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Advances in Neuroimaging

Introduction
In the past few years, with the increasing aging of 
the general population worldwide, there has been 
a strong consensus that an early diagnosis of 
dementia makes a difference in terms of health 
care and economic planning, familial organiza-
tion, pharmacological and non-pharmacological 
treatment searching, especially in industrialized 
countries. In the Alzheimer’s disease (AD) field 
of research, the advent of reliable biomarkers able 
to detect signatures of the disease decades before 
the first clinical symptoms has anticipated the 
biological conception of AD. Recent molecular 
imaging techniques using amyloid and tau ligands 
have led to an accurate in vivo diagnosis, even at 
the preclinical stage, and have improved patient 
selection and monitoring for available clinical tri-
als.1 As such, besides the recognized magnetic 
resonance imaging (MRI) role in excluding other 
causes of cerebral damage or in detecting the 

presence of atrophy, it is important to delineate 
its current and future role in the clinical setting.

Against this background, this review aims to pro-
vide an overview on very recent studies, published 
in the last 2 years, that have adopted MRI (alone 
or in combination with other non-MRI tools) to 
assess subjects within the AD spectrum, with a 
main focus on the powerful role of this instru-
ment in increasing our knowledge in each phase 
of the disease.

Materials and methods

Inclusion and exclusion criteria
The following selection criteria were employed 
for our search. We selected articles: (a) targeting 
only humans; (b) on the use of MRI techniques, 
such as structural and functional MRI; (c) on 
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syndromes along the AD spectrum [such as late- 
or early-onset AD, mild cognitive impairment 
(MCI), prodromal and preclinical AD, popula-
tions at risk of developing AD, including cases with 
known genetic mutations]; (d) available in English 
and in full text. We excluded articles which did not 
use MRI as the primary method of investigation, 
studies on animals, case reports, reviews or meta-
analyses of the available literature.

Search strategy
A formal literature review was performed using 
PubMed database on relevant articles recently 
published in peer-reviewed journals from 1 
January 2018 to 2 March 2020 with the use of two 
macro areas, such as ‘MRI’ studies and ‘degenera-
tive diseases in the AD spectrum’. The final search 
line was the following: [(((((((((((MRI) OR ‘mag-
netic resonance imaging’ (MeSH Terms)) OR 
MR) OR ‘magnetic resonance’) OR ‘structural 
magnetic resonance imaging’) OR ‘functional 
magnetic resonance imaging’) OR fMRI) OR 
sMRI)) AND (((((((((((((((((((((‘Alzheimer’s dis-
ease’) OR AD) OR Alzheimer) OR MCI) OR 
‘mild cognitive impairment’) OR ‘prodromal 
AD’) OR ‘prodromal Alzheimer’s disease’) OR 
‘preclinical AD’) OR ‘preclinical Alzheimer’s dis-
ease’) OR ‘posterior cortical atrophy’) OR PCA) 
OR PPA) OR ‘primary progressive aphasia’) OR 
LPA) OR lvPPA) OR ‘logopenic variant PPA’) 
OR ‘frontal AD’) OR ‘frontal Alzheimer’s dis-
ease’) OR ‘logopenic aphasia’) OR ‘logopenic 
variant of AD’) OR ‘frontal variant of AD’)]. We 
explicitly filtered our research on PubMed by 
excluding reviews, animal studies, articles not 
published in English language, and publications 
outside the established period. We imported our 
research string in Rayyan (http://rayyan.qcri.org)2 
and, after duplicates removal, we obtained a total 
of 1654 articles available for a double-blinded title 
and abstract screening by two independent review-
ers (EC, ML). Once each reviewer reached a deci-
sion for all articles, they shared their decisions and 
discussed each case with conflict until consensus 
was reached. Finally, the reviewers reached a con-
sensus for the eligibility of 194 articles for a suc-
cessive unblind full-text screening. After the 
full-text screening phase, only 73 articles were 
considered eligible for fulfilling the aim of the 
study and were included in the present review 
(Figure 1). These articles were clinical research 
papers, they have been reported in the text and in 
Supplementary Table 1.

Results

Clinical trials
Numerous clinical trials have been performed to 
explore the efficacy of pharmacological and non-
pharmacological treatments on cognitive and/or 
behavioral symptoms in AD and MCI patients. 
Structural and functional MRI have been shown 
as particularly useful for detecting early altera-
tions in brain function and might be considered 
critical markers for the detection of physiological 
changes even over a short interval.

The amyloid hypothesis of AD suggests that the 
spread of tau-related neurofibrillary tangles, neu-
roinflammation and degeneration is triggered by 
the accumulation of beta-amyloid (Aβ) in the 
brain.3,4 Verubecestat is an inhibitor of beta-
secretase 1 (BACE1) that blocks Aβ production. 
Unfortunately, the trial in mild-to-moderate AD 
patients5 was terminated since verubecestat did 
not improve clinical ratings of dementia, and 
some measures suggested that patients receiving 
this medication worsened in cognition and daily 
functioning. Hippocampal volumes were intro-
duced among the secondary outcomes and have 
been observed as lower at week 104 compared 
with baseline by 6.1% in the placebo group and 
by 6.5–6.7% in the verubecestat group.

