGB1) attenuates LDL
transcytosis by inhibiting SREBP2 (Ghaffari et al., 2021); and in
idiopathic pulmonary fibrosis (IPF) patients, SREBP2 is markedly
increased, and overexpressed SREBP2 in endothelial cells (ECs)
enhances the TGF and Wnt pathways and mesenchymal genes
in vitro and exacerbates vascular remodeling in vivo (Martin et al.,
2021). Therefore, SREBP2, as a transcription factor, not only plays
a key role in cholesterol homeostasis but also exertsmultifunctional
effects in pathophysiology. The additional functions and related
mechanisms need further investigation.

The newly synthesized cholesterol and the released free cholesterol
hydrolyzed from endocytosis LDL-C need to be distributed rapidly to
maintain the normal functions of cells. Although more LTPs are
identified and closely connect withMCSs in membranes, the detailed
mechanisms bywhich they facilitate cholesterol transfer, and whether
they have other pathophysiological roles and can be inhibited as drug
targets, are still not well known.

For example, the well-known function of STARD3 is to tether the
ER and endosome and facilitate cholesterol transfer from the ER to
the endosome. Recent findings indicate that high STARD3 levels are
associated with worse overall survival (OS), relapse-free survival

(RFS), and disease metastasis-free survival (MFS). STARD3
expression is associated with HER2+ breast cancers (BCs); thus,
STARD3 has the potential to be a diagnostic and predictive
marker of HER2+ BC (Asif et al., 2021). Moreover, increased
STARD1 expression is found in Alzheimer’s disease (AD) and
Down syndrome (DS), and AD and DS patients exhibit lysosomal
cholesterol accumulation within hippocampal astrocytes (Arenas
et al., 2020). Thus, STARD1 could be a preclinical marker of AD
at early stages. In alcoholic liver disease (ALD), STARD1 not only acts
as a sterol transporter but also serves as a UPR and ER stress gene,
which is stimulated by alcohol and facilitates ALDdevelopment (Marí
et al., 2014). Moreover, STARD1 is expressed in many extra-adrenal
and extra-gonadal organs, cells, and malignancies, including brain,
eye, liver, vasculature, macrophages, heart, lung, skin cells, and so on.
In liver, STARD1 involved in bile acid formation via the “alternative
acidic” pathway, in which the translocated cholesterol in IMM is
catalyzed into oxysterols, including 27,24,25-hydroxycholesterol,
activated liver X receptors (LXRs) to facilitate bile acid production
(Anuka et al., 2013). In addition, in macrophages, STARD1 also
facilitated the cholesterol efflux by activate LXRs (Taylor et al., 2010;
Manna et al., 2015). The functions of STARD1 in extra-endocrine
tissues need more attention in future research.

The functional ORD of ORP5 interacts with mTOR1 and
participates in cancer cell invasion and tumor progression. ORP5
depletion impairs mTOR localization to lysosomes, abolishes
mTORC1 activity, and inhibits cell proliferation in HeLa cells
(Du et al., 2018). The oncogenic gene KRAS is anchored on PM
tomaintain biological activity. The C-terminal of KRAS binds with
specificity to PtdSer in the PM. Both ORP5 and ORP8 are
responsible for exchanging PtdSer in the ER and phosphatidyl-
4-phosphate in the PM. Depletion of ORP5 or ORP8 reduces
PtdSer in the PM, causes KRAS mislocalization in vitro, and
attenuates KRAS signaling in vivo; in addition, it reduces cell
proliferation of KRAS-dependent cancer cells (Kattan et al., 2019).

GRAMD1A, which facilitates lipid transfer between the
mitochondria and the ER, similar to ORP5, promotes HCC self-
renewal, tumor growth, and resistance to chemotherapy. The effects
of GRAMD1A are mediated by STAT5 (Fu et al., 2016). In addition,
during autophagosome biogenesis, GRAMD1A is bound by
autogramins on its StART domain, causing accumulation of
GRAMD1Aat the sites of autophagosome initiation (Laraia et al., 2019).

As indicated for the above-mentioned molecules, although
alterations in both cholesterol and its related genes are observed
in certain pathological conditions simultaneously, the exact
functions of the molecules aside from cholesterol regulation need
to be further investigated.