The cholinergic hypothesis of AD, suggesting 
that cholinergic augmentation should improve 
cognition, has led to the effective use of acetyl-
cholinesterase inhibitors in AD patients. A recent 
trial6 examined resting-state functional MRI 
changes in patients with mild-to-moderate AD 
who were treated with donepezil for 6 months. 
After treatment, patients showed clinical and cog-
nitive improvement and, compared with controls, 
decreased connectivity in the right gyrus rectus, 
right precentral gyrus and left superior temporal 
gyrus; however, no correlation between clinical 
and MRI findings were observed.

The risk to develop dementia is also associated 
with hypertension in mid and late life,7 and anti-
hypertensive drugs have been considered as pos-
sible means for reducing the incidence of AD.8 
One study confirmed the beneficial effects of anti-
hypertensive treatments on cerebral autoregula-
tion in AD, and reported that patients with 
mild-to-moderate AD who were treated with nil-
vadipine for 6 months showed reduced blood 
pressure, increased and stable cerebrovascular 
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blood flow, assessed using MRI–arterial spin 
labeling, in the hippocampus and in the rest of the 
brain, respectively.9 Kehoe et  al.10 recently pro-
posed the study design of a new trial using losar-
tan (an angiotensin-II-targeting drug), which 
should promote a reduced rate of brain volume 
loss and white matter hyperintensities (WMHs) 

in patients with mild-to-moderate AD with and 
without hypertension in 12 months.

Due to the lack of effective long-term treatments 
for AD, a new body of research started to tar-
get alternative approaches, such as nutrition, even 
though the results are controversial.11 In recent 

Figure 1. Flow chart of the reviewing process.
AD, Alzheimer’s disease; MRI, magnetic resonance imaging.
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years, a few studies have established the effects of 
blueberry supplementation on diet, such as rever-
sal of age-related decrements in cognitive and 
motor functioning.12 Boespflug et al.13 found that 
16-week blueberry supplementation is associated 
with increased functional MRI activity during a 
working memory task in MCI patients in left pre-
central gyrus, left middle–frontal gyrus, and left 
inferior parietal lobe, and only a trend of improve-
ment in working memory performance, compared 
with placebo. On the contrary, a similar study14 
failed to show cognitive, connectivity and micro-
structural changes after resveratrol (which is part 
of a group of polyphenols) supplementation in 
healthy elderlies.

In recent years, cognitive training has been one of 
the most important alternative methods in pre-
venting and delaying cognitive dysfunctions in 
AD, and several studies showed that it could 
effectively improve activities of daily living as well 
as memory self-efficacy in MCI patients.15–17 
Recent studies observed that cognitive trainings 
targeting multiple domains in patients with 
amnestic MCI (aMCI) improved cognition, 
increased brain functional connectivity (in the 
putamen, calcarine and inferior temporal gyrus), 
and reduced brain atrophy (in frontal, temporal 
and parietal volumes), with a consequent positive 
relationship between gray matter (GM) of pari-
etal structures and improved memory recall and 
visuospatial features.18,19 Finally, using a 3-year 
computer-based cognitive training, a recently 
proposed trial20 has the aim of investigating the 
reduction of the conversion rate from MCI to 
AD, and brain structural and functional-related 
changes, in an expected population of 600–800 
cases.

Summary
(1) Clinical trials on inhibition of BACE-1 in 

mild-to-moderate AD revealed clinical 
unsuccessful findings with reduced GM 
volumes in treated patients.

(2) Acetylcholinesterase inhibitors may have 
beneficial effects on brain structure and 
function in mild-to-moderate AD.

(3) To date, the effect of diet has led to contro-
versial findings in AD.

(4) Anti-hypertensive treatments are promis-
ing in AD to preserve both clinical and 
brain features.

(5) Cognitive training, mainly targeting multi-
ple domains, is associated with clinical 

improvement in MCI, and with a preserved 
integrity of crucial brain regions, such as 
the cortical parietal structures.

Predementia stages
During recent decades, a conceptual shift has 
occurred in the definition of AD, which is now 
conceived as a ‘continuum’ between healthy aging 
and neurodegeneration.21 MCI is considered an 
intermediate stage in the continuum from physi-
ological aging to dementia and, during recent 
years, there has been a considerable effort to 
identify early indicators of pathological changes 
in this condition.

In MCI patients, the atrophy of the medial tem-
poral lobe and its relationship with memory 
decline is a consistent finding using voxel-wise or 
volumetric approaches on T1-weighted images.22–24 
However, the clinical complexity and heterogene-
ity of this condition is yet to be determined. 
Compared with a population of stable MCI, Qian 
and colleagues24 observed that MCI patients who 
were prone to progression to dementia 12 months 
later, showed a worse cognitive profile and 
reduced volumes of bilateral hippocampus, but 
also of left thalamus, and body and splenium of 
the corpus callosum. In these patients, while the 
baseline hippocampal volume was associated with 
a poorer memory performance, the left thalamus 
was related to non-memory deficits, such as lan-
guage, executive and visual spatial abilities.

A recent study of Luo et al.23 showed that, com-
pared with a population of single-domain MCI, 
multidomain MCI patients showed a worse cog-
nitive profile, higher cerebrospinal fluid (CSF) 
total tau levels (but not lower Aβ levels), increased 
total WMH burden and decreased functional 
connectivity in the precuneus. These features 
were highly correlated with each other and sug-
gested that multidomain MCI is a far more com-
plex entity than was previously believed.

Research on the MCI condition has been also 
focused on white matter (WM) tissue.25–27 Using a 
graph analysis approach, Farrar et  al.25 investi-
gated WM tract connectivity within a recon-
structed brain network in MCI patients with high 
or low executive abilities. Authors reported that 
high-performer MCI showed greater network size, 
density, clustering coefficient and inferior and 
superior longitudinal fasciculi integrity than 
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low-performer MCI cases. Thus, according to the 
interpretation of authors, WM reserve may confer 
greater protection of executive abilities and restrict 
the progression to AD or to other dementing con-
ditions. Using the same approach, another study 
showed that individuals with subjective cognitive 
decline (SCD; a condition with a perceived cogni-
tive impairment but not objective neuropsycho-
logical deficits) showed less global and local WM 
connectivity efficiency compared with healthy 
controls.27 Lower regional efficiency was observed 
in the bilateral prefrontal WM and (again) left 
thalamus. The pattern of reduced structural con-
nectivity in SCD versus controls showed a high 
accuracy in distinguishing these two populations 
and the reduced nodal strength in SCD was asso-
ciated with their poorer memory performance.

Research on MCI and functional MRI has been 
focused on resting-state networks (RSNs) or task-
based functional activity in relation with or 
beyond the default mode network (DMN).28–32 
Zhang et al.31 provided an investigation on func-
tional connectivity alterations across multiple 
RSNs in individuals with early and late (in terms 
of staging) MCI, and observed that dysfunctions 
behind the most commonly affected DMN, such 
as in sensorimotor networks, accompany the pro-
gression of the disease, and both intra- and inter-
network functional alterations might be potential 
biomarkers for AD and MCI progression.31 
Moreover, the relationship between the anticor-
related activity of the DMN with other brain net-
works, such as the dorsal attention network 
(DAN), has gained increasing interest, since their 
activity impacts on behavioural and cognitive 
functions and may represent a cerebral mecha-
nism that switches the focus between internal 
channels (supported by the DMN) and external, 
attention-demanding events, supported by the 
DAN.33 Esposito et al.28 showed that this anticor-
relation was significantly decreased with normal 
aging and MCI in most DMN–DAN connec-
tions, and that in MCI this decrease specifically 
involved the connection between the posterior 
cingulate cortex node of the DMN and the right 
inferior parietal node of the DAN.

Summary
(1) The MCI condition is a complex and het-

erogeneous clinical syndrome yet to be 
determined.

(2) Extra-hippocampal brain alterations in 
MCI are more associated with non-memory 

domains and likely with a progression to 
non-AD conditions.

(3) The involvement of WM connections in 
MCI and SCD reveals protection or vul-
nerability to neuropathological processes 
associated with AD.

(4) The study of resting-state functional con-
nectivity and activity beyond and in rela-
tion to the DMN increased the 
understanding of the disease progression in 
the MCI condition.

Filling the gap in clinical utility
As largely reported in the previous section, MRI 
has a crucial role in detecting the early signs of 
neurodegeneration, and its contribution might 
increase the diagnostic reliability and accelerate 
therapeutic interventions in clinical settings.

Early signs of AD might include the presence of 
subtle clinical features, such as neuropsychiatric 
symptoms, which are difficult to recognize, and 
MRI could help in predicting their presence as 
part of the disease process. A recent investiga-
tion34 showed that functional connectivity MRI 
features of regions of interest, mostly from the 
fronto-limbic circuit, could predict the presence of 
neuropsychiatric symptoms with an average clas-
sification accuracy ranging from 70% to 80% in 
AD and MCI cases. In addition, the functional 
connectivity features of the regions of interest also 
predicted the severity of the neuropsychiatric 
symptoms, as well as the AD pathology (indexed 
by baseline and change of Aβ/phosphorylated tau 
ratio) with above 70% accuracy rate. Furthermore, 
measures of MRI at baseline (GM volumes of spe-
cific regions of interest, including the hippocam-
pus) in combination with genetic [apolipoprotein 
E (APOE) ε4 allele and 19 single nucleotide poly-
morphisms (SNPs) significantly associated with 
AD]35 or hypometabolism (qualitatively investi-
gated with 18F-fluoro-2-deoxyglucose positron 
emission tomography – FDG-PET)36 information 
could predict the progression to AD in MCI cases 
clinically followed up for 24 months, reaching 
accuracies higher than 80%. 

Finally, MRI measures could help in disentan-
gling misclassified cases during the diagnostic pro-
cess. A recent study showed that cortical thickness 
alone could correctly classify AD and healthy con-
trols with 90% accuracy, 96% sensitivity, and 
76% specificity.37 However, about 10% subjects 
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were misclassified. Although authors observed 
that sociodemographic (e.g. age) and cognitive 
information (e.g. Mini Mental State Evaluation, 
MMSE) contributed to understanding the mis-
classification, other MRI measures, such as 
increased WMH burden, were the most probable 
candidates for overestimating AD diagnosis in 
healthy controls, suggesting that vascular condi-
tions investigated with MRI may further contrib-
ute to classification accuracy. 