The most extensive application of lipid-lowering drugs in the
clinic is antiatherogenic to reduce the morbidity and mortality of
cardiovascular disease. Targets in the clinical and preclinical stages
include HMGCR, proprotein convertase subtilisin/kexin type 9
(PCSK9), apolipoprotein B (Apo B), apolipoprotein C-III (Apo
CIII), angiopoietin-like 3 (ANGPTL3), lipoprotein(a) (LPA), and
Niemann-Pick C1-Like 1 (NPC1L1) (Table 2); among these, only
statins for HMGCR inhibition are in the cholesterol synthesis
pathway, while the others are associated with the assembly,
transport and absorption of low-density lipoprotein cholesterol
(LDL-C), and the inhibition of triglyceride synthesis.
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Aside from cardiovascular disease, increasing evidence indicates
that dysregulation of cholesterol homeostasis or some related genes
correlates with cancers (Kopecka et al., 2020), neurodegenerative
disease (Dai et al., 2021), fibrosis (Ioannou, 2016), and viral infection
(Kočar et al., 2021). For example, cholesterol- and lipid-mediated
innate immune memory induces COVID-19-related cytokine
storms (Sohrabi et al., 2021), and decreased cholesterol synthesis
of invariant natural killer T cells reduces IFN-γ production in the
tumor microenvironment (Fu et al., 2020). In AD, AD brains retain
significantly more cholesterol than age-matched nondementia
control (ND) brains; the APP acts as a lipid-sensing peptide on
cholesterol and forms MAMs in the ER, causing extracellular
cholesterol internalization in the ER (Montesinos et al., 2020). In
addition to the antiatherogenic drugs approved by the Food and Drug
Administration (FDA), several molecules in the mevalonate pathway
have emerged as promising drug targets for cancer and AD. For
example, SC4MOL andNSDHL inactivation sensitizes tumor cells to
EGFR inhibitors (Sukhanova et al., 2013), and DHCR24
heterozygous knockout in mice reduces cholesterol levels without
causing health problems (Horvat et al., 2011). Therefore, further
genetic screening of drug targets in the mevalonate pathway and
cholesterol homeostasis for cancers and neurodegenerative disease
therapy or prevention are essential. Targeting the mevalonate
pathway or cholesterol homeostasis combined with medicine
used in the clinic may benefit disease therapy.

In recent years, additional traditional Chinese medicines have
been observed to have cholesterol-lowering effects, including aloe-

emodin (Su et al., 2020), apigenin (Wu et al., 2021b), Dingxin recipe
IV (Zhang et al., 2021), and ZeXie decoction (Wu et al., 2021a). The
mechanisms of some of these medicines involve SREBP2
transcription and maturation processes. Therefore, it is worth
testing additional traditional Chinese medicines based on the
present medicinal knowledge.

Along with the increasing understanding of cholesterol
homeostasis, more regulator molecules have been identified to
be involved in pathological conditions. Targeting of related
molecules has been demonstrated to ameliorate certain
symptoms; however, more research is needed to assess the side
effects. Aside from cholesterol itself, intermediates of the
mevalonate pathway, lipid transfer proteins, and metabolites of
cholesterol all warrant further research.
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GLOSSARY

ER endoplasmic reticulum

PM plasma membrane

GPI glycosylphosphatidylinositol

HMG-CoA 3-hydroxy-3-methylglutaryl CoA

IPP isopentenyl pyrophosphate

FPP farnesyl pyrophosphate

HMGCR 3-hydroxy-3-methylglutaryl coenzyme A reductase

SM squalene monooxygenase

DFT farnesyl-diphosphate farnesyltransferase

LSS lanosterol synthase

PP pyrophosphate

SREBP2 sterol regulatory element-binding protein 2

S1P site 1 protease

S2P site 2 protease

SRE sterol regulatory element

IRE insulin response element

Insig insulin-induced gene

SCAP SREBP cleavage-activating protein

PCK1 phosphoenolpyruvate carboxykinase 1

HCC hepatocellular carcinoma

Brg1 Brahma-related gene 1

POST1 partner of site-1 protease

ERAD endoplasmic reticulum–associated degradation

RNF145 ring finger protein 145

ORP OSBP-related protein

USP20 ubiquitin carboxyl-terminal hydrolase 20

VCP valosin-containing protein

GGpp isoprenoid geranylgeranyl pyrophosphate

UBIAD1 UbiA prenyltransferase domain-containing protein 1

MARCH membrane-associated ring-CH-type finger

UBE2G2 ubiquitin-conjugating enzyme E2 G2

UBE2J2 ubiquitin-conjugating enzyme E2 J2

PAQR3 adipoQ receptor 3

LTPs lipid transfer proteins

MCSs membrane contact sites

OSBP oxysterol-binding protein

ORD OSBP-related domainOSBP-related domain

Arf1 ADP-ribosylation factor

PI4K phosphatidylinositol 4-kinase

PTPIP51 phosphatase-interacting protein 51

IMM inner mitochondrial membrane

OMM outer mitochondrial membrane

MAM mitochondria-associated membrane

GRAMD1 GRAM domain-containing 1

LEs late endosomes

LYs lysosomes

STARD3 StAR-related lipid transfer protein

CEs cholesteryl esters

LDLR low-density lipoprotein receptor

STPs sterol transfer proteins

Syt7 synaptotagmin VII

TF transferrin

HMGB1 high-mobility group box 1

IPF idiopathic pulmonary fibrosis

ECs endothelial cells

OS overall survival

RFS relapse-free survival

MFS metastasis-free survival

BCs breast cancers

DS Down syndrome

ALD alcoholic liver disease

ORD OSBP-related domainOSBP-related domain

PC phosphatidylcholine

PtdSer phosphatidylserine

PI phosphatidylinositol

PCSK9 proprotein convertase subtilisin/kexin type 9

Apo B apolipoprotein B

Apo CIII apolipoprotein C-III

ANGPTL3 angiopoietin-like 3

LPA lipoprotein(a)

NPC1L1 Niemann-Pick C1-like 1
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