Summary
(1) MRI can significantly contribute to the 

detection of early clinical symptoms, which 
can indicate the presence of neurodegen-
erative processes.

(2) The combination of MRI features together 
with genetic and metabolism information 
can predict the MCI conversion about 
2 years earlier.

(3) Additional MRI features, rather than 
demographic and cognitive information, 
may contribute to correctly classify AD 
and healthy individuals.

Risk and protective factors
Epidemiological evidence reports the presence of 
many risk factors linked to AD.38 Consequently, 
it is essential to develop strategies to identify those 
individuals who are at particular risk of develop-
ing AD in order to prevent or push forward the 
disease onset. In line with this, the Australian 
National University Alzheimer Disease Risk 
Index (ANU-ADRI) is a reliable instrument for 
the investigation of several known AD risk factors 
(such as age, education, diabetes, body mass 
index, etc.), which was proposed detecting indi-
viduals at risk of developing AD prior to clinical 
symptoms.39 In a large cohort of healthy subjects 
who were free of dementia at baseline and were 
followed up for 12 months, higher risk estimates 
by the index were associated with lower global 
cortical GM and, more interestingly, every addi-
tional risk point on the ANU-ADRI was associ-
ated with a 0.32% lower volume of DMN 
structures, and with the 8% increased risk of 
developing MCI or dementia over the follow-up 
period. A recent cross-sectional study in a large, 
healthy population 40 showed that, among the fac-
tors accounted by the ANU-ADRI index, the 
adherence to a Mediterranean diet and insulin 
sensitivity were the only variables that could 
explain cortical thickness abnormalities in key 

brain regions for AD [such as entorhinal cortex 
(EC) and posterior cingulate], and specifically 
that EC explained greater changes in subjects’ 
memory performance.

Cerebrovascular alterations can be considered risk 
factors for neurodegeneration. In older adults, 
increased total WMH volume was associated with 
poorer global cognition and memory.41 Inter-
estingly, this relationship appeared to be medi-
ated by global and medial temporal cortical 
thinning, suggesting that some of the observed 
associations of WMHs with cognition are, at least 
partially, attributable to their effect on atrophy. 
The severity of WMH assessed using visual rating 
scores and the presence of lacunes at baseline 
were independent predictors of incident cognitive 
decline over 2 years, and increased this risk by 
threefold.42 A longitudinal study43 on healthy 
controls, MCI and AD patients observed that 
both medial temporal lobe atrophy and periven-
tricular WMH changes (mainly at the occipital 
lobe) were independently associated with 1-year 
cognitive decline, suggesting that treatment tar-
geting WMH may play an important role in the 
prevention of AD. The research on MCI or SCD 
patients with hypertension has shown an associa-
tion between episodic memory and amyloid bind-
ing, but no association44 or a circumscribed 
association between severe periventricular WMH 
and cognitive functions.45

Abnormal AD-like CSF biomarkers have been 
identified as high-risk factors for neurodegenera-
tion. Recent studies on asymptomatic individuals 
showed that subjects with abnormal Aβ1-42 had 
cortical thinning of several AD-brain regions 
(such as precuneus, posterior cingulate cortex, 
hippocampus and parahippocampal gyrus) at 
baseline46 and over 2 years,47 or altered global 
cortical network organization (including 
decreased global efficiency and modularity) prior 
to cortical loss.48 However, the longitudinal anal-
yses failed to be replicated in independent sam-
ples,47 with amyloid burden being one of the 
factors that could explain this incongruity. To 
this end, an elegant study49 reveals a dose–
response relationship between increasing CSF 
Aβ1-42 burden and alterations in blood-oxygen-
level-dependent activation during a challenging 
visuospatial task in cognitively normal individu-
als. During the task, the hypoactivation of precu-
neus and prefrontal cortices was related to good 
or bad performances depending on the grade of 
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‘Aβ’ elevation, demonstrating a transition over all 
the disease staging. On the other hand, subjects 
with both low CSF Aβ1-42 levels and high CSF 
phosphorylated tau values were characterized by 
reduced subiculum volume, lower microstruc-
tural integrity of the fornix, and also a trend 
towards cognitive impairment more than individ-
uals who showed only reduction in CSF Aβ1-42.50 
In addition, all subjects with (any) abnormal CSF 
measures presented with WM atrophy of the 
anterior and posterior cingulate bundle and more 
segregated cortical networks, with the Aβ-positive 
group showing heightened isolation of cingulate 
and temporal cortices.46 Recent results51 show 
that healthy subjects with APOE ε4ε4 genotype 
and AD first-degree family members have higher 
Aβ burden, assessed with amyloid PET, compared 
with ε3ε4 and ε3ε3 genotypes, and this burden was 
inversely associated with cortical GM mean vol-
umes but not with episodic memory, likely sug-
gesting that neurodegeneration occurs before 
manifest cognitive decline in these individuals.

By combining structural MRI and genome-wide 
genetic data from two independent young cohorts, 
another investigation52 highlighted that an ele-
vated polygenic risk score (which combines loci 
with low effects to identify phenotypic associa-
tions) is associated with smaller precuneal volume 
even when accounting for APOE genotype in the 
analysis, suggesting an independent role of other 
genetic factors in AD.

Even though risk factors play an important role 
in the understanding of AD progression, recent 
investigations also focus their attention on the 
role of protective factors. One of the most 
debated protective factors in AD is cognitive 
reserve (CR), which relates to the discrepancy 
between the brain pathology and the severity of 
clinical manifestations, with subjects with higher 
CR tolerating a greater amount of AD pathology 
(in terms of more tau and Aβ aggregations) 
before cognitive impairments appear.53 Recent 
results showed that CR was associated with the 
capacity to process information efficiently in the 
brain (it was correlated with global efficiency, 
nodal clustering coefficient, and local efficiency 
of the right middle-temporal pole) in AD and 
MCI.54

Wolf et al.55 recently proposed a new explorative 
methodological approach to study resilience 

mechanisms of the brain, such as the well-known 
age and education (called general resilience fac-
tors which are independent of degree of pathol-
ogy) in addition to hippocampal volume as a 
potential resilience factor (i.e. a dynamic resil-
ience factor characterized by an increasing rele-
vance with increasing levels of pathology). These 
analyses highlighted hippocampal volume as a 
promising resilience factor against age and 
AD-related brain pathology, particularly in case 
of elevated tau. Apart from age and education, 
another factor which may contribute to CR is 
multilingualism. A recent study56 investigated 
this aspect in MCI and AD. In areas related to 
language, both multilingual MCI and AD patients 
had thicker cortex than the monolinguals, and 
multilingual patients showed a positive correla-
tion between cortical thickness in areas involved 
in language and performance on episodic mem-
ory tasks.

Finally, mounting evidence indicates that physical 
activity and cardiorespiratory fitness are positively 
associated with WM fiber integrity and cognitive 
performance in both healthy individuals and 
patients with MCI.57–59 Results provided by Ding 
et  al.60 are in line with these assumptions, thus 
confirming that physical activity is a key factor to 
maintain WM fiber integrity in these subjects and 
also correlates with high cognitive performance, 
specifically in executive functioning.

Summary
(1) In healthy subjects, higher ANU-ADRI 

indices are associated with global and 
DMN GM atrophy.

(2) In healthy subjects, WMH burden is an 
independent predictor of cognitive decline.

(3) The relationship between abnormal CSF 
Aβ1-42 levels and MRI alterations in cogni-
tively normal individuals seems to be medi-
ated by Aβ burden. On the other hand, any 
abnormal CSF value in these subjects is 
related to a disruption of WM.

(4) In healthy, young populations, several 
genetic factors, other than APOEε4, con-
tribute to smaller GM volumes in AD key 
regions such as the precuneus.

(5) Among the protective factors, in healthy 
individuals the CR is consistently associ-
ated with increased cortical thickness and 
greater functional and structural network 
efficiency.
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New brain regions of interest
The differentiation of the early signs of degenera-
tion from physiological aging represents a con-
stant challenge in the neuroimaging field. Thus, 
identifying brain regions of interest, which are 
specifically hit in different phases of the 
AD-related neurodegeneration, has become more 
and more crucial.

AD has been widely associated with medial tem-
poral atrophy involving the EC, the hippocampus 
and its subfields with cornu ammonis (CA) 1 and 
subiculum as the first regions involved.61,62 A 
recent cross-sectional study on AD, MCI, and 
healthy individuals revealed that atrophy of CA1 
and subiculum were found in both AD and MCI 
compared with normal aging condition, while the 
stratum radiatum, lacunosum and moleculare 
(SRLM) integrity, which is intimately involved in 
the pathways between CA1 and CA3/EC, and 
between hippocampus and wider cortical areas, 
was only significantly reduced in AD compared 
with healthy controls, but not in MCI.63 However, 
SRLM integrity was correlated with clinical and 
cognitive measurements of disease severity in all 
subjects, highlighting this as a candidate bio-
marker for staging the progression of AD.

AD is associated with loss of cholinergic neurons 
in the nucleus basalis of Meynert, located in the 
posterior basal forebrain, and atrophy of this 
nucleus occurs early in the course of the disease. 
The role of anterior basal forebrain structures in 
AD, in particular the septal region, has been less 
studied. A recent study64 employed manual volu-
metric analysis of the septal nuclei in healthy sub-
jects who developed MCI or AD. Healthy 
individuals converting to AD within an average of 
2.8 years had enlarged septal nuclei as compared 
with the other groups. Further research is needed 
to determine if septal enlargement reflects neuro-
plastic compensation, amyloid deposition or 
inflammation, and whether it can serve as an early 
MRI biomarker of AD.

The pineal gland is another brain structure which 
has gained increasing interest in AD research 
because of its role in melatonin secretion and the 
regulation of the circadian rhythm.65,66 Previous 
studies pointed out that the suppression of the 
production of melatonin is frequently seen in 
patients with AD and MCI, with melatonin levels 
being lower in these patients compared with nor-
mal aging.67,68 A recent study69 reported that 

mean pineal gland volume was significantly 
smaller in patients affected by AD compared with 
healthy controls and MCI, but in all patients was 
related to cognitive decline.

Among the most investigated (new) brain regions 
of interest, basal ganglia (in particular the striatum) 
and thalamus are those that have gained the strong-
est attention in AD. Thalamic volume loss was 
observed in both AD and aMCI patients, and in 
these latter subjects it was an early sign associated 
with poor cognitive performance preceding the 
damage to other extra-hippocampal brain regions 
such as the amygdala.70 Compared with both MCI 
and SCD patients, a larger caudate nucleus vol-
ume, partially associated with age and female sex, 
was observed in AD patients and interpreted as 
result of pathology accumulation or mechanism of 
temporary compensation (i.e. to compensate for 
the reduced hippocampal volumes).71

Apart from brain atrophy, the study of disruption 
of resting-state functional brain connectivity 
beyond the DMN is gaining increasing interest. 
Using a sparse inverse covariance estimation 
approach on the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) dataset, a recent study72 
showed altered functional connectivity of frontal 
and parietal brain regions within the DMN but 
also in the frontoparietal and executive-control 
networks in initial AD patients. On the other 
hand, in aMCI patients with reduced DMN func-
tional connectivity, executive-control and salience 
networks were found to be hyperconnected, as a 
possible sign of compensation.73

Summary
(1) Hippocampal subfields, such as SRLM, 

are candidate biomarkers for the disease 
staging.

(2) The role of the anterior basal forebrain is 
yet to be determined in AD.

(3) Brain structures involved in melatonin 
secretion and circadian rhythm regulation 
are gaining interest in the field.

(4) Among the new brain regions of interest, 
basal ganglia and thalamus have gained 
strong attention.

(5) In MCI, unaffected brain networks co-
operate with the DMN likely for com-
pensatory mechanisms. This co-operation 
is not possible later in the course of the 
disease when other networks become 
affected.
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MRI and cognition
The investigation of specific cognitive and behav-
ioral domains involved in AD is crucial for the 
detection of the early disease signs. Episodic 
memory is early impaired in AD patients, who 
have difficulties in encoding and recalling new 
information. One of the most diffuse paradigms to 
detect episodic memory disturbances is the Free 
and Cued Selective Reminding Test (FCSRT). In 
its ‘word’ (versus picture) version, FCSRT has 
been suggested as an indicator of hippocampal 
and temporal pole integrity due to its association 
with atrophy of these regions in AD and MCI.74,75 
Asymptomatic autosomal-dominant carriers have 
been recently observed to make significantly more 
errors compared with non-carrier relatives at a test 
assessing memory generalization (i.e. the ability to 
transfer previous learning to new situations), with 
this impairment correlating with the left hip-
pocampal volume loss.76 The importance of the 
integrity of the hippocampus has been highlighted 
also for the consolidation of arithmetic facts in 
memory during childhood and adolescence.77 
However, a recent study78 demonstrated that the 
retrieval of arithmetic facts (such as multiplica-
tion) in AD and MCI patients are intact despite 
their hippocampal atrophy and episodic memory 
deficits, suggesting that the hippocampus might 
not be crucially involved in retrieving these facts 
when these are consolidated in long-term mem-
ory. It is important to underline that the memory 
process does not involve only temporal structures 
and that specific subcomponents of memory 
might be also subtended by extra-temporal brain 
regions. To this end, a longitudinal investigation 
on 233 SCD cases showed that a faster rate of 
memory impairment assessed as a global memory 
score was related to thinner cortex in frontal, tem-
poral and occipital cortices.79

Another cognitive change that occurs in AD 
patients is the loss of visuo-constructional ability. 
Deficits in the well-known Pentagon Copying 
Task were related to GM volumes of the total pari-
etal (for total score) and specific sub-regions of the 
parietal cortex (such as the posterior cingulate cor-
tex and supramarginal gyrus, for intersection and 
the number of angle scores) in AD, MCI and SCD 
cases, conceptualizing the constructional apraxia 
as a failure in the integration of visual information 
from one fixation point to the next.80

Different studies are also targeting executive and 
frontal-lobe functioning in MCI, AD and healthy 

controls.81–83 Authors of a multimodal MRI study 
in healthy adults showed that low deactivation of 
the DMN, high activation of the executive- control 
network and high WMH burden were the most 
accurate predictors of executive functioning at 
baseline.82 In addition, greater AD pathology 
(assessed using CSF values), and poor WM 
structural connectivity within the DMN and the 
executive-control network predicted greater 
executive-dysfunction annual decline in asymp-
tomatic subjects.

Another aspect which seems to be hugely affected 
in AD and has a great impact on daily living is 
mental orientation, which comprises orientation 
in time, space and person. Compared with the 
standard tests, mental orientation task reached 
the highest accuracy (nearly 95%) in the distinc-
tion between MCI and healthy controls, and this 
task preferentially recruited specific AD-related 
brain regions (e.g. precuneus, retrosplenial cor-
tex, parahippocampal gyri),84 which, together 
with the posterior cingulate cortex, dorsal DMN 
and temporo-parietal junction, are the same with 
reduced resting state connectivity in AD patients 
with poor orientation in time compared with well-
oriented AD and healthy controls.85

Several MRI studies also assessed structural and 
functional neural circuits related with neuropsy-
chiatric symptoms in AD and MCI.86 Some of 
these studies showed that alterations of the func-
tional or structural connectivity of the fronto- 
limbic network are associated with the most 
frequent behavioural aspects of AD (agitation, 
anxiety, depression, etc.) and premorbid person-
ality traits (such as internal or externa locus of 
control) in addition to the severity of AD pathol-
ogy assessed with CSF.34,87,88

Summary
(1) As a memory test assessing encoding and 

recall, FCSRT has been suggested as an 
indicator of hippocampal integrity in AD 
and MCI.

(2) The structural connectivity of the DMN 
and the executive-control network, 
together with CSF amyloid burden, con-
tribute to the progressive executive dys-
function in healthy individuals.

(3) Structural and functional connectivity of 
fronto-limbic regions are linked to neu-
ropsychiatric symptoms, premorbid per-
sonality traits and AD pathology.
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Novel biomarkers
Recent studies in the treatment of AD have shown 
a failure to modify disease progression over time. 
The identification of novel biomarkers (beyond 
amyloid),89 specific in predicting the develop-
ment of AD, is a primary concern in the field. 
Among fluid biomarkers, the most promising is 
the measurement of the neurofilament light chain 
(NfL) in the CSF and blood. In asymptomatic 
AD mutation carriers, the annual rate of serum 
NfL change was associated with cognitive impair-
ment and cortical thinning of the precuneus at 
least a decade earlier than estimated symptom 
onset, and enabled researchers to discriminate 
AD mutation carriers from non-carriers almost a 
decade before disease onset.90 The measure of 
serum copper levels is also promising, since cop-
per ions appear to modulate Aβ generation, 
aggregation and stabilization of the fibrillary 
form.91,92 However, although patients with MCI 
and AD presented with higher levels than healthy 
controls, these measures did not correlate with 
medial temporal lobe atrophy, nor with cognitive 
performance.93

Little focus has been concentrated on metabo-
lites, such as sphingolipids and glycerophospho-
lipids, which have been found associated with AD 
severity at autopsy, clinical and preclinical pro-
gression, low memory performance and typical 
pattern of brain atrophy in AD and MCI, and 
depletion of circulating progenitor cells, which 
are believed to promote angiogenesis and 
neurogenesis.94,95

Using different classification approaches, several 
studies demonstrated that brain structural MRI 
(particularly the medial temporal lobe), amyloid 
and FDG-PET, and genetic features (in particu-
lar the APOEε4 allele) better than other imaging 
and genetic features predicted the distinction 
between AD and healthy controls and the conver-
sion from MCI to AD.35,36,37,96

One of the most promising and advanced bio-
markers is the use of brain connectome to mon-
itor AD spreading. A graph analysis study 
demonstrated that the progressive degeneration 
in the AD continuum is associated with an early 
breakdown of anatomical brain connections 
and follows the strongest connections with the 
disease epicentre (i.e. the most atrophic region), 
supporting the hypothesis that the topography 

of brain connectional architecture can modu-
late the spread of AD through the brain.97

Finally, the study of the WM microstructure 
(mainly of the hippocampal cingulum and for-
nix)98,99 using diffusion-tensor imaging (DTI), 
and of microbleeds (reflecting impaired small-
vessel integrity), or iron accumulation using sus-
ceptibility-weighted imaging (SWI) and arterial 
spin labeling (ASL),100,101 are promising for the 
differential diagnosis of AD with other dementias, 
and for the detection of asymptomatic individuals 
at risk of developing AD.

Summary
(1) Among the fluid biomarkers, serum NfL 

change is promising, since it is associated 
with cognitive impairment and cortical 
thinning in presymptomatic individuals, 
decades before the disease onset.

(2) The most important predictors of AD from 
healthy controls’ distinction, and of MCI 
to AD conversion, are the APOEε4 allele, 
amyloid PET, qualitative FDG-PET, and 
the medial temporal volumes.

(3) SWI and ASL are promising tools for 
assessing small-vessel disease and iron 
deposition.

(4) Studying the topography of brain connec-
tional architecture can allow prediction of 
the spread of AD pathology through the 
brain.

The study of the WM microstructure of hip-
pocampal cingulum and fornix helps in the AD 
differential diagnosis and in the detection of 
healthy individuals at risk of AD.

A multiparametric MRI approach in clinical and 
preclinical stages
Multimodal MRI is proven to be a more valid 
approach than the single modality for investigat-
ing different aspects of neurodegeneration. To 
this end, recent reports showed that the evaluation 
of perfusion imaging and SWI are promising for 
detection of MCI converters,100 while functional 
MRI connectivity and DTI abnormalities enable 
the distinction of AD patients from other neuro-
degenerative conditions.98 Several studies demon-
strated that T1-weighted images can detect 
specific patterns of brain atrophy for the differen-
tial diagnosis between AD and frontotemporal 
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dementia, with accuracy reaching up to 84%.102–104 
However, the employment of other advanced 
MRI techniques can further increase the diagnos-
tic accuracy: several findings indicate that the 
assessment of ASL, perfusion patterns, and the 
contribution of DTI have an added value over 
mere atrophy measurements along the AD spec-
trum.105–108 Specifically, a recent study demon-
strated an increased diagnostic accuracy in 
distinguishing AD from frontotemporal dementia, 
from 72% to 84% by adding DTI and ASL meas-
ures to the sole structural MRI.109

As previously mentioned here, the combination 
of MRI with other molecular imaging modalities, 
such as FDG-PET, is a valid approach for the 
accurate prediction of AD progression in MCI 
patients.36 In fact, hippocampal atrophy assessed 
with structural MRI might explain early symp-
toms of AD, whereas its hypometabolism, as seen 
with PET images, reflects early neuronal dysfunc-
tion. Furthermore, recent evidence highlights 
that multimodal imaging biomarkers (MRI, tau 
and amyloid PET) are pivotal for the AD detec-
tion and for the definition of distinct AD pro-
files.110 In addition, the combination of tau and 
FDG-PET with functional MRI would enable 
further insight into the consequences of patho-
logical deposits on functional networks and to 
better understand the pathological course of 
AD.111 Future studies need to highlight the cru-
cial role of combining different MRI techniques 
together with other imaging modalities, in order 
to study different aspects of neurodegeneration.

Summary
(1) Multimodal MRI rather than the single 

modality is a more valid approach for 
increasing the diagnostic accuracy and for 
predicting the MCI conversion.

(2) The combination of MRI and other imag-
ing modalities, such as PET imaging, 
would be of utmost importance for reach-
ing higher diagnostic accuracy and for 
understanding the consequences of the 
pathological processes.

(3) Multimodal MRI and/or imaging approaches 
are promising to define different aspects of 
neurodegeneration in the AD course.

Conclusion
This review comprehensively discusses the new-
est findings of structural and functional MRI in 

the study of AD, as published in the last 2 years. 
MRI measures were suggested as outcomes to be 
used for the earliest detection of the disease, for 
monitoring the disease progression, as well as the 
effect of treatments, and to unravel the complex 
interplay between upstream and downstream 
processes.

Among the most consistent findings, the study of 
extra-hippocampal structures, extra-DMN net-
works, and assessing the protective factors played 
by WM structural integrity offered new insights 
to explain the different trajectories of the hetero-
geneous MCI condition, and may help to predict 
conversion to AD or non-AD dementias. The use 
of MRI to test the efficacy of pharmacological 
and non-pharmacological treatments is mainly 
based on T1-weighted images and specifically, 
GM volumes. As such, non-conventional MRI 
sequences, such as DTI, SWI, ALS and func-
tional MRI have only had a marginal role so far, 
typically related to small observational studies or 
non-pharmacological interventions (as in the case 
of functional MRI). While we should recognize 
that the longitudinal validity of functional MRI 
still deserves research to be proven, recent litera-
ture highlights that it may be a good candidate to 
detect even subtle changes. Among novel wet bio-
markers, one the most promising is the measure-
ment of the NfL in CSF and blood. A specific 
association of NfL with MRI-derived brain 
changes seems to occur only at the very early 
asymptomatic stages of the disease and become 
rather non-AD-specific in overt clinical stages. In 
general, from this review, it emerges that mul-
tiparametric MRI studies would be effective in 
holding a comprehensive view of the disease path-
ological processes. Furthermore, a combined 
approach using MRI and other imaging (e.g. 
molecular imaging) and non-imaging (e.g. genetic 
and clinical) modalities is gaining consideration, 
mainly in the preclinical stages of the disease, as a 
predictor of further decline.

Some limitations of the present review should be 
noted. The selected manuscripts reflect only a 
part of the huge work that has been done in the 
AD field using MRI in the last 2 years.

It is worth noting that our manuscript did not 
review in detail the scientific literature on how 
MRI is used with other imaging techniques, such 
as tau and amyloid molecular imaging. Even if we 
recognize its extreme importance, this aspect goes 
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beyond the aim of our present investigation and 
needs to be deeply discussed in future dedicated 
reviews. Our search did not include research 
papers focused on atypical AD, specific advanced 
MRI sequences, nor methodological papers, since 
all of these require deep discussion. To this end, 
it is relevant to mention that methodological stud-
ies in the AD field, published in the same period of 
interest, are proposing relevant improvements for 
the automatic hippocampal segmentation, artifi-
cial-intelligence-based individual diagnosis, and 
for the MRI harmonization in multicenter pro-
jects, with all these studies providing promising 
findings for future research.

Despite these shortcomings, this manuscript has 
several strengths. We performed a formal litera-
ture search with a robust approach, and we 
reviewed the obtained manuscripts through a 
double-blinded screening by two independent 
reviewers. We finally provided a comprehensive 
view of state-of-the art MRI research, underlying 
the crucial role of MRI in diagnosing and moni-
toring the AD spectrum.
